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Abstract Evaluating the predictive ability of mortality forecasts is important yet
difficult. Death rates and mean lifespan are basic life table functions typically
used to analyze to what extent the forecasts deviate from their realized values.
Although these parameters are useful for specifying precisely how mortality
has been forecasted, they cannot be used to assess whether the underlying
mortality developments are plausible. We therefore propose that in addition to
looking at average lifespan, we should examine whether the forecasted vari-
ability of the age at death is a plausible continuation of past trends. The
validation of mortality forecasts for Italy, Japan, and Denmark demonstrates
that their predictive performance can be evaluated more comprehensively by
analyzing both the average lifespan and lifespan disparity—that is, by jointly
analyzing the mean and the dispersion of mortality. Approaches that account
for dynamic age shifts in survival improvements appear to perform better than
others that enforce relatively invariant patterns. However, because forecasting
approaches are designed to capture trends in average mortality, we argue that studying
lifespan disparity may also help to improve the methodology and thus the predictive
ability of mortality forecasts.
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Introduction

The aim of most mortality forecasts is to predict how many additional years of life
people will gain in the future. Basic life table functions—such as life expectancy at
birth (a measure of central tendency) and age-specific death rates (measures of
mortality intensity) are usually applied to evaluate the precision of such fore-
casts. The closer a forecast is to the observed development, the greater is its
forecasting performance—or, interchangeably, its predictive ability. Goodness-of-fit
tests as well as validation procedures are typically used to evaluate the predictive ability
of mortality forecasts. Placing particular emphasis on ex post quantitative aspects
(Armstrong and Collopy 1992; Cairns et al. 2011b; Keilman 1997; Shang 2015),
conventional evaluation measures quantify the difference between predicted and
observed mortality. It is commonly considered that the greater such forecast
errors, the poorer is the forecasting performance. However, although deviations
are supposed to be small, zero deviations would indicate overfitting rather than
a good forecasting performance. Forecast errors can be expressed in absolute or
relative terms, and they can be averaged over dimensions such as age, time,
and population (Booth et al. 2006; Keilman and Pham 2004; Koissi et al. 2006;
Shang et al. 2011; Smith et al. 2001). The meaning of these errors changes in
each case. For example, means of absolute errors measure accuracy, whereas
means of positive and negative errors measure bias—that is, systematic over- or
underestimation. Relative errors deal with scale dependency and therefore allow
comparison of errors across measures and methods. Dowd et al. (2010); Koissi
et al. (2006), and Lee and Miller (2001) analyzed how errors or (standardized)
residuals are distributed. In addition to employing visualization techniques,
these authors used statistical tests such as chi-squared, Levene’s test, the
variance ratio test, or the Jarque-Bera normality test. Moreover, Shang (2015)
recently proposed using test statistics to reveal significant differences in the forecast
accuracy of point and interval estimates as well as differences between the forecasts of
multiple approaches.

Errors and test statistics of basic life table functions are useful for specifying
precisely how mortality has been forecasted. However, small errors in the forecasts
of average lifespan do not necessarily indicate that the forecasted underlying mortality
developments are plausible. Figure 1 illustrates this issue in more detail with a
scatterplot that displays the negative correlation between life expectancy at birth and
lifespan disparity measured by average life years lost at birth, e†0 (e.g., Vaupel and
Canudas-Romo 2003), for women in Italy, Denmark, and Japan from 1950 to 2012. In
contrast to basic life table measures, e†0 provides information about the underlying
mortality developments. Although life expectancy at birth has increased in recent
decades because of reductions in mortality at progressively higher ages, e†0 has de-
creased mainly as a result of survival improvements at premature ages, which shifted
deaths toward the end of the lifespan. Figure 1 shows a striking pattern: the average
lifespan of Italian, Danish, and Japanese women has been similar in recent decades,
whereas the decline in the variability of the age at death differed considerably among
these groups of women as soon as their average lifespan exceeded 75 years. Specifi-
cally, lifespan dispersion (1) declined regularly for Italian women, (2) leveled off for
Japanese women, and (3) increased and decreased for Danish women.
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These findings illustrate that different underlying mortality trajectories can
lead to similar average lifespans and lifespan disparities. Other researchers
have discussed this relationship in detail (e.g., Smits and Monden 2009;
Vaupel et al. 2011; Wilmoth and Horiuchi 1999). For example, Wilmoth and
Horiuchi (1999) showed that different levels of life expectancy at birth can
come across with different levels of lifespan dispersion. Goldstein and Cassidy
(2012) and Bergeron-Boucher et al. (2015) analyzed the impact of changing
slopes in the mortality age profile on life expectancy at birth and lifespan
dispersion. For instance, Goldstein and Cassidy concluded that changes in the
slope have a relatively larger effect on life expectancy at birth than changes in
the level of mortality. To ensure that we take these underlying trajectories into
account, we propose expanding the toolkit of conventional evaluation
procedures. Basic life table functions should be complemented by measures
of lifespan dispersion to improve the assessment of ex post quantitative
aspects and to evaluate the plausibility of underlying mortality trends. To the
best of our knowledge, only Cairns et al. (2006, 2011b) have taken a similar
approach. They added an ex ante evaluation with qualitative criteria to ex post
measures; that is, they examined the forecasting performance using qualitative
criteria, such as the biological validity of the age schedule of mortality, and
investigated the consistency of the forecasts using historical data. However, as
far as we know, no existing studies have used lifespan disparity as an evalu-
ation measure for the plausibility of mortality forecasts. The objective of this
article is to highlight the necessity to assess whether mortality forecasting
methods can capture and forecast different trends of life expectancy at birth
and lifespan disparity—that is, expose the benefits of incorporating lifespan
disparity as an additional indicator in the toolkit that is used to evaluate the
performance of mortality forecasts.

