Skip to main content

Advertisement

Log in

Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.)

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The main goal of this study was to evaluate the effects of different levels of irrigation water and nitrogen on yield, quality, and water productivity of processing tomato grown in clay-loam soil. Three water levels of pan evaporation (Epan) replenishment applied via drip irrigation (1.00 × Epan, 0.75 × Epan, and 0.50 × Epan) and four N application rates with fertigation (0, 60, 120, and 180 kg N·ha−1) were tested in the sub-humid climate conditions of Turkey during the 2010 and 2011 growing seasons. The highest marketable yields were observed with full irrigation (1.00 × Epan) for each season. Decreasing irrigation rate generally improved dry matter, total soluble solids, total sugars, titratable acidity, lycopene and total carotene, and decreased fruit NO3-N content and fruit total protein content slightly. The highest water productivity was obtained with a moderate soil water deficit (0.75 × Epan). The 180 kg N·ha−1 fertilization rate produced the highest values for marketable yield, fruit size, total soluble solids yield, NO3-N, and total protein content. Increasing N rate also increased the values of fruit total sugars and titratable acidity. Increasing both irrigation and N levels increased the NO3-N and protein contents. The higher lycopene and total carotene values were obtained in the treatments of 60 and 120 kg N·ha−1. Increasing N supply improved the water productivity with the 3 irrigation application ratios. Considering the quantity and quality for the processing and water productivity, the 0.75 × Epan irrigation regime and a 120 or 180 kg·ha−1 nitrogen supply can considered optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Adsule, P.G. and A. Dan. 1979. Simplified extraction procedure in the rapid spectrophotometric method for lycopene estimation in tomato. J. Food Sci. Technol. 16:216–218.

    CAS  Google Scholar 

  • Al-Mohammadi, F. and Y. Al-Zu’bi. 2011. Soil chemical properties and yield of tomato as influenced by different levels of irrigation water and fertilizer. J. Agric. Sci. Technol. 13:289–299.

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC). 1980. Official methods of analysis. 12th edition. AOAC, Washington, D.C.

    Google Scholar 

  • Ayaz, A., A. Topçu, and M. Yurttagul. 2007. Survey of nitrate and nitrite levels of fresh vegetables in Turkey. J. Food Technol. 5:177–179.

    CAS  Google Scholar 

  • Bénard, C., H. Gautier, F. Bourgaud, D. Grasselly, B. Navez, C. Caris-Veyrat, M. Weiss, and M. Génard. 2009. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 57:4112–4123.

    Article  PubMed  Google Scholar 

  • Campiglia, E., R. Mancinelli, and E. Radicetti. 2011. Influence of no-tillage and organic mulching on tomato (Solanum lycopersicum L.) production and nitrogen use in the Mediterranean environment of central Italy. Sci. Hort.130:588–598.

    Article  CAS  Google Scholar 

  • Candido, V., V. Miccolis, and M. Perniola. 2000. Effects of irrigation regime on yield of processing tomato (Lycopersicon esculentum Mill.) cultivars. Acta Hort. 537:779–788.

    Google Scholar 

  • Çetin, Ö., O. Yıldırım, D. Uygan, and H. Boyacı. 2002. Irrigation scheduling of drip-irrigated tomatoes using class A pan evaporation. Turkish J. Agric. Forest. 26:171–178.

    Google Scholar 

  • DePascale, S., A. Maggio, V. Fogliano, P. Ambrosino, and A. Retieni. 2001. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. Biotechnol. 76:447–453.

    CAS  Google Scholar 

  • Doorenbos, J. and A.H. Kassam. 1979. Yield response to water. United Nations FAO Publication no. 33, Rome, Italy.

    Google Scholar 

  • Djidonou, D., X. Zhao, E.H. Simonne, and K.E. Koch. 2013. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience 48:485–492.

    CAS  Google Scholar 

  • Dumas, Y., M. Dadomo, G. Di Lucca, and P. Grolier. 2003. Review: Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 83:369–382.

    Article  CAS  Google Scholar 

  • Erdal, I., A. Ertek, U. Senyigit, and H.I. Yilmaz. 2006. Effects of different irrigation programs and nitrogen levels on nitrogen concentration, uptake and utilisation in processing tomatoes (Lycopersicun esculentum). Austr. J. Exp. Agric. 46:1653–1660.

