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Abstract

* Key message We demonstrate how multidimensional scal-
ing can be used to combine forest inventory field data and
airborne laser scanner data to obtain both predictions and
model-assisted estimation of a tree stem diameter
distribution.

* Context The size distribution of forest trees is important both
for management planning and analysis purposes. Yet field
samples are rarely large enough to assuage a desired accuracy
of a direct estimation in all areas of interest. Improvements in
spatial coverage and accuracy are possible with a census—or a
very large sample of one or more cost-effective auxiliary var-
iables that can inform one about the tree size distribution.

» Aims The objective of this study is to demonstrate how a
relative frequency distribution of canopy heights from air-
borne laser scanner data can be used to improve direct esti-
mates of a tree size distribution.
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* Methods Multidimensional scaling is used to link a relative
frequency distribution of canopy heights to an observed plot-
level distribution of tree size.

* Results A multivariate linear model can be used for both
predictions and model-assisted estimation of a tree stem diam-
eter distribution.

* Conclusion Multidimensional scaling can provide a multi-
variate linear link between two relative frequency distribu-
tions and is therefore ideally suited for both stand-level pre-
dictions and design-based inference of tree size distributions.

Keywords Forest inventory - Stratified random sampling -
Relative frequency distribution - LIDAR - Goodness-of-fit -
Bootstrap confidence intervals

1 Introduction

The size distribution of trees in a stand, a stratum, or a
forest is an important summary statistic of the resource.
It is used by forest management for planning purposes
(Clutter et al. 1983, ch. 9; Kangas et al. 2015, ch. 4)
and by analysts to assess historic trends and current and
future resource values (del Rio et al. 2016; Hyytidinen
and Haight 2012; Valencia et al. 2016). The stem diam-
eter of a tree at a reference height of 1.3 m (DBH) is a
key attribute correlated with the height, volume, bio-
mass, and utilization (Bailey 1980; Clutter et al. 1983,
ch. 4.2.2). Through a design-based field sampling and
measurements of DBH in fixed area plots, a forest in-
ventory provides an unbiased estimate of the distribu-
tion of DBH in the sampled population and in areas of
interest provided they contain at least one sample plot
(Fuller 2009, p. 69 and p. 304).
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In national forest inventories with thousands of plots, a
sample-based estimate of a national or even a regional DBH
distribution may be quite accurate (Gasparini et al. 2013), but
for most enterprise level inventories—with a few hundred
plots distributed across several strata—the accuracy of direct
estimate of a DBH distribution in an area of interest (e.g. a
stratum or a stand) may not be satisfactory for planning or
analysis (Korn and Graubard 1998; Magnussen et al. 2013;
Sison and Glaz 1995).

Airborne laser scanner (ALS) data and photogrammet-
ric point clouds (PPC), in combination with optical re-
motely sensed data, offer options for extending tree size
and species-related information to areas not covered by a
field plot (Brosofske et al. 2014; Magnussen et al. 2013;
Wallerman and Holmgren 2007). Through modelling,
nearest neighbour imputations, or single tree detection
(STD), predictions of the desired tree size distribution
can be made for an area of interest (Maltamo and
Gobakken 2014; Vauhkonen et al. 2014a).

There are currently a large number of approaches and
methods that can produce satisfactory results (Brosofske
et al. 2014; Hyyppd et al. 2008). Evidently, the so-called ar-
ea-based approach (ABA)—which uses extracted plot-level
multivariate remotely sensed explanatory variables—is easier
to implement than STD. The preferred approach is context
specific and depends on available expertise, available data,
and inventory objectives. Implementation issues and modus
operandi are important factors for choosing the combination
of auxiliary data (ALS, PPC, optical data) and method (ABA,
STD) for extracting a tree size distribution.

At the level of a forest management unit, the interest is
in the diameter distribution within a stand, but for plan-
ning and analysis of larger areas, the interest may shift to
a diameter distribution within a stratum or an entire pop-
ulation. An estimator that combines stand-level (model
based) predictions and design-unbiased estimates for larg-
er areas (e.g. a stratum) would therefore be attractive.
Current estimators are all model based with a focus on
stand-level predictions; their application to larger areas
will generate estimates that are model based, i.e. with
properties that depends (strongly) on the correctness of
the model (Gregoire 1998; Magnussen 2015).