8

9

10

11

12

13

14

15

16

Denmark

Italy

Japan

Life Expectancy at Birth

e† 0

60 65 70 75 80 85 90

Fig. 1 Scatterplot of life expectancy at birth and average life years lost at birth due to death for women in
Denmark, Italy, and Japan from 1950 to 2012
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Lifespan Disparity: Measures and Concepts

Lifespan disparity describes the variation in the lifespan distribution—that is, the
differences in the length of life across members of a population. A wide range of
approaches can be used to measure lifespan disparity, including (1) classic statistical
variability measures, such as the standard deviation or the interquartile range; (2)
equality measures, such as the Gini coefficient; or (3) geometric approaches, such as
the Prolate index (Cheung et al. 2005; Eakin andWitten 1995; Kannisto 2000; Wilmoth
and Horiuchi 1999). However, because all these measures are highly correlated
(Vaupel et al. 2011; Wilmoth and Horiuchi 1999), we can expect that their
impact on the results would be minor. Although those measures are highly
correlated, however, their trends may differ. For example, if equality were
rising, measures of variability would decrease, whereas measures of rectangularity
would increase (Wilmoth and Horiuchi 1999).

To measure lifespan dispersion,1 we take the average number of life years lost at birth

(Vaupel and Canudas-Romo 2003; Zhang and Vaupel 2009), e†0, estimated by

e†0 ¼
∫
0

ω

eadada

l0
; ð1Þ

with ea being remaining life expectancy at age a, and da being life table deaths at age a,
with both integrated from age 0 toω, the highest age at death. l0 is the radix of the life

table. A major reason why we chose e†0 is that it is demographically interpretable as the

average life years lost. Because e†0 refers to the lost living potential, it also provides
information about the capacity for further increases in life expectancy. We argue that

these key features enable e†0 in particular to be used to evaluate the plausibility of
mortality forecasts.

Measuring lifespan disparity may reveal one of three general patterns: the compres-
sion, shifting, or expansion of mortality. Although these patterns are not mutually
exclusive in the real world, they are useful for explaining trends in lifespan disparity.
Fries (1980) established the concept of mortality compression, originally describing a
postponement of mortality to some fixed upper lifespan limit, which in turn induces a
reduction in lifespan disparity. Although the expected levels of lifespan disparity have
not been reached and the proposed levels of average lifespan have been exceeded, the
concept of mortality compression is typically used to describe the massive reductions in
lifespan variability since the mid-nineteenth century (Kannisto 2000; Nagnur 1986;
Nusselder and Mackenbach 1996). The concept of shifting mortality describes a
postponement of the old-age death bulk toward higher ages with an approximately
constant level of lifespan variability. Empirical studies have provided evidence that
shifting mortality may occur following mortality compression (e.g., Bongaarts 2005;
Canudas-Romo 2008; Kannisto 1996). The concept of mortality expansion refers to
progressive improvements in survival to very old ages that have not previously been

1 We use the terms “lifespan disparity,” “lifespan dispersion,” and “lifespan variability” interchangeably. Some

scholars also call e†0 “life disparity” (Vaupel et al. 2011). However, we use the term “lifespan disparity” to
describe the general concept of lifespan variability that we measure using average life years lost.
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reached by many people. Mortality expansion to very old ages induces temporarily
increasing lifespan variability, although its impact on total variability of the age at death
has not been evident until recently. However, increasing lifespan dispersion has been
observed in multiple populations at approximately age 60 (Engelman et al. 2010, 2014;
Rothenberg et al. 1991).

A (positive or negative) change in life expectancy at birth, along with a compression,
a shifting, and/or an expansion of mortality, are possible developments that should be
captured in a mortality forecast. Because these developments are closely related and
occur at different times in different populations, mortality forecasting approaches may
need to be adjusted to ensure that they are captured appropriately.

