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Abstract Water-soluble and red-emitting gold nanoclusters
(Au NCs) were synthesized with single-stranded DNA as a
promising biotemplate and dimethylamine borane as a mild
reductant. The fluorescent Au NCs can be formed in a
weakly acidic aqueous solution that is free from the simul-
taneous formation of large nanoparticles. The cluster feature
of the formed Au species has been revealed by fluorescence
spectra, absorption spectra, and transmission electron mi-
croscopy. Additionally, DNA sequences could be used to
tune the Au NCs' emissions. The as-prepared Au NCs
display high stability at physiological pH condition, and
thus, wide potential applications are anticipated for the
biocompatible fluorescent Au NCs serving as nanoprobes
in bioimaging and related fields.
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Introduction

Decreasing the size of noble metal nanostructures (mainly
Au and Ag) down to less than 2 nm will produce nano-
clusters (NCs) and restrict the motion of their free electrons
in a very confined space that results in discrete electronic
band structures. When the discrete band energies become

larger than thermal energies, the NCs will behave like mol-
ecules in respect of optical properties such as light absorp-
tion and emission. Au NCs have emerged as novel
fluorescent nanomaterials because of their better perfor-
mance in many aspects like biocompatibility, photostability,
and non-toxicity relative to organic dyes and semiconductor
quantum dots [1–4].

Fluorescent Au NCs have been prepared mainly in a
bottom–up manner by the reduction of gold precursors in
the presence of various templates such as macromolecules
(dendrimers [5–9], proteins [10–24], poly-butadiene [25]),
small molecules (histidine [26], carbohydrate [27], thiols
[28–33], N, N-dimethylformamide [34, 35], penicillamine
[36]), and even solid functional organisms (eggshell mem-
brane [37]). Alternatively, top–down etching of preformed
large nanoparticles down to desired NC sizes has received
much attention due to many available synthetic strategies for
the large nanoparticles. In this aspect, polyethylenimine
[38], dihydrolipoic acid [39, 40], thiols [41–43], Good's
buffers [44], cyclodextrins [45], and even hydrochloric acid
[46] have been employed as effective etchants. Recently,
large nanoparticles have been reported to be even fluores-
cent after being sensitized by thiols [47, 48].

It is widely accepted that the formation of stable Au NCs
is controlled by a slow thermodynamic process for a narrow
size distribution following their relative rapid formation [49]
or by a cyclic process of growth and etching reactions
around the most stable cluster species to form nearly mono-
disperse product distributions [46, 50]. In addition, the
optical properties of the Au NCs are related to the ligands
that protect them from aggregations [51] and redox state of
the gold core [52, 53], or the gold core geometry tuned by
the oxidation states [53]. On the basis of this mechanism
understanding, many applications, for example, detections
of Hg2+ [12–15, 37, 47], Cu2+ [19, 20, 32], CN− [17], H2O2
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[18], glucose [24], and dopamine [21], and cell labeling or
imaging [13, 23, 40, 48], have been achieved with Au NCs
as reporters by direct or indirect reaction of the NCs' pro-
tecting ligands or gold cores with the species of interest.
However, in comparison to the fruitful strategies for the
DNA-templated synthesis and optical tunability of silver
nanoclusters (Ag NCs) [54, 55], there are fewer reports for
the successful synthesis of Au NCs with DNA as template.
Recently, atomically monodisperse fluorescent Au NCs
were obtained by etching gold particles (either spheres or
rods) with the assistance of DNA under sonication in water
[56]. Due to the photosensitivity of Ag species, the most
prominent advantage of DNA-templated Au NCs over Ag
NCs in biocompatible applications would be the Au NCs'
favorable stability. In this work, single-stranded DNA was
first employed as an alternative template during reduction of
Au precursor to produce Au NCs (see Fig. 1).