In this study, we demonstrate that multidimensional scaling
(MDS) provides an estimator that can be used both for stand-
level predictions and for model-assisted inference of the di-
ameter distribution of trees in a larger area of interest (e.g. a
stratum). In our demonstration, we apply a MDS for the linear
transformation of a discrete probability distribution function
of first-return ALS data of canopy height to a discrete proba-
bility distribution of tree stem diameters. Examples are pro-
vided for ALS first returns and inventory field data from the
four sites in France covering a diversity of forest stands
(Bouvier et al. 2015; Véga et al. 2016).
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2 Material and methods
2.1 Field data

Field data from three sites in Aillon, Bure, and the Vosges
were collected as part of the Foresee research project
(http://foresee.fcba.fr). Data from St. Gobain were collected
by the Office National des Foréts (ONF). Field measurements
were performed during the winter period (see Table 1) from
255 fixed area plots located in Aillon (49), Bure (28), St.
Gobain (133), and the Vosges (45). All but one plot had a
radius of 15 m with an area of 706.9 m>. The exception was
a 100 m x 100 m plot in Aillon. Species and diameter at a
reference height of 1.3 m (DBH) above ground was, as a rule,
recorded with a tape for all live trees with a DBH > 17.5 cm.
Note, this lower diameter threshold is a standard in many ONF
inventories (Duplat and Perrotte 1981, p. 84). We did not have
data on the number and DBH of smaller trees. It is assumed
that the forests in the four sites have been stratified by leading
species (dominant by basal area) and that the plots constitute a
simple random sample (without replacement) within each post
stratum. The strata included in this study have as leading spe-
cies: beech (Fagus sylvatica L.), hornbeam (Carpinus betulus
L.), fir (Abies alba Mill.), linden (7ilia spp. L.), maple (Acer,
pseudoplatanus, L. (Falk)), and oak (Quercus spp. L.). A
summary of the field data is in Table 2.

The DBH values in a plot were distributed to k£ = 15 equal-
width (6 cm) intervals (see ALS data for details on k). Interval
midpoints were 20, 26, ..., 104 cm. A few trees with a DBH
greater than 107 cm were assigned to the 15th bin.

2.2 ALS data

ALS acquisition details are given in Table 1. ALS flights were
done in the same year as the field measurements, except for
the Vosges, where the latter were performed one growing sea-
son after the ALS acquisition. Scanners (Riegl or Optech)
were mounted on fixed-wing aircrafts flying at 500 to
1500 m above the ground (Table 1). The pulse frequency
ranged from 71 to 100 kHz with a range of scan angle from
+13° to +30°. The mean density of echoes ranged from 2.6 to
18 m 2. A Terrasolid software (www.terrasolid.com) was used
for echo classification to ground and non-ground. The mean
pulse densities of ground echoes ranged from 0.5 to 4.1 m .

ALS first-return canopy heights (X},,) in the Ath stratum and
the ith plot were binned to & height classes and converted to a
discrete relative frequency distribution. The number of bins
was determined using the suggestion by Freedman and
Diaconis (1981). With a mean of 8491 first returns per plot,
an inter-quantile range of 31 m, and a range of 43 m, we took
k= 15. The first bin was fixed to the interval from 0 to 1.3 m,
while the remaining bins divided the interval from 1.3 to 43 m
in 14 equal-width bins.


http://foresee.fcba.fr
http://www.terrasolid.com
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Table 1  Site areas, period of field measurements, and acquisition details for the ALS data

Site Area  Field measurements  ALS flight LiDAR type Flight altitude Mean echo  Scanning angle ~ Band swath
(km?) period (m) density m? (degrees) (m)