Mortality Forecasting Approaches That Tackle Variability of the Age
at Death

Concise Overview

Many approaches, like the canonical Lee-Carter model (1992), extrapolate past trends
while assuming that the relative progress in mortality made among people of different
ages has been time-invariant. This assumption is, however, implausible, given that
survival improvements differ considerably by age over time. In the first half of the
twentieth century, large reductions in mortality occurred among infants and young
children in many highly developed countries. More recently, most of the survival
improvements have been among adults and the elderly. In the coming decades,
mortality is expected to decline mainly among the very old. Hence, the assumption
of time-invariant changes in mortality by age may induce forecasts that are prone to
errors. Recently developed approaches respond to this problem in different ways. For
example, Janssen and de Beer (2016) accounted for the distribution of the age at death;
Li et al. (2013) rotated the age pattern of mortality change with time; and Haberman
and Renshaw (2012), Mitchell et al. (2013), and Bohk-Ewald and Rau (2017) used
rates of mortality improvement instead of death rates to forecast dynamic age shifts in
mortality decline. Moreover, Li and Lee (2005), Cairns et al. (2011a), Hyndman et al.
(2013), and others used coherent approaches to jointly forecast mortality among
multiple populations, allowing populations to adapt their below- or above-
average increases in life expectancy to a shared trend among multiple popula-
tions. Capturing ruptures in long-term trends that emerge from irregular patterns of
mortality change is also challenging. For example, Coelho and Nunes (2011) dealt with
long-term trend changes in mortality forecasts, Janssen et al. (2013) included exogenous
variables such as tobacco smoking, and Renshaw and Haberman (2006) considered
cohort mortality to account for this issue.

We select three of these approaches, which differ in their ability to capture dynamic
age shifts in survival improvement, to forecast mortality exemplarily for women in Italy,
Japan, and Denmark up to 2009 (see the next section). These models are the Lee-Carter
model, its rotating variant developed by Li et al., and the model developed by Bohk-
Ewald and Rau. Given that their levels of modeling flexibility differ, each approach
models the various trends in lifespan disparity in the three populations differently (see
Fig. 1). All the approaches mentioned in the concise overview are equally qualified to be
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selected for the case studies to show the advantages when evaluating the forecasting
performance using the mean—and, as an extra criterion, the spread of mortality. Hence,
this analysis is designed to show the additional information that can be gained when
evaluating the forecasted spread of mortality in the presence of different trends for life
expectancy at birth and lifespan dispersion. Although the case studies provide some
results for comparing the forecasting performance of the three approaches, this should be
considered preliminary and rather a byproduct than an incentive to conduct this analysis;
a valid model comparison would instead require a systematic evaluation of the forecast-
ing performance using extensive mortality data of multiple countries and periods, which
is beyond the scope of this work. Hence, for the case studies, we select three forecasting
models that cover the range of available approaches andmodeling strategies quite well. In
addition to describing the method-based assumptions of the selected approaches for
capturing dynamic age shifts in survival improvement, as well as some details on
implementation, we offer hypotheses regarding the effect that each approach might have
on the forecasted mean lifespan and lifespan disparity.

Impact of Model-Based Assumptions on Lifespan Disparity

Lee-Carter Model

Although the Lee-Carter model has been used and revised extensively since it was first
developed in 1992 (Booth and Tickle 2008; Booth et al. 2006; Butt and Haberman
2010; Shang 2012; Shang et al. 2011), we use its original version as a benchmark in our
case studies. The Lee-Carter model forecasts mortality by age and calendar year on the
logarithmic scale while assuming that the relative changes in mortality were constant
between the ages over time. Hence, if the survival improvements were relatively large
at young ages and small at old ages in the reference years, this proportion would
assumedly be unchanged in the forecast years. Yet, given the shifts by age in survival
improvements over time, we hypothesize that the inflexibility in the age profile of
mortality change would have affected the Lee-Carter forecasts up to 2009. The
extrapolation of declining mortality at infant, child, adult, and old ages based solely
on the mortality trends observed in the reference period may result in a reliable forecast
for the near future given that the prevalence of mortality reductions at very old ages will
still be low. However, if mortality continues to decline at progressively higher ages in
the coming decades, the Lee-Carter model may produce forecasts that fail to capture
correctly both the average lifespan and lifespan disparity. The absence of a dynamic
shift in survival improvements to progressively higher ages may then induce (1) an
underestimation of life expectancy at birth as well as (2) a strong compression of
deaths, which may in turn be accompanied by a strong decline in the lifespan
dispersion. To generate the mortality forecasts with the Lee-Carter model, we
implemented the model in the statistical software R (R Core Team 2015).