    Article  CAS  Google Scholar 

  • Erdal, I., A. Ertek, U. Senyigit, and M.A. Koyuncu. 2007. Combined effects of irrigation and nitrogen on some quality parameters of processing tomato. World J. Agric. Sci. 3:57–62.

    Google Scholar 

  • Ertek, A., I. Erdal, H.I. Yilmaz, and U. Senyigit. 2012. Water and nitrogen application levels for the optimum tomato yield and water use efficiency. J. Agric. Sci. Technol. 14:889–902.

    Google Scholar 

  • Favati, F., S. Lovelli, F. Galgano, V. Miccolis, T. Di Tomasso, and V. Candido. 2009. Processing tomato quality as affected by irrigation scheduling. Sci. Hort. 122:562–571.

    Article  Google Scholar 

  • Feddema, J.J. 2005. A revised Thornthwaite-type global climate classification. Phys. Geogr. 26:442–466.

    Article  Google Scholar 

  • Fresenius, W., K.E. Quentin, and W. Schneider. 1988. Water Analysis. A practical guide to physicochemical, chemical and microbiological water examination and quality assurance. Springer-Verlag, Berlin.

    Google Scholar 

  • Garrity, P.D., D.G. Watts, C.Y. Sullivan, and J.R. Gilley. 1982. Moisture deficits and grain sorghum performance, evapotranspiration yield relationships. Agron. J. 74:815–820.

    Article  Google Scholar 

  • Gormley, T.R. and M.J. Maher. 1990. Tomato fruit quality-an interdisciplinary. Profess. Hort. 4:7–12.

    Google Scholar 

  • Hanson, B.R. and D.M. May. 2006. Crop evapotranspiration of processing tomato in the San Joaquin Valley of California, USA. Irrig. Sci. 24:211–221.

    Article  Google Scholar 

  • Harmanto, V., M. Salokhe, M.S. Babel, and H.J. Tantau. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 71:225–242.

    Article  Google Scholar 

  • Hartz, T.K. and G.J. Hochmuth. 1996. Fertility management of drip-irrigated vegetables. HortTechnol. 6:168–172.

    Google Scholar 

  • Hartz, T.K. and T.G. Bottoms. 2009. Nitrogen requirements of drip irrigated processing tomatoes. HortScience 44:1988–1993.

    Google Scholar 

  • Hebbar, S.S., B.K. Ramachandrappa, H.V. Nanjappa, and M. Prabhakar. 2004. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur. J. Agron. 21:117–127.

    Article  Google Scholar 

  • Johnstone, P.R., T.K. Hartz, M. LeStrange, J.J. Nunez, and E.M. Miyao. 2005. Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production. HortScience 40:1857–1861.

    Google Scholar 

  • Kaboosi, K. and F. Kaveh. 2012. Sensitivity analysis of FAO 33 crop water production function. Irrig. Sci. 30:89–100.

    Article  Google Scholar 

  • Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance, p. 3–10. In: FAO (ed.). Deficit irrigation practices. FAO water report no. 22. FAO, Rome, Italy.

    Google Scholar 

  • Kirda, C., N. Baytorun, M.R. Derici, and H.Y. Dasgan. 2003. Nitrogen fertiliser recovery and yield response of greenhouse grown and fertigated tomato to root-zone soil water tension. Turk. J. Agric. Forest. 27:323–328.

    Google Scholar 

  • Kirda, C., M. Cetin, Y. Dasgan, S. Topcu, H. Kaman, B. Ekici, M.R. Derici, and A.I. Ozguven. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 69:191–201.

    Article  Google Scholar 

  • Koskitalo, L.H. and D.P. Ormrod. 1972. Effects of sub-optimal ripening temperatures on the colour quality and pigment composition of tomato fruit. J. Food Sci. 37:56–59.

    Article  CAS  Google Scholar 

  • Kuşçu, H., B. Çetin, and A. Turhan. 2009. Yield and economic return of drip-irrigated vegetable production in Turkey. New Zealand J. Crop Hort. Sci. 37:51–59.

    Article  Google Scholar 

  • Lambelet, P., M. Richelle, K. Bortlik, F. Franceschi, and M. Giori. 2009. Improving the stability of lycopene Z-isomers in isomerised tomato extracts. Food Chem. 112:156–161.