Aillon 25.5 03-04/2011 08/2011 Riegl LMS-Q560 550 16.5 +30° 621

Bure 40 02/2010 03/2010 Riegl LMS-Q560 600 18.7 +20° 417

St. Gobain 104 01-03/2015 03/2015 Riegl LMS-680i 550 18 +30° 615

The Vosges 1362 02-04/2012 04/2011 Optech ALTM3100 1500 4.6 +13° 673

2.3 Sampling design

For the purpose of our demonstration of MDS in a context of
both stand-level predictions and model-assisted estimators and
inference, we have assumed a stratified simple random sampling
without replacement in the ten strata across the four sites
(Table 2). Stratification was nominally based on dominant tree
species (by a basal area). Sample sizes (11;,) in each stratum (k= 1,
..., H=11) are in Table 2. Strata sizes N,, are unknown but fixed
arbitrarily in this study for the sake of demonstration (see below).
Sample units were fixed area circular plots with a horizontal
radius of 15 m. A single plot in Aillon measured 100 m x 100 m.

2.4 Estimators

It is assumed that the discretized relative frequency distribu-
tion of DBH (Y) and heights of first-return ALS echoes (X)
are associated through a MDS via an ortho-normal transfor-
mation matrix B (Mardia etal. 1979, ch. 14). For the ith plot in

the Ath stratum, we have the following model:
Yi=B,X+ey, h=1,..Hi=1,..,N, (1)

where e;,; is a residual term and N, is the size of stratum 7
expressed in the number of sample plots that nominally would

fill the stratum. For a finite area stratum with an area of A;, and
sample plots with an area of a, V;, becomes the integer value of
A, xa ' Note, we do not claim that the model in Eq. 1 is a true
model; it is merely a working model formulated prior to ob-
serving the data and therefore external to the sample. There is
no search for a best model form nor a selection of explanatory
variables that would violate the requirements to a working
model (Sarndal et al. 1992, ch. 6.7).

In an ortho-normal transformation, the dimension of Y,
X, and ey, are the same (k). As argued in section 2.2, kis 15
throughout. Consequently, the dimension of B, is 15 % 15. The
multivariate linear model in Eq. 1 ensures that a unique ortho-
normal B, exists. To see this, pre-multiply Eq. 1 with the in-
verse, viz. transpose of B, and use that B’hBh = I, (Secarle
1982, p.320). An estimate of B;, was obtained by constrained
weighted multivariate least-squares techniques. The imposed
constraints ensure that the Euclidean length of each column
and row vector in B, is 1.0. The weights were the inverse of
the sample inclusion probability (cf. section on sampling de-
sign). For the ith sample unit (plot), we have the following:

Yii=BiXp+én=Yyutey (2)

where ¥, i 1S an estimate of the expected relative frequency
distribution of DBH in the ith plot within stratum 4. A 95 %

Table 2  Summaries of circular field plots with a radius of 15 m (0.07 ha)
Site Plots  Dom. Species =~ Number of species (DBH > 17.5 cm) Stems with DBH > 17.5 cm DBH > 17.5 cm
Min Median Max Min Median Max Min  Mean Max

Aillon 12 Beech 2 3 5 7 22 52 17.6 352 97.2
37 Fir 2 3 5 10 20 66 17.0  38.0 94.5

Bure (OPE) 15 Beech 1 3 5 15 23 35 172 309 83.1
13 Hornbeam 3 5 7 11 30 45 172 354 108.9

St. Gobain 15 Beech 1 3 5 8 11 21 170 375 87.0
62 Hornbeam 2 3 6 7 14 26 18.0  33.8 104.0
15 Linden 2 4 6 9 16 23 180 324 102.0
14 Maple 2 4 7 7 13 22 18.0 345 88.0
27 Oak 1 3 6 7 13 23 18.0  36.6 122.0

The Vosges 23 Beech 1 2 7 9 25 69 172 289 104.7
22 Fir 2 3 5 16 28 72 172 34.0 109.5
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confidence interval for ¥ i was obtained from the 0.025 and
0.975 quantile in a distribution of 120 parametric bootstrap

estimates of I}Zl = lA?ZXh,-, b=1,...,120 where lhfz is the bth
bootstrap estimate of B;,. Resampling with replacement was at
the level of plots.

The estimate of Bj, can be used directly for a prediction of the
diameter distribution in a stand (s¢) for which only the vector of

auxiliary variables X; is known. The prediction would be é;,X o
and by necessity model based (synthetic) (Chambers and Clark
2012, p. 162). Note that a prediction is ‘automatically’ scaled to
the stand level without a need to subdivide the stand into virtual
plots and repeat predictions for each.

