Optimal and isodual ternary cyclic codes of rate 1/2

Cherif Mihoubi · Patrick Solé

Received: 12 January 2012 / Revised: 9 May 2012 / Accepted: 4 July 2012 / Published online: 26 July 2012 (© The Author(s) 2012. This article is published with open access at SpringerLink.com

Abstract This work is twofold. First, the largest minimum distance of a ternary cyclic codes of parameters $[n, \frac{n}{2}]$, is determined for *n* even, not a multiple of 3, by using the Chen algorithm, for n = 26, 34, 38, 46, 50, 58, 62, 68, 70, 74. Next, seven new classes of isodual ternary cyclic codes are introduced for *n* singly even, not a multiple of 3.

Keywords Cyclic codes · Minimum distance · Isodual codes

Mathematics Subject Classification (2000) 94B15 · 94B05 · 94B065

1 Introduction

An important class of ternary codes of rate 1/2 is that of self-dual codes [5], because of its connections with invariant theory, combinatorial designs, and modular forms.

Communicated by S.K. Jain.

C. Mihoubi (⊠) Département de Mathématiques, Université Hadj Lakhdar, 5000 Batna, Algeria e-mail: cherif.mihoubi@yahoo.fr

C. Mihoubi Université de M'sila, Bp 581, Hodna, 28000 M'sila, Algeria

P. Solé Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France

P. Solé

Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia e-mail: sole@telecom-paristech.fr

This class is a subclass of formally self dual codes in [2]. In the present work, we consider cyclic ternary codes of rate 1/2. An important subclass of these is that of cyclic *isodual codes*, i.e. cyclic codes equivalent to their duals. Isodual codes are in particular formally self dual.

Following [2] we consider the largest minimum distance $d_F(n)$ of a fsd ternary code of length n. We introduce $d_I(n)$ the largest minimum distance of an isodual code of length n. Clearly $d_I(n) \le d_F(n)$. Another function of interest is the largest minimum distance $d_C(n)$ of a cyclic code of length n and rate 1/2.

Our contribution is twofold. First, we establish by electronic calculation, using an algorithm due to Chen, the value of $d_C(n)$ for n even ≤ 74 . Second, inspired by this numerical data, we propose, in the case n = 2m with m odd, seven constructions of ternary isodual cyclic codes. They hold when n is singly even, that is at lengths where self dual ternary codes do not exist. The characterization of the generating polynomial of an isodual cyclic code is left as a challenging open problem.

The material is organized as follows. The next section reviews the necessary notation and definitions. Section 3 derives the seven constructions of isodual cyclic codes and gives a table of values of $d_1(n)$ and $d_C(n)$ for small values of n. Section 4 contains the numerical data on cyclic codes of rate 1/2 over \mathbb{F}_3 , arranged in subsections by values of the length.

2 Notation and definitions

We assume that the reader has gained some familiarity with coding theory [1,4]. Let $\mathbb{F}_3 = \{0, 1, 2\}$ denote the Galois field of three elements. Recall that the *rate* of a linear code of length *n* and dimension *k* is k/n. Two ternary linear codes are said to be *equivalent* if one can be obtained from the other by permutation of coordinate places and negation of some coordinate entries. A linear code is said to be *isodual* iff it is equivalent to its dual. Recall that a cyclic code of length *n* over \mathbb{F}_q can be regarded as an ideal in the principal ideal ring $\mathbb{F}_q[x]/(x^n - 1)$. If g(x) denote the *generator* polynomial of a cyclic code *C*, then the generator of the dual code, denoted by h(x) is, up to sign, the reciprocal of its complement

$$h(x) = \frac{x^n - 1}{g(x)},$$

where the *reciprocal* polynomial $f^*(x)$ of a polynomial f(x), of degree *n* over \mathbb{F}_3 , is defined by

$$f^*(x) = x^n f\left(\frac{1}{x}\right).$$

The elements of a code *C* are called codewords, and the weight wt(x) of a codeword *x* is the number of positions where *x* is nonzero. The Hamming distance d(x, y) between two codewords *x* and *y* is d(x, y) = wt(x - y). The minimum distance of a code *C* is:

$$d(C) = \min\{d(x, y) | x, y \in C, x \neq y\}.$$

If *C* is linear then d(C) equals the minimum weight of a nonzero codeword. The three parameters of a *q*-ary code are denoted by $[n, k, d]_q$ and are length, dimension, minimum distance. The so-called *fundamental problem of coding theory* is

• Find $d_q(n, k)$, the largest value of d for which a code of parameters $[n, k, d]_q$ exists.

A code that attains this value is called an optimal code. With the notation of the introduction we have, by definition,

$$d_C(n) \le d_3(n, n/2),$$

and

$$d_I(n) \le d_F(n) \le d_3(n, n/2).$$

3 Isodual cyclic codes

3.1 Constructions

We give seven constructions of isodual ternary cyclic codes and illustrate them by examples in the next section. We suppose that n = 2m with m odd and not a multiple of 3. In that case the factorization

$$x^m - 1 = (x - 1)u(x)v(x)$$

yields, by changing x into -x the factorization

$$x^{m} + 1 = (x + 1)u(-x)v(-x).$$

We choose

$$g(x) = (x-1)u(x)v(-x).$$

We consider the following seven cases

(1) $u^*(x) = u(x), v^*(x) = v(x)$ (2) $u^*(x) = \epsilon v(x), v^*(x) = \eta u(x)$ (3) $u^*(x) = -v^*(x)$ (4) $u^*(x) = u(x), v^*(x) = v(-x)^*$ (5) $u^*(x) = u(-x)^*, v^*(x) = v(x)$ (6) $u^*(x) = u(x), v^*(x) = \eta v(-x)$ (7) $u^*(x) = \epsilon u(-x), v^*(x) = v(x)$

with ϵ , $\eta = \pm 1$.