Li et al. Model

Many scholars have refined the Lee-Carter model to address the problem of the
inflexibility in the age profile of mortality change (Booth et al. 2006; Shang et al.
2011; Soneji and King 2011). Li et al. (2013) took an important step in this direction by
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implementing a time-variant age schedule of mortality change that rotates from a
present level to an ultimate level. The timing and the pace of the rotation depend on
the average lifespan, which has been forecasted in a previous step with the original
Lee-Carter model. As soon as life expectancy at birth exceeds a value of 80
years, the rotation starts; it then proceeds until life expectancy at birth reaches
an ultimate level of 102 years. The greater the number of forecasted additional
years of life is, the faster the ultimate schedule is achieved, and the rotation
stops. The ultimate schedule of mortality change is constant for ages 0 to 64,
and it gradually declines thereafter. The rotation basically induces a postponement
of relatively large survival improvements from younger to older ages. Given that the
average lifespan is forecasted using the original Lee-Carter model, the rotation affects
only the underlying mortality dynamics—not the average level of mortality. Assuming a
regular decline in mortality, we expect to find that (1) like the original model, the rotated
model may underestimate additional years of life; but (2) unlike the original model, it
may be able to forecast a mortality compression that is less strong because of its greater
modeling flexibility. To take these dynamic mortality changes into account, Ševčíková
et al. (2016) implemented the rotation in Raftery et al.’s (2013) model, which has been
used in the UN World Population Prospects (2014, 2015). To derive the age profiles of
mortality using the rotated Lee-Carter model, we implement this model in R with a few
adjustments. Because we allow approaches to shift deaths beyond the maximum age of
the data (see the upcoming section, “Estimation and Evaluation Procedure”), we set the
ultimate schedule of mortality change constant until age 80, and as gradually declining
thereafter. Moreover, for the rotation, we change the recommended bounds of the
forecasted lifespan, which are 80 years and 102 years. We set the lower bound at 75
because differences in lifespan disparity started to develop for women in Italy, Japan,
and Denmark as the average lifespan exceeded this value (see Fig. 1). Finally, to avoid
jump-off bias, we use the last observed death rates to forecast mortality.

Bohk and Rau Model

The model of Bohk-Ewald and Rau (2017) provides an alternative strategy for fore-
casting that relatively large rates of mortality improvement proceed from younger to
older ages. This model predicts survival improvements instead of death rates, and it
optionally combines the mortality trends of multiple populations to account for
(anticipated) trend changes in the forecast years. Although this model allows us to
assume mortality convergence between a country of interest and reference countries,
we do not use this feature in the case studies in order to enable a fair comparison with
the model of Li et al. (2013). Moreover, the Bohk and Rau model has a linear and an
exponential core model to forecast time series of age-specific mortality change, using
simulation-based Bayesian inference to run those models and to estimate coherent
changes of mortality among adjacent ages. The model has been applied to forecast
mortality for some European countries (Bohk and Rau 2014; Bohk-Ewald and Rau
2017) as well as for the United States (Bohk and Rau 2016). Although both the rotating
Lee-Carter model and the Bohk and Rau model allow the age profile of the rates of
mortality improvement to change, the latter model appears to be more flexible because
it does not assume an approximation of an ultimate schedule. If mortality declines
regularly, we expect that the Bohk and Rau model will perform as well as the rotating
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Lee-Carter model in forecasting average mortality and lifespan disparity and that it will
perform even better in generating forecasts for populations with irregular mortality
developments because it is more adaptable to different forecasting situations. To
generate the forecasts with the Bohk and Rau model, we use its implementation in R,
which is described in detail in Bohk-Ewald and Rau (2017).

Illustrative Examples

In this section, we validate the forecasting performance of the Lee-Carter model, its
rotating variant, and the model of Bohk-Ewald and Rau. Using illustrative examples,
we examine whether each model is able to generate precise forecasts of average
mortality and lifespan disparity. These illustrative examples are designed to indicate
whether the approaches can capture (1) regular and irregular trends of average lifespan
and (2) dynamic age shifts in survival improvements.

Estimation and Evaluation Procedure

The mortality forecasts up to 2009 rely on four reference periods (1965–1990, 1960–
1985, 1955–1980, and 1950–1975). We compare the estimations with the observed
values. Besides e0, which is a common indicator in evaluations, we also compare the
forecasted e†0 values with the observed values to assess the ability of the forecasting
approaches to predict average mortality and lifespan disparity. We focus our main
analysis on e0 and e

†
0, but we also provide results for e65 and e

†
65 in Online Resource 1 in

order to show how sensitive (or robust) our findings are.
We employ visualization techniques as well as forecast errors to evaluate the

forecasting performance of each method. To quantify forecast accuracy in terms of
the mean and spread of mortality, we use the absolute percentage error (APE) because it
is a relative error that relates the absolute difference between forecasted and observed
values to the size of the actual values. Because the APE can, therefore, deal with
measures of different scales, we use it to compare the forecasting performance (across
time and by country) between the methods using e0 and e†0. Given that the chosen
approaches provide probabilistic mortality forecasts, we focus not only on the evalu-
ation of median point estimates but also on the calibration of prediction intervals. We
use empirical frequencies to evaluate the uncertainty estimates of probabilistic fore-
casts; empirical frequencies give the proportion of observed values that actually fall
within the prediction intervals. For instance, a 95 % prediction interval should capture
95 % of all observations. If it captures more or fewer observations, it is too wide or too
narrow, respectively (e.g., Raftery et al. 2013; Schmertmann et al. 2014).