Experimental

Synthesis of fluorescent Au NCs

Twenty-three-mer DNAs with the sequences of 5′-
GAGGCGCTGCCYCCACCATGAGC-3′ (named 23-Ys,
Y 0 C, A, G, and T) were synthesized by TaKaRa Biotech-
nology Co., Ltd. (Dalian, China). All the DNA samples
were HPLC purified by the manufacturer. Other reagents
were of analytical grade and used without further purifica-
tion. Nanopure water (18.2 mΩ; Millipore Co., USA) was
used in all experiments. In a typical experiment, chloroauric
acid (HAuCl4, Sigma Chemical Co., St. Louis, USA) solu-
tion was added to the single-stranded DNA solution in
20 mM phosphate containing 1 mM magnesium acetate
(PBS) by an appropriate HAuCl4/DNA concentration ratio.
After being thoroughly mixed, the solution was aged at
room temperature for 10 h to allow for the completion of
the interaction of HAuCl4 with DNA. Then, the freshly
prepared dimethylamine borane (DMAB, Sigma Chemical
Co., St. Louis, USA) solution was added to the aged
HAuCl4/DNA solution, which was followed by another
36-h reaction at room temperature in the dark to produce
fluorescent Au NCs. The resulting solutions were examined
at room temperature (22±1 °C). For control experiments,
sodium borohydride was used as the reductant to replace
DMAB.

Characterization of fluorescent Au NCs

Fluorescence spectra were acquired with a FLSP920 spectro-
fluorometer (Edinburgh Instruments Ltd., UK) at 22±1 °C,
equipped with a temperature-controlled circulator (Julabo,
Germany). UV/vis absorption spectra were determined with
a UV2550 spectrophotometer (Shimadzu Corp., Japan).
Transmission electron microscopy (TEM) images were ac-
quired on a JEOL 2010F transmission electron microscope
at the acceleration voltage of 200 kV. The TEM samples were
prepared by dropping a dispersion of the as-prepared Au NCs
onto a Cu grid covered by a holey carbon film.

Results and discussion

Fluorescent Au NCs have been widely synthesized in a
bottom–up manner by reduction of gold precursors that are
associated with various biotemplates [10] such as bovine
serum albumin [11], horseradish peroxidase [18], lysozyme
[12], and transferrin protein [20]. Nevertheless, synthesis of
Au NCs templated by DNA has rarely been reported maybe
because of the weak association between the negatively
charged DNA and commonly used precursor AuCl4

−. Here,
we tried to qualify the right conditions to synthesize fluores-
cent Au NCs in the presence of DNA (Fig. 1). Twenty-three-
mer single-stranded DNAs with the sequences of 5′-
GAGGCGCTGCCYCCACCATGAGC-3′ (named 23-Ys,
Y 0 C, A, G, and T) were employed in this work.
These sequences are stable in aqueous solution free from
any secondary structure at room temperature. In an optimized
experiment, the concentration ratio 1:15:75 of DNA/HAuCl4/
DMAB was used to produce fluorescent Au NCs in PBS at
pH 4.4 (Fig. S1 and S2 in the Supporting information). As
shown in Fig. 2, the red fluorescent Au NCs can be prepared
in aqueous solution by reducing the gold salt with DMAB
using single-stranded 23-C as the template. The DNA-
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Fig. 1 Schematic illustration for the formation of Au NCs templated
by DNA
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Fig. 2 Fluorescence excitation (measured at 725 nm) and emission
(excited at 467 nm) spectra of 20 mM PBS (pH 4.4) containing 75 μM
HAuCl4 and 375 μMDMAB in the absence and presence of 5 μM 23-C.
Inset: photographs of the solutions in the absence and presence of DNA
(from left to right) under UV illumination
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templated Au NCs display excitation and emission bands at
467 and 725 nm, respectively. However, reducing the HAuCl4
solution byDMAB in the absence of 23-C induces a light pink
sample without any noticeable emission, confirming the cru-
cial role of DNA for the formation of fluorescent Au NCs.
Under UV illumination, a bright red emission from the as-
prepared Au NC solution can be clearly distinguished from
that of the solution without 23-C by the naked eye, indicating
that highly fluorescent Au NCs are formed in the presence
of DNA. Previously, Dickson et al. [5] have explained
their experimental results with the spherical Jellium model
for predicting the size of Au NCs by fitting the Au NCs'
emission energy with the scaling relation of EFermi/N

1/3,
where EFermi is the Fermi level of gold element and N is
the number of Au atoms composed of Au NCs. From the
observed emission energy of 1.71 eV in our experiment
for the DNA-templated Au NCs, we roughly estimate that
the number of gold atoms composed of the Au NCs is
about 21. As revealed by the TEM analysis (Fig. 3a), it is
difficult to accurately determine the diameter of the fluo-
rescent Au NCs due to the low TEM contrast with the back-
ground for such small-sized materials, which is in good
agreement with the cluster dimension predicted by the Jellium
model. However, the cluster profile can be easily seen from
the TEM image.