    Article  CAS  Google Scholar 

  • Li, X., F. Liu, G. Li, Q. Lin, and C.R. Jensen. 2010. Soil microbial response, water and nitrogen use by tomato under different irrigation regimes. Agric. Water Manag. 98:414–418.

    Article  Google Scholar 

  • Liu, K., T.Q. Zhang, C.S. Tan, and T. Astatkie. 2011. Responses of fruit yield and quality of processing tomatoto drip-irrigation and fertilizers phosphorus and potassium. Agron. J. 103:1339–1345.

    Article  CAS  Google Scholar 

  • Locascio, S.J. and A.G. Smajstrla. 1996. Water application scheduling by pan evaporation for drip irrigated tomatoes. J. Amer. Soc. Hort. Sci. 121:63–68.

    Google Scholar 

  • Madrid, R., E.M. Barba, A. Sánchez, and A.L. García. 2009. Effects of organic fertilisers and irrigation level on physical and chemical quality of industrial tomato fruit (cv. Nautilus). J. Sci. Food Agric. 89:2608–2615.

    Article  CAS  Google Scholar 

  • Malash, N.M., T.J. Flowers, and R. Ragab. 2008. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 26:313–323.

    Article  Google Scholar 

  • Marković, K., M. Hruškar, and N. Vahčić. 2006. Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutr. Res. 26:556–560.

    Article  Google Scholar 

  • Matsuzoe, N., K. Zushi, and T. Johjima. 1998. Effect of soil water deficit on coloring and carotene formation in fruits of red, pink and yellow type cherry tomatoes. J. Japan. Soc. Hort. Sci. 67: 600–606.

    Article  CAS  Google Scholar 

  • May, D.M. and J. Gonzales. 1994. Irrigation and nitrogen management as they affect fruit quality and yield of processing tomatoes. Acta Hort. 376:227–234.

    Google Scholar 

  • Mofoke, A.L.E., J.K. Adewumi, F.E. Babatunde, O.J. Mudiare, and A.A. Ramalan. 2006. Yield of tomato grown under continuous-flow drip irrigation in Bauchi state of Nigeria. Agric. Water Manag. 84:166–172.

    Article  Google Scholar 

  • Moretti, C.L., S.A. Sargent, D.J. Huber, A.G. Calbo, and R. Puschmann. 1998. Chemical composition and physical properties of pericarp, locule and placental tissues of tomatoes with internal bruising. J. Amer. Soc. Hort. Sci. 123:656–660.

    CAS  Google Scholar 

  • Mukherjee, A., M. Kundu, and S. Sarkar. 2010. Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agric. Water Manag. 98:182–189.

    Article  Google Scholar 

  • Ozbahce, A. and A.F. Tari. 2010. Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions. Agric. Water Manag. 97:1405–1410.

    Article  Google Scholar 

  • Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. Amer. Soc. Agron., Madison, WI, USA.

    Google Scholar 

  • Pan, H.Y., K.J. Fisher, and M.A. Nichols. 1999. Fruit yield and maturity characteristics of processing tomatoes in response to drip irrigation. J. Vegetable Crop Prod. 5:13–29.

    Article  Google Scholar 

  • Patanè, C. and S.L. Cosentino. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agric. Water Manag. 97:131–138.

    Article  Google Scholar 

  • Patanè, C., S. Tringali, and O. Sortino. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hort. 129:590–596.

    Article  Google Scholar 

  • Payero, J.O., D.D. Tarkalson, S. Irmak, D. Davison, and J.L. Petersen. 2008. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric. Water Manag. 95:895–908.

    Article  Google Scholar 

  • Riggi, E., C. Patanè, and G. Ruberto. 2008. Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability. Austr. J. Agric. Res. 59:348–353.

    Article  CAS  Google Scholar 

  • Rodica, S., S.A. Apahidean, M. Apahidean, D. Maniutiu, and L. Paulette. 2008. Yield, physical and chemical characteristics of greenhouse tomato grown on soil and organic substratum. 43rd Croatian and 3rd Intl. Symp. Agric. Opatija. Croatia. p. 439–443.