We generate forecasts of mortality for women in Italy (regular e0 and e†0), Japan
(regular e0 and irregular e†0), and Denmark (irregular e0 and e†0) because these groups
have differed substantially in recent decades in their levels of life expectancy and
lifespan dispersion (see Fig. 1). As input data, we use deaths and exposures by single
age from 0 to 110+, and by calendar year from 1950 to 2009, from the Human
Mortality Database (n.d.). To enable the forecasting approaches to shift deaths to ages
beyond 110+, we extend the age range to 130+ with the Kannisto model (Thatcher et al.
1998), the details of which we explain in Online Resource 1 (section A). This approach
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is similar to Ševčíková et al.’s (2016) revised UN approach. The estimation of e0 and e
†
0

(and of e65 and e†65) is based on life tables produced from the forecasted and observed
age-specific death rates.

Results

Visualize Forecast Performance Figure 2 displays the average lifespan, e0, and
the average number of life years lost, e†0, for women in Italy, Japan, and
Denmark. The observed data are in black, and the forecasted data are in red (Lee-
Carter model), green (rotating variant proposed by Li et al. 2013), and blue (Bohk and
Rau model). Moreover, the forecasted years (1991–2009) are highlighted in gray, and
the reference period (1965–1990), is highlighted in beige. Given the technical construc-
tion of the Lee-Carter models, it is not surprising that the forecasts of average lifespan
are almost identical: both models use the forecasted life expectancy at birth of the
original model. The rotated variant deviates no more than +/– 0.1 years, which we used
as a tolerance level when adjusting the age profile of mortality change with the rotation
to fit the average lifespan of the original Lee-Carter model. By contrast, the forecasts of
the Lee-Carter models differ in terms of lifespan disparity. The effect shown here is
greater than it would have been with Li et al.’s (2013) original implementation because
we let the rotation start when the average lifespan exceeded the value of 75 years, not of
80 years.

Quantify Forecast Performance Table 1 lists the mean of the APEs for e0 and e†0
over the forecast years by country and forecasting method for each validation setting,
and Table 2 lists those mean absolute percentage errors (MAPEs) averaged over all four
validation settings. Strikingly, the MAPEs appear to be greater for e†0 than for e0 for
almost any country, validation setting, and method. The overall mean of all MAPEs is
approximately 0.01 for e0 and 0.046 for e

†
0; that is, the forecasts deviate on average by

1 % from life expectancy at birth and by 4.6 % from lifespan dispersion. As a
consequence, the forecasting performance is depreciated for all methods when
we consider e†0 in addition to e0. Furthermore, the MAPEs for e65 and e†65 are
listed in Tables S1 and S2 in Online Resource 1. In contrast with mortality over the
entire lifespan, errors often appear to be smaller for e†65 than for e65. An exception is
Japan; in the validation settings 1 and 2, the errors appear to be larger for e†65 than for e65.

The empirical frequencies for e0 and e†0 in Table S3 and for e65 and e†65 in Table S4
(Online Resource 1) confirm our findings for the median forecasts and show even more
clearly that current approaches struggle to forecast lifespan disparity. The 95 % pre-
diction intervals capture, on average, a fairly large number of observations for life
expectancy at birth and, albeit slightly fewer, for remaining life expectancy at age 65.
By contrast, many fewer observations are captured by the 95 % prediction intervals for
lifespan disparity; empirical frequencies range from 0 % to 96.5 %, with the average
being only approximately 26 %.

Case of Italy: Regular Trends for Mean Lifespan and Lifespan Disparity

If mortality develops regularly without any trend changes in the forecast years, the
predictions of all three approaches appear to be close to the observed values. In Italy,
we detect a regular increase in the average lifespan as well as a regular decline in
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Fig. 2 Life expectancy at birth (left panels) and life years lost at birth (right panels) for women in Italy, Japan,
and Denmark: Observed data, forecasted data using the Lee-Carter model, the Lee-Carter rotating variant
(proposed by Li et al. 2013), and the Bohk and Rau model. Forecast years are 1991–2009. Reference period is
1965–1990
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Table 1 Mean of the absolute percentage errors (MAPE) fore0 and e
†
0 over the forecast years by country andmethod

Country and
Measure

Method

Lee-Carter

Lee-Carter,
Rotated
(Li et al.) Bohk and Rau

Validation 1 (ref. years: 1965–1990; forecast years: 1991–2009)

Italy

e0 0.003 0.003 0.005

e†0 0.019 0.015 0.014

Japan

e0 0.002 0.003 0.002

e†0 0.087 0.080 0.034

Denmark

e0 0.008 0.007 0.006

e†0 0.065 0.054 0.009

Validation 2 (ref. years: 1960–1985; forecast years: 1986–2009)