The mean of ¥, i taken across the plots in a stratum (IT/ h,-)

is a model-based estimator of the stratum mean of ¥},;, i.e. ¥ ;.
It is a model-assisted estimator only if the average residual
vector e, is a vector of zeros. A 95 % confidence interval

for ¥,; was derived from the 120 bootstrap estimates of Bj,
and the n;, observations of Xj,;.

With a census of X,; ()? ») in stratum %, a model-assisted
estimator of the stratum relative frequency distribution of
DBH in this stratum becomes (Sédrndal et al. 1992, ch. 7.8)
the following:

Y, Zl}hf}, +%h (3)

with expectations computed as weighted averages, whereby
weights are the inverse of the sample inclusion probabilities
mi,i=1, ... ,n, We shall assume a stratified simple random
sampling without replacement. An approximation to the vari-

ance—covariance matrix (X)) of Y 1 1s (Binder 1983) the following:

N ) e Thij ™ T hi T hj ~ -
$(1)) = NS T g, @

=1 jes i

where e, ® e;; is the Kronecker product of the two residual
vectors (Searle 1982, p. 265) yielding a 15 x 15 matrix of
cross-products.

In this study, we did not have census vectors X, of relative
class frequencies of ALS first-return canopy heights. For the
sake of demonstration, they were simulated. First, we fixed
strata sizes to N, = 10* 1, and then simulated N;—n,, randomly
scaled and perturbed versions of X;,; i = 1,..., n;,. The N;—n,,
vectors were first selected with-replacement and unequal
probability from the n,, actual observations. The probability
of selection was assigned at random from a uniform distribu-
tion on the interval 0.8 to 1.0. The scaling of a selected vector
was done with a random draw from a uniform distribution on
the interval 0.7 to 1.3. Finally, a random perturbation was
added via a random draw from a uniform distribution on the
interval —0.08 to 0.08. All simulated vectors were constrained
to satisfy a sum-to-one of the £ relative frequencies.
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In case of a post-stratification to dominant species, the es-
timator of a post stratum mean (cf. Eq. 3) and variance (cf.
Eq. 4) requires a modification as outlined in, for example,
Sarndal (2011) in order to capture the random allocation of
samples to post strata.

To gauge the fit between a stratum mean of n,, fitted DBH

distributions IT’;, and the observed mean ¥, we obtained 120

with-replacement bootstrap replications of IT/;, and repeatedly

tested the hypothesis H : 17; =Y b=1,...,120 where
the superscript denotes an estimate in the bth bootstrap sample
(Bickel and Krieger 1989). An Anderson—Darling (AD) test
(Anderson and Darling 1952) provided 120 test statistics, and
Holm’s sequential rejection test procedure at the 1-0.05 level
(Holm 1979) was used to gauge the overall level of signifi-
cance. Each AD test was carried out with the observed (tree-
level) distribution of DBH values and matching numbers of
predicted values of DBH drawn at random from the inverses
to the fitted cumulative distribution functions of DBH. This
test procedure was intended to bestow robustness on the AD
test which is sensitive to the presence of low frequency DBH
classes (abound in this study). The AD tests were
complemented by the less powerful Kolmogorov—Smirnov
(KS) test to gauge goodness of fit in high frequency DBH bins
around the center of a distribution (Conover 1980, p. 344).
The equality of the mean DBH in the fitted and observed
relative frequency distributions was tested with a # test imbed-
ded in the above bootstrap test procedure.

The combination of 15 DBH bins and a relative low num-
ber of recorded stems in the studied field plots (Table 2) ef-
fectively rendered the statistical power too low (< 0.6) for a
meaningful goodness-of-fit testing at the plot level.