We found that many factors strongly affected the forma-
tion of fluorescent Au NCs. As shown in Fig. 4a, the
solution pH plays a key role in modulating the emissions
of Au NCs templated by 23-C. By comparison to the emis-
sion from the solution prepared in PBS at pH 4.4, the
resulting solutions prepared in PBS at pH 5.0 and 6.0 exhibit

1.2- and 3.1-fold decreases in the fluorescence intensities,
respectively. However, there is almost unnoticeable fluores-
cence emission for those prepared in PBS at pH 7.0 and 8.0.
Therefore, acidic solution conditions seem to facilitate the
creation of fluorescent Au NCs. Absorption spectra were
then followed to further confirm the influence of the solu-
tion pH on the formation of fluorescent Au NCs. As shown
in Fig. 4b, the solutions prepared at pH above 6.0 accord-
ingly exhibit clear absorption peaks located at about
525 nm, which suggests the formation of larger gold nano-
particles with characteristic surface plasmon resonance ab-
sorption. As an example, the production of such gold
nanoparticles at pH 7.0 is thus evidenced by TEM analysis
with diameter larger than 5 nm (Fig. 3b). By contrast,
featureless absorption spectra are observed for the solutions
prepared at lower pH values. This fact indicates that the
fluorescent Au NCs produced at the weakly acidic condi-
tions should be smaller than 2 nm in diameter [57, 58],
which is in agreement with the TEM results and the Jellium
model-based prediction. Previously, the similar absorption
spectra with such featureless behaviors were observed for
fluorescent Au NCs by their intensities decaying roughly
exponentially toward the visible region from the UV region
[14, 36, 38, 39]. Therefore, the production of fluorescent Au
NCs is free from the simultaneous formation of large gold
nanoparticles at the acidic conditions. On the basis of these
observations, our method would expand the potential appli-
cations of fluorescent Au NCs with DNA as the biotemplate
because the previously reported protein-based synthesis of
fluorescent Au NCs was mostly carried out at strong alka-
line conditions (pH≥12) [10].

Fig. 3 TEM images of Au
nanomaterials prepared in PBS
at pH 4.4 for NCs (a) and
pH 7.0 for larger nanoparticles
(b)
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Fig. 4 Effects of solution pH
on the formation of fluorescent
Au NCs: a fluorescence spectra,
b absorption spectra
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However, the immediate addition of DMAB into the fresh-
ly mixed DNA–HAuCl4 solution prepared at whatever pH
results in the prompt formation of pink samples without any
fluorescence response to be observed. Consequently, we spec-
ulate that the first crucial step for the creation of fluorescent
Au NCs is the formation of an Au(III)–DNA complex, which
occurs by replacing the Cl− ligands in AuCl4

− with DNA
bases before the reduction. To follow the reaction between
AuCl4

− and DNA, we monitored the time evolution of the
DNA absorption spectra at 260 nm after the addition of
HAuCl4. As shown in Fig. 5, an abrupt decrease in the
absorption is evidenced after aging the sample prepared at
pH 4.4 for 10 h, whereas there is no distinct change in the
absorption for the sample prepared at pH 7.0 even with the
reaction time extending up to 50 h. Although the exact inter-
action mechanism of the DNA base with HAuCl4 is not yet
clear, the coordination and chelation between gold and both
the ring and amino nitrogens of the nucleic acid bases [59]
should contribute to this process. At an acidic solution, cyto-
sine in DNA should be partially protonated [60] to facilitate its
interaction with the negatively charged AuCl4

−, while at neu-
tral and alkaline conditions, there is a relative large repulsion
force to prevent the negatively charged DNA from approach-
ing the negatively charged AuCl4