Italy

e0 0.010 0.010 0.002

e†0 0.029 0.021 0.018

Japan

e0 0.002 0.002 0.004

e†0 0.092 0.076 0.014

Denmark

e0 0.005 0.004 0.017

e†0 0.094 0.077 0.021

Validation 3 (ref. years: 1955–1980; forecast years: 1981–2009)

Italy

e0 0.014 0.014 0.002

e†0 0.027 0.019 0.012

Japan

e0 0.009 0.009 0.003

e†0 0.118 0.092 0.022

Denmark

e0 0.007 0.008 0.029

e†0 0.048 0.033 0.023

Validation 4 (ref. years: 1950–1975; forecast years: 1976–2009)

Italy

e0 0.018 0.018 0.008

e†0 0.032 0.023 0.053

Japan

e0 0.018 0.018 0.012

e†0 0.131 0.094 0.032

Denmark

e0 0.015 0.014 0.035

e†0 0.020 0.018 0.043

Note:MAPEs are shown for four validating settings that all forecast mortality until 2009, but they use different
historical periods.
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lifespan disparity in the entire 1965–2009 period. Hence, Italian women experienced no
trend changes, and their additional years of life were probably due to a compression of
mortality that lasted (without any interruptions) in the reference and forecast years.
Given these regular trends, the forecasts of all the approaches capture mean lifespan
and its disparity with only negligible deviations. However, the MAPEs are smaller for
e0 (0.3 % to 0.5 %) than for e†0 (1.9 % for the Lee-Carter model and 1.5 % for the other
two models).

Case of Japan: Regular Trend for Mean Lifespan and Irregular Trend for Lifespan
Disparity

If the average lifespan trend is regular but the lifespan disparity trend is not, differences
in the predictive ability of the three approaches are present but become visible only if
we complement the evaluation with a measure of dispersion. In Japan, we observe a
strong increase in the average lifespan from 1965 to 2009 as well as a decline in
lifespan disparity that levels off in the forecast years. Hence, among Japanese women
there was a trend change in the forecast years, and their additional years of life were
probably due to a compression of mortality in the reference period and a shifting of
mortality in the forecast years. Given the partial instability of mortality trends among
Japanese women, the forecasts of the three models are close to the observed mean
lifespan. The MAPEs for e0 range between 0.2 % and 0.3 %, suggesting that the
forecasts were precise. However, the analysis of lifespan disparity shows that all the
approaches overestimate the observed decline in the variability of the age at death. The
deviations are greater for the Lee-Carter models (MAPEs for e†0 are 8.7 % for the
original model and 8.0 % for its rotated variant) than for the Bohk and Rau model
(MAPE for e†0 is 3.4 %). As a consequence, all three approaches predict a continuation
of mortality compression while assuming that the concentration of deaths at higher ages
will be greater than it actually was.

Table 2 Mean of the absolute
percentage errors (MAPE) for e0
and e†0 over all validation settings
by country and method

Country
and Measure

Method

Lee-Carter

Lee-Carter,
Rotated
(Li et al.) Bohk and Rau

Italy

e0 0.011 0.011 0.004

e†0 0.027 0.019 0.024

Japan

e0 0.008 0.008 0.005

e†0 0.107 0.086 0.025

Denmark

e0 0.009 0.008 0.022

e†0 0.057 0.045 0.024
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Case of Denmark: Irregular Trends for Mean Lifespan and Lifespan Disparity

If the trends of the mean lifespan and lifespan disparity are irregular, both evaluation
measures indicate forecast errors. In Denmark, we observe an increase in the average
lifespan in the forecast years after a period of stagnation in the 1980s and the early
1990s. We also observe a slight increase in lifespan disparity in the reference years that
turns into a sharp decline in the forecast years. Hence, Danish women experienced
trend changes in the forecast years. Their additional years of life were probably due to a
mixture of a shifting and a worsening of mortality at different ages in the reference
years as well as mortality compression in the forecast years. This result indicates
that since the early 1990s, the mortality trends of Danish women have been catching
up to those of vanguard populations, such as women in Italy and in Japan. Given these
unstable mortality trends among Danish women, the forecasts of the three models
capture the increasing trend of the average lifespan quite well. The MAPEs for e0,
0.6 % to 0.8 %, are only slightly higher than for Italy and Japan. However, the situation
is different for lifespan disparity: the Lee-Carter models (more so the original model than
the rotating variant) predict an increase in the forecast years despite an actual decline.
This outcome not only deviates substantially from the observed values yieldingMAPEs
for e†0 of 6.5 % and 5.4 %, but it also appears to be rather implausible given the general
negative correlation between rising life expectancy at birth and declining lifespan
disparity (see Fig. 1). In contrast, the Bohk and Rau model appears to capture
the changing trend in lifespan disparity in the forecast years quite well, resulting
in a more plausible forecast with only small deviations from the realized values
(a MAPE for e†0 of only 0.9 %).