3 Results

Fitted strata means of the relative frequency distribution of

DBH (IA’ hi) matched the observed means to within a mean

absolute difference (across 15 bins) that varied from 0.003
(Bure, hornbeam) to 0.016 (the Vosges, beech) with a mean
of 0.007. The maximum absolute difference (in a single
bin) varied from 0.006 (St. Gobain, Maple) to 0.08 (the
Vosges, beech) with an average of 0.024. We associate
the relatively larger errors in St. Gobain with its relatively
low number of plot trees and a corresponding relatively
poorly determined distribution of DBH in a single plot.
Figures 1, 2, 3, and 4 provide a visual impression of the
achieved stratum-level results. The figures also show a
comparison between the observed and expected distribution
of DBH > 17.5 cm in a randomly drawn plot. Plot-level
results are clearly not convincing. The relatively poor fit at
the plot level illustrates that a relative frequency
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Fig. 1 Observed (fil line) and a Beech (269 trees) Cc A16a (8 trees)
expected (dashed line) relative

frequency distributions of 0.4

DBH > 17.5 cm in Aillon.

Leading species stratum means 0.2

are in subplots a and b. Plot-level
results are in subplots ¢ and d.
Bootstrap 95 % confidence
intervals are in grey. See text

; . 0.
below Eq. 2 for details 20 20 60 30 100 380 100
DBH cm DBH cm
b Fir (1099 trees) d A019 (30 trees)
0.4
0.4
0.2
. 0. —
20 40 60 80 100 100
DBH cm DBH cm

distribution of first-return canopy heights—at the given spa-
tial resolution of a field plot—contains little information
about an underlying distribution of DBH > 17.5 cm.

We noted that the number of trees in a plot was more im-
portant than the number of field plots for obtaining a good
stratum-level fit because in each plot, several DBH classes
had a tree count of zero. Results from the AD and KS
goodness-of-fit tests reflected, to a larger degree, the sample
size of trees than practical relevant issues related to the fitting
procedure. We ascribe this to the fact that MDS is linear and
asymptotically unbiased. We rejected all hypotheses of

equality between the observed and fitted distributions for fir
in Aillon and beech in the Vosges. A high rejection rate of 0.6
was registered for hornbeam in St. Gobain. In the remaining
eight cases, we accepted the null hypothesis. A rejection of the
equality of the observed and fitted distribution triggered, in
most cases, also a rejection of the 7 test of equal mean DBHs.
However, the differences were never greater than 2.7 cm and
deemed unimportant for practical applications.

A stratum-level census of the relative frequency distribu-
tions of canopy height in ALS first returns (simulated) was
converted to a stratum-level model-assisted estimate of the

Fig. 2 Observed (full line) and a Beech (360 trees) (o] B028 (35 trees)
expected (dashed line) relative
frequency distributions of 0.4 04

DBH > 17.5 cm in Bure (OPE).
Leading species stratum means

are in subplots a and b. Plot-level 0.2 4
results are in subplots ¢ and d. 02 A
Bootstrap 95 % confidence -,
intervals are in grey. See text -
below Eq. 2 for details 0. 0. -
20 40 60 80 100 20 40 60 80 100
DBH cm DBH cm
b Hornbeam (343 trees) d B027 (30 trees)
0.4
0.4
0.2 0.2
0. =1 0
20 40 60 80 100 100
DBH cm DBH cm
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a Beech (180 trees)
0.4
0.2
0. =/
20 40 60 80 100
DBH cm
b Hornbeam (869 trees)
0.4
20 40 60 80 100
DBH cm
C Linden (240 trees)
0.4
20 40 60 80 100
DBH cm
d Maple (179 trees)
0.4
100
DBH cm
e Oak (339 trees)
0.4
20 40 60 80 100
DBH cm

0.2

0.2

0.4

0.2

0.2

04

0.2

BM043 (9 trees)

DBH cm

GB027 (15 trees)

100
BMO032 (19 trees)
100
DBH cm
IR019 (8 trees)
40 60 80 100
DBH cm
GBO003 (13 trees)
20 40 60 80 100

DBH cm

Fig. 3 Observed (fit/l line) and expected (dashed line) relative frequency distributions of DBH > 17.5 ¢cm in St. Gobain. Leading species stratum means
are in subplots a to e. Plot-level results are in subplots f to j. Bootstrap 95 % confidence intervals are in grey. See text below Eq. 2 for details
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Fig. 4 Observed (fill line) and a Beech (639 trees) C V064 (9 trees)
expected (dashed line) relative
frequency distributions of
DBH > 17.5 c¢cm in the Vosges. 0.4
Leading species stratum means
are in subplots a and b. Plot-level .
results are in subplots ¢ and d. 0.2 =
Bootstrap 95 % confidence t
intervals are in grey. See text G- -|- | _| |_l I—
below Eq. 2 for details . 0. = =
20 40 60 80 100 20 40 60 80 100
DBH cm DBH cm
b Fir (695 trees) d V010 (28 trees)
0.4
0.4
0.2 0.2
0. 0.