    Google Scholar 

  • Scholberg, J., B.L. McNeal, K.J. Boote, J.W. Jones, S.J. Locascio, and J.W. Olson. 2000. Nitrogen stress effects on growth and nitrogen accumulation by field-grown tomato. Agron. J. 95:159–167.

    Article  Google Scholar 

  • Simion, V., G.H. Cămpeanu, G. Vasile, M. Artimon, L. Catană, and M. Negoiţă. 2008. Nitrate and nitrite accumulation in tomatoes and derived products. Roman. Biotechnol. Lett. 13:3785–3790.

    CAS  Google Scholar 

  • Simonne, A.H., J.M. Fuzeré, E. Simonne, R.C. Hochmuth, and M.R. Marshall. 2007. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 30:927–935.

    Article  CAS  Google Scholar 

  • Singandhupe, R.P., G.G.S.N. Rao, N.G. Patil, and P.S. Brahmanand. 2003. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 19:327–340.

    Article  Google Scholar 

  • Tepic, A.N., B.L. Vejicic, A.J. Takac, B.D. Kristic, and L.J. Calic. 2006. Chemical heterogeneity of tomato inbred lines. Acta Period. Technol. 37:45–50.

    Article  CAS  Google Scholar 

  • Tigchelaar, E.C. 1986. Tomato breeding, p. 135–171. In: M.J. Basset (ed.). Breeding of vegetable crops. AVI Pub. Co., Westport, CT, USA.

    Google Scholar 

  • Topcu, S., C. Kirda, Y. Dasgan, H. Kaman, M. Cetin, A. Yazici, and M.A. Bacon. 2007. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 26:64–70.

    Article  Google Scholar 

  • Tzortzakis, N.G. and C.D. Economakis. 2008. Impacts of the substrate medium on tomato yield and fruit quality in soilless cultivation. Hort. Sci. 35:83–89.

    CAS  Google Scholar 

  • Tosun, I. and N.S. Ustun. 2004. Nitrate content of lettuce grown in the greenhouse. Bull. Environ. Contam. Toxicol. 72:109–113.

    Article  CAS  PubMed  Google Scholar 

  • TUIK. 2013. Turkish Statistical Institute. http://www.turkstat.gov.tr/ (Accessed 04.04.13).

    Google Scholar 

  • Wang, Y.T., S.W. Huang, R.L. Liu, and J.Y. Jin. 2007. Effects of nitrogen application on flavor compounds of cherry tomato fruits. J. Plant Nutr. Soil Sci. 170:461–468.

    Article  CAS  Google Scholar 

  • Wang, Q., F. Li, E. Zhang, G. Li, and M. Vance. 2012. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Austr. J. Crop Sci. 6:662–672.

    Google Scholar 

  • Warner, J., T.Q. Zhang, and X. Hao. 2004. Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes. Can. J. Plant Sci. 84:865–871.

    Article  Google Scholar 

  • Yang, S.M., S.S. Malhi, J.R. Song, Y.C. Xiong, W.Y. Yue, L.L. Lu, J.G. Wang, and T.W. Guo. 2006. Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China. Nutr. Cycling Agroecosys. 76:81–94.

    Article  Google Scholar 

  • Yohannes, F. and T. Tadesse. 1998. Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia. Agric. Water Manag. 35:201–207.

    Article  Google Scholar 

  • Zegbe, J.A., M.H. Behboudian, and B.E. Clothier. 2006. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 24:203–210.

    Article  Google Scholar 

  • Zegbe-Dominguez, J.A., M.H. Behboudian, A. Langand, and B.E. Clothier. 2003. Deficit irrigation and partial root-zone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing tomato (Lycopersicon esculentum. Mill.). Sci. Hor. 98:505–510.

    Article  Google Scholar 

  • Znidarcic, D. and T. Pozrl. 2006. Comparative study of quality changes in tomato cv. ‘Malike’ (Lycopersicon esculentum Mill.) whilst stored at different temperatures. Acta Agric. Slovenica 87:235–243.

    Google Scholar 

  • Zotarelli, L., J.M. Scholberg, M.D. Dukes, R. Muňoz-Carpena, and J. Icerman. 2009. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 96:23–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayrettin Kuscu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuscu, H., Turhan, A., Ozmen, N. et al. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol. 55, 103–114 (2014). https://doi.org/10.1007/s13580-014-0180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0180-9

Additional key words

Navigation