Model Comparison

The illustrative examples suggest that the Lee-Carter model is less flexible than the
other two models. This shortcoming is particularly noticeable when we look at the
changing mortality trends in the forecast years, especially among women in Japan and
Denmark. By contrast, the rotating variant and the Bohk and Rau model appear to be
more capable of adapting to changing trends because unlike the original Lee-Carter
model, which assumes that the relative changes are time-invariant across ages, these
models assume that survival improvements will change over time. Analyzing the
forecast errors, the rotated Lee-Carter model appears to perform on average better than
the other two models because its MAPEs for e0 and e†0 are relatively small for all
countries and validation settings. By contrast, the original Lee-Carter model often has
the largest MAPEs; and although the Bohk and Rau model often has the smallest
MAPEs for life expectancy at birth and lifespan dispersion, it also has a few upward
outliers that reduce its overall forecasting performance.

Sensitivity of the Results to the Reference Period

To examine the sensitivity of the above results to the choice of the reference period, we
look at mortality forecasts up to 2009 that rely on different reference periods: 1960–
1985, 1955–1980, and 1950–1975. The analyses are shown in Figs. S2–S4 in Online
Resource 1, and have the same color scheme as in Fig. 2. Although the key message of
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the results presented is not affected by changing the reference period, a comparative
analysis helps to identify method-based differences.

The fits of life expectancy at birth and lifespan disparity basically appear to depend
on the regularity of mortality trends and the ability of the approaches to capture them
appropriately. Because Japanese and Danish women experienced irregular mortality
developments, making precise forecasts for them is particularly challenging. Thus, the
predictive ability of the approaches declines as the magnitude of the MAPEs increases.
This effect appears to be greater for the Lee-Carter model than for the other two
models, and it appears to be more pronounced in forecasts of lifespan disparity than
of average lifespan. For example, the greatest overall MAPE (10.7 %) is for e†0 in Japan
from the Lee-Carter model, whereas the smallest overall MAPE (0.4 %) is for e0 in Italy
from the Bohk and Rau model (Table 2). The greater forecast error for the Lee-Carter
model is probably due to the extrapolation of average trends of the reference period.
Hence, if the overall trend of lifespan disparity is decreasing in the reference period, the
Lee-Carter model tends to predict a decreasing pattern as well, and vice versa.
However, the structural breaks in Danish and Japanese lifespan disparity appear to be
unexpected and are therefore difficult to capture in a forecast generated by any model
that has not been designed for this specific task. If we look instead at the more regular
mortality trends in Italy, for example, we can see that the Lee-Carter models tend to
generate rather conservative forecasts of progress in the average lifespan; that is, they
tend to systematically underestimate the observed trajectories and yield overall MAPEs
for e0 of 1.1 %. By contrast, the forecasts of the Bohk and Rau model yield a smaller
overall MAPE for e0 (0.4 %) than the forecasts of the other two models, and they
sometimes systematically overestimate the additional years of life. Examining lifespan
disparity reveals even more differences between the approaches, particularly between
the two Lee-Carter models in the forecasts of Japanese female mortality. The rotating
variant appears to capture the flattening decline of lifespan disparity in the forecast
years much better than the original model, and thus substantially improves forecasting
performance: the overall MAPE for e†0 in Japan is substantially lower for the rotated
Lee-Carter variant (8.6 %) than for the original model (10.7 %). Also clearly visible for
lifespan dispersion in Japan is that the further in time the reference period is, the more
forecasts of the rotating variant diverge from those of the original model and converge
with those of the Bohk and Rau model. Given that the rotation starts when life
expectancy exceeds 75 years and that Japanese women reached this point in the early
1970s, this finding is not really surprising. As a consequence, the forecast that relies on
data from 1950 to 1975 is also the forecast in which the rotation has the largest effect on
the results. This finding demonstrates the need for time-variant survival improvements
in order to capture dynamic trends in the variability of the age at death. The remaining
deviations from the real values indicate that refining (or developing) forecasting
approaches may help to account for patterns in lifespan disparity, such as the
compression, shifting, and expansion of mortality. However, we do not expect
forecasting errors to be equal to 0 because they showmore signs of overfitting than of
high forecasting performance.

Also of note is that the predictive ability of forecasts that rely on data from 1950 to
1975 appears to be lower than that of forecasts based on more recent mortality trends.
Because this effect can be seen for the average lifespan and also partly for lifespan
disparity, we speculate that it may be attributable to the delayed onset of the old-age
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mortality decline in the 1970s, which was crucial for future mortality develop-
ments in all three populations. Hence, if a major driving trend of mortality in
the forecast years is missing in the reference period, the forecasting performance may
be substantially reduced.