20 40

relative frequency distribution of DBH > 17.5 cm via Eq. 3.
Bootstrap-based 95 % confidence intervals were computed
from 120 bootstrap estimates of the mean residual vector in
Eq. 3. The mean absolute error in a DBH class estimate is in
the order of 0.04, and the width of 95 % confidence intervals
varied from 0.001 for the largest DBH class to 0.21 for the
class with a DBH between 17.5 and 23 cm. With a prevailing
expectation of an inverse J-shaped distributions of
DBH > 17.5 cm in our study, the lower frequencies of large
trees predicate the trend for the relative errors to increase

DBH cm

60 80 100

DBH cm

rapidly as DBH increases. For the three largest DBH classes
with relative frequencies below 5 %, the relative errors were
typically in excess of 30 %. The four randomly selected site
specific examples of stratum-level results are shown in Fig. 5.

4 Discussion

The proposed MDS of first-return ALS canopy heights for the
purpose of predicting a tree size distribution in a stand

Fig. 5 Examples of estimated c
(full line) stratum relative a
frequency distributions of 0.2 045
DBH > 17.5 cm in the following: 045 sample mean ’
a Aillon and fir, b Bure (OPE) 0.1 population (est.)
and hornbeam, ¢ St. Gobain and 0.05 Qest(2.5%) 0.1
beech, and d the Vosges and 0. Qest(97.5%)
beech. Sample means are 20 40 60 80 100 0.05
indicated (dashed line). Bootstrap DBH cm :
95 % confidence intervals are in
grey. See text below Eq. 2 for 0.
details 20 40 60 80 100
DBHcm
b d
0.3 03
0.2 0.2
0.1 01
0.05 0.05
0. 0.
20 40 60 80 100 20 40 60 80 100
DBH cm DBH cm
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appears—when comparing an observed distribution to an ex-
pected distribution in a plot—to be as effective as tried alter-
natives such as the following: fitting a parametric distribution
(Magnussen et al. 2013; Maltamo et al. 2007; Thomas et al.
2008), decile fitting (Bollandsas et al. 2013; Gobakken and
Neasset 2005), k-nearest neighbour imputations (Lindberg
et al. 2013), or modelling of tree size based on STD methods
(Kankare et al. 2015; Vauhkonen et al. 2014b). For all
methods, results at the plot level are typically poor, partly
due to a relatively low number of observations per plot and
a large among-plot variation. Yet an advantage of MDS is the
ease of scaling; predictions can be made for any area directly
on the basis of a census of the relative frequencies of canopy
heights. In this regard, MDS shares properties of the
cumulant-based model proposed by Magnussen et al.
(2013). Most traditional ALS auxiliary data metrics (Naesset
1997; Nasset 2004) are scale-dependent quantiles
(Magnussen and Boudewyn 1998) and require that X is ob-
tained with the spatial support of a field plot providing an
observation of Y. Even for relative small areas, this can add
a non-trivial time-consuming computational effort. Nowhere
is this more pronounced than with a STD approach (Ene et al.
2012; Gupta et al. 2010; Heurich 2008).

The proposed MDS method also works with sample plots
of different sizes. This is important because sample plots near
the edge may have a portion of their area outside of the sam-
pling frame (Gregoire and Valentine 2008, p. 59; Mandallaz
2008, p. 223). This is also why we did not exclude the single
100 x 100 m plot in Aillon.

Forest planning and analysis may require a conversion of a
relative frequency distribution of DBH to an actual size distri-
bution (Bollandsas et al. 2013; Maltamo et al. 2004; Maltamo
et al. 2012; Xu et al. 2014). This conversion, however, is
beyond the scope of our study.