−. The possible protonation
of cytosine in DNAwould induce less base stacking, which is
reflected by the higher absorption at pH 4.4 than that at pH 7.0
as observed at the initial stage of AuCl4

− addition (Fig. 5).
Nevertheless, the at-least 10-h aging time for the production of
fluorescent Au NCs at the weakly acidic condition shows that
the specific interaction between AuCl4

− and DNA is still a
slow process. Thus, without the aging step prior to reduction,
Au(III) mainly in the form of AuCl4

− free in water can be
directly reduced by DMAB into large gold nanoparticles.
Further works will be expected in this laboratory to identify
the interaction mode of DNA bases with the fluorescent Au
NCs by, for example, infrared and circular dichroism spectra.

It is well known that different DNA sequences and
lengths can be used to modulate the emissions of DNA-

templated silver nanoclusters [54]. Thus, it is expected that
the DNA sequences could be also used to tune the Au NCs'
emissions. To examine the impact of DNA sequences, we
only changed the central base in 23-C from cytosine to
adenine (23-A), guanine (23-G), and thymine (23-T) and
kept the other reaction conditions unchanged. As shown in
Fig. 6, the Au NCs' emissions are dependent on the DNA
sequences with the intensities decreasing in the order of 23-
C>23-A>23-T>23-G. The emission maxima are also blue
shifted in the same order. Due to the one-base alteration
for all the used DNAs at the same length, small changes
in Au NCs' emissions could be imaged as observed
here. Therefore, we believe that it is feasible to synthesize
Au NCs with different emission behaviors by DNA sequence
alterations.

We found that the used reductant had a profound effect
on the formation of fluorescent Au NCs. For example,
replacement of DMAB with NaBH4, a common reductant
in the synthesis of noble metal nanoclusters [54], mainly
resulted in prompt production of large nanoparticles with
barely faint fluorescence even though the aging procedure
was still carried out, which is in agreement with the previous
observation that NaBH4 was an ineffective reductant for the
production of fluorescent Au NCs [36]. By comparison to
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Fig. 5 Time evolutions of the corresponding absorbances at 260 nm
for the HAuCl4–DNA solutions at pH 4.4 and 7.0 before DMAB
addition
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Fig. 6 Dependences of DNA sequences on the fluorescence spectra of
the as-prepared Au NCs
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the strong reduction capacity related to NaBH4, DMAB was
a weak reductant [61] and proved to be a fine candidate to
reduce the DNA-bound gold species to fluorescent Au NCs.
As shown in Fig. 7, an incubation time of 36 h after the
addition of DMAB is needed to get the stable emissions on
account of the weak reducing capacity of DMAB at the
weakly acidic condition. The formed Au NCs are stable
enough to keep their emissions for more than 2 days. Thus,
we reasonably conclude that a slow reduction process of the
DNA-bound gold species is crucial to prevent the preformed
Au NCs from aggregating into large nanoparticles.

Lastly, we tested the stability of fluorescent Au NCs at
the solution with different pH from that for their preparation.
As shown in the inset of Fig. 7, the fluorescence intensities
of the preformed Au NCs at pH 4.4 decrease only 1 and
15.6 % after 2 and 24 h of adjusting the solution pH value to
7.4, indicating that the preformed Au NCs' emission is not
seriously affected by electrolyte's pH. Accordingly, we ex-
pect that although the fluorescent Au NCs can be formed
only at the weakly acidic conditions, the high stability of the
preformed Au NCs at the physiological pH condition would
greatly facilitate their potential use in bioimaging applica-
tions due to biocompatibility of the used DNA template.

Conclusion

In summary, we presented a new approach for the synthesis
of water-soluble, red fluorescent Au NCs templated by
DNA. Investigations by fluorescence, TEM, and absorption
spectra convince that the fluorescent Au NCs can be formed
by reducing the Au precursor with DMAB at weakly acidic
pH conditions. During this process, the aging time for
completing the interaction of DNA with HAuCl4 before
reduction is critical to form the fluorescent Au NCs. In
addition, the Au NCs' emissions could be tuned by DNA
sequences. The high stability of the preformed Au NCs at
the physiological pH condition and the biocompatibility of
the used DNA template would support their wide applica-
tions as novel nanoprobes.
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