If we restrict our analysis to ages above 65, the relation of errors (MAPEs) for
remaining years of life and lifespan disparity reverses. An exception is Japan, which
shows larger errors for lifespan disparity than for remaining years of life at age 65, but
only in the validation settings 1 and 2. Most likely, the onset of old-age mortality
decline (Kannisto 1994) causes the reversal in the error pattern. Analyzing the magni-
tude of errors across all four validation settings provides evidence that the more years
that are included in the reference period since the onset of the old-age mortality decline,
the more accurate are the forecasts of remaining life expectancy at age 65. Given that
the survival improvements at older ages primarily induced a parallel downward shift of
the force of mortality on the log scale, the effects were large for e65 but only marginal
for e†65. This development is widely known as shifting mortality and has been described
in detail by, for example, Bongaarts (2005) and Canudas-Romo (2008). Japan is the
world record leader in terms of life expectancy thanks to exceptionally large old-age
mortality improvements; we assume that these deviant/special trends in mortality
may have caused larger changes in the variability at death that have not been
captured in the forecasts and thus lead to larger errors for e†65 in the last two validation
settings (Cheung and Robine 2007; Wilmoth and Robine 2003).

Summary and Concluding Remarks

Our analysis has shown that some methods—among them, the original Lee-Carter
model, which is considered a golden standard in mortality forecasting—struggle to
account for trends in lifespan disparity. This shortcoming, often caused by rather time-
invariant survival improvements, has not been shown so clearly yet because the toolkit
for evaluating the forecast performance focused on, for example, life expectancy at
birth and age-specific death rates. These measures of central tendency are typically
used to analyze ex post to what extent forecasts deviate from their realized values.
Although these parameters of central tendency are useful for assessing how precisely
average mortality has been forecasted, they cannot be used to determine whether the
forecasted underlying mortality developments are plausible. This may be a serious
drawback because similar average lifespans can result from different underlying mor-
tality developments, which describe a dynamic age shift of survival improvement from
younger to older ages in many highly developed countries in the last decades. As a
consequence, small forecast errors of average lifespan do not necessarily indicate
plausible trends in the forecasted underlying mortality dynamics. To assess whether
the forecasts of the underlying developments are also plausible, we propose to
use measures of lifespan disparity in the evaluation procedure. Despite many
suitable measures of lifespan dispersion, we employed e†0 as a measure of
spread to tackle this problem.

In illustrative mortality forecasts for women in Italy, Japan, and Denmark—three
populations who differ substantially in terms of lifespan disparity (see Fig. 1)—e†0 was
a useful addition to the common toolkit for evaluating the predictive ability of
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forecasting approaches. We used the original Lee-Carter model (Lee and Carter 1992),
its rotating variant proposed by Li et al. (2013), and the model of Bohk-Ewald and Rau
(2017) to predict mortality up to 2009. Because the three approaches differ primarily in
their ability to capture dynamic age shifts in the distribution of deaths, they are
particularly suitable for evaluating how well they are able to forecast actual develop-
ments in average lifespan and lifespan disparity. To examine the sensitivity of our
results, we chose four reference periods instead of just one: 1965–1990, 1960–1985,
1955–1980, and 1950–1970. We then compared the forecasted values of the average
lifespan and lifespan disparity with the actual values.

The comparative analysis revealed that irrespective of the reference period, fore-
casting performance basically depends on the regularity (or continuation) of mortality
trends and the ability of the approaches to capture them appropriately. Although the
forecasts of life expectancy at birth generated by the Lee-Carter models are rather
conservative, the forecasts generated by the Bohk and Rau model often have small
forecast errors but also a few upward outliers. Moreover, the Japanese forecasts were
found to be precise when we looked at average lifespan only, but they turned out
to be rather inaccurate when we took lifespan disparity into account as well.
Hence, the models were not able to capture the flattening decline of Japanese
lifespan disparity in the forecast years, although the rotating model and the
Bohk and Rau model fared better than the original Lee-Carter model because of
time-variant survival improvements.

However, the remaining deviations from the observed values indicate that the
refinement or the development of forecasting approaches should focus not only on
average mortality but also on lifespan disparity. This indication may be particularly
important given the concentration of mortality improvement potentials at the highest
ages. Improving mortality at those ages could imply that people will probably live
beyond current maximum ages. Hence, it will be crucial for forecasting approaches to
be able to capture multiple trends in the (right) tail of the lifespan distribution
(stagnation or expansion). As a consequence, the approaches should be able to forecast
further reductions in mortality not only up to the current maximum ages but also to
higher ages beyond. Doing so requires a high degree of modeling flexibility, which has
been missing in existing approaches.

To summarize, our analysis illustrates that the joint evaluation of the average

lifespan (e0) and the life years lost (e
†
0) provide new insights that we believe are needed

for a comprehensive evaluation of the predictive performance of mortality forecasts.
We also suggest that these new insights should be used when improving or developing
new methods for forecasting mortality. Until now, these approaches were exclusively
designed to capture the almost linear increase in life expectancy at birth. Hence, it is not
surprising that forecasts of the average lifespan turn out to be more accurate and yield
smaller forecast errors. The incorporation of lifespan disparity as a quality criterion or
even central outcome may substantially improve the methodology.
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