We recognize that prediction of a DBH distribution in
stand is likely to be the most important application for our
proposed MDS (Magnussen 1986; Maltamo et al. 2004;
Maltamo et al. 2006). However, inference about a DBH
distribution in a larger area, like a stratum, a population,
or any area of interest represented by a sufficient proba-
bility sample is also an important area of targeted appli-
cation (Chen 2004; Lehtonen and Veijanen 2009). Our
results, and results from cited studies, suggest that as
few as 12 plots with ten or more trees provide an estimate
of a size distribution in an area of interest suitable for
planning and analysis. The attraction of MDS in these
applications rests with the ortho-normal transformation
matrix B ensuring a linear transformation of X to Y and
permitting a model-assisted inference with any probability
sampling design (Sarndal et al. 1992, ch. 6). If a census of
X is not available, but instead a large sample estimate of
X, a model-assisted approach to inference is still possible
with a few simple modifications (Mandallaz et al. 2013;
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Stahl et al. 2016). Cited alternatives to MDS may claim a
design-based empirical difference estimator (Baffetta et al.
2009; Magnussen 2013) disregarding a critical require-
ment for predictions to be generated independently of
the observed sample (Sarndal et al. 1992, ch. 6.3).

For the purpose of the prediction or an estimation of a DBH
distribution, stratifying by leading species is intuitive as it can
be assumed that the distribution of first-return canopy heights
to a large degree reflects the crown architecture of the leading
species (Heurich 2008). In stands with no clear dominance of
a single species, it must be expected that the relationship be-
tween a relative frequency distribution of first returns will be
weaker than in our study.

We quantified uncertainty in an expected relative frequency
distribution by bootstrap quantiles (Bickel and Krieger 1989)
as they are easy to obtain and communicate. The alternatives
would be Agresti—Coull or Clopper—Pearson type intervals
(Dean and Pagano 2015). While the absolute errors in our
study may seem reasonable for stratum-level inference, it re-
mains clear that the number of trees measured needs to be
increased significantly if the maximum tolerable relative error
on an estimated relative frequency of trees in an important
DBH class is around 20 % (King and Madansky 2013).

Our demonstration of the MDS was limited to data with a
lower DBH threshold of 17.5 cm. Since first-return canopy
heights arrive from an unknown number of trees and from
different depths of the canopy, one can intuitively surmise that
they have a greater information content on DBH in trees with
an exposed tree crown (Magnussen et al. 1999) than for trees
not visible from above. From that follows that estimation er-
rors of a truncated distribution would be higher when a portion
of the first returns arrives from trees with a DBH below the
threshold. We could not pursue these aspects with our data.

The relatively high threshold of 17.5 cm meant that the
average of the expected distributions of DBH within a leading
species stratum in our study resembled an inverse J-shaped
distribution (Moser 1976) with a near exponential decline in
relative class frequencies between the first and last class.
However, in a single plot, the distribution of DBH was often
irregular. As with any regression model, if the information in
X from a single plot is only weakly correlated with Y, the
prediction of Y for the plot will be close to the predicted
average of Y in the sample (Draper and Smith 2014, ch. 3).

In our exposé, it was assumed that the forest in the four
sites was stratified by leading species (by basal area). The
information necessary for a design-based stratification may
not be available until after the field sampling is complete
(Andersen et al. 2011; Saborowski et al. 2010; Tomppo et al.
2008; von Liipke et al. 2012). In this case, a model-assisted
inference is still possible, but the additional variance generat-
ed from classification errors and random post-strata sample
sizes must be taken into account (Cochran 1977, ch. 5A.2
and 5A.9; Magnussen et al. 2015; Tipton et al. 2013).
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It is evident that the proposed MDS and estimators would
apply equally to distributions of other quantitative continuous
forest inventory variables (e.g. tree height, basal area, stem
volume, and biomass).

5 Conclusion

A multidimensional scaling provides a multivariate linear link
between two relative frequency distributions and is therefore
ideally suited for both a design-based inference of tree size
distributions within a stratum and stand-level predictions.
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