Proposition 1 *Keep the above notation In the seven cases above the cyclic code of generator* g(x) *is isodual.*

Proof In each case we compute the generator of the dual code. First

$$(x^{n} - 1)/g(x) = (x + 1)u(-x)v(x).$$

Taking reciprocals of both sides, we obtain in the first five cases $\pm g(-x)$, and in the last two cases $[-g(-x)]^*$. The result follows.

3.2 Table of values of $d_I(n)$ and $d_C(n)$

In this table we note the different values of $d_I(n)$ and $d_C(n)$ respectively for isodual and cyclic codes of parameters $[n, \frac{n}{2}]_3$ according to the length of the code.

n	26	34	38	46	50	58	62	68	70	74
$d_I(n)$	6	4	4	9	4	4	4		14	14
$d_C(n)$	8	4	4	13	4	4	4	8	14	14

Remark For n = 34, 38, 50, 58, 62, 70, 74 the minimum distance of the best isodual code of parameters $[n, \frac{n}{2}]_3$ is the same as that of the best cyclic code of rate one-half.

4 Optimal cyclic codes of rate 1/2 over \mathbb{F}_3

4.1 Cyclic codes of parameters [26, 13]₃

We begin our study of the minimum distance of ternary cyclic codes of parameters $[n, \frac{n}{2}]$, *n* even, and not a multiple of 3. For linear codes the upper and lower bounds from [3] on $d_3(n, n/2)$ coincide for $2 \le n \le 24$. For $n \ge 26$ (see [3]) the upper bounds are not always met. The table of bounds on $d_3(n, n/2)$ for $26 \le n \le 74$ is given below.

n		26	28	32	34	38	40	44	46	50
d	3	8–9	9–10	10-11	11–12	11–13	12-14	13-15	5 14–15	14–17
	n	52	5	6 5	8	67	64	68	70	74
	d3	15-	-18 1	$\frac{6}{6-18}$ 1	7–19	02 17–20	18-21	16-22	17-23	18-24

The algorithm of Chen as described in [6] allows us to derive the minimum distances of all ternary cyclic codes of length 26 and dimension 13. The following decomposition into irreducible factors

$$x^{26} - 1 = (1+x)(2+x)(1+2x+x^3)(2+2x+x^3)(2+x^2+x^3)(2+x+x^2+x^3)$$

(1+2x+x^2+x^3)(1+2x^2+x^3)(1+x+2x^2+x^3)(2+2x+2x^2+x^3)

Table 1	Length	26
---------	--------	----

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{26}-1}{g(x)}\right]^* =$	wt(a)
1000000000001	1000000000001000000000000	$\begin{bmatrix} u^{*}(x) = v(x) \\ v^{*}(x) = u(x) \end{bmatrix}$	g(-x)	2
22121212121211	21000000000210000000000	$\begin{bmatrix} u^{*}(x) = v(x) \\ v^{*}(x) = u(x) \end{bmatrix}$	-g(-x)	4
11220102101001	10100000100001010000010000	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = -v(-x) \end{bmatrix}$	$[-g(-x)]^*$	6
20120100020121	12001010000002100202000000			8
12112100012111	210001000000020000000211			7
22000102100211	2220000000102202020000000			8
10020222110211	120100000000210200000000	$\begin{bmatrix} u^{*}(x) = -u(-x) \\ v^{*}(x) = v(x) \end{bmatrix}$	$[-g(-x)]^*$	6
12011200010121	10100000100001010000010000	$\begin{bmatrix} u^{*}(x) = u(-x)^{*} \\ v^{*}(x) = v(x) \end{bmatrix}$	g(-x)	6
2000000000001	1000000000002000000000000	$\begin{bmatrix} u^{*}(x) = v(x) \\ v^{*}(x) = u(x) \end{bmatrix}$	-g(-x)	2
12222222222221	110000000000220000000000	$\begin{bmatrix} u^{*}(x) = v(x) \\ v^{*}(x) = u(x) \end{bmatrix}$	g(-x)	4
10111211001201	220000010000110000020000	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x)^{*} \end{bmatrix}$	g(-x)	6
21120102202001	10100000100002020000020000	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = -v(-x) \end{bmatrix}$	$[-g(-x)]^*$	6
12121021020221	10200001000002000012000200			7

over \mathbb{F}_3 comprises 8 polynomials of degree 3 and two linear polynomials. Thus there are $\binom{8}{4}\binom{2}{1} = 140$ possible generators polynomials of degree $3 \times 4 + 1 = 13$. Some of these polynomials along with a minimum weight codeword *a* and its weight are recorded in Table 1.

Remark There are 54 codes with the optimal minimum distance 8 among the 140 cyclic codes of parameters $[26, 13]_3$.

We summarize our first experimental result by

Proposition 2 We have $d_C(26) = 8$. Note that $d_3(26, 13) \in \{8, 9\}$, by [3].

4.2 Cyclic codes of parameters $[n, \frac{n}{2}]_3$ where n = 34, 38, 50, 58, 62

- In the cases n = 34, 38, 58, 62, for the all cyclic codes of parameters $[n, \frac{n}{2}]_3$, we have

$$x^{n} - 1 = (1 + x)(1 + x + x^{2} + \dots + x^{\frac{n}{2}-2} + x^{\frac{n}{2}-1})$$

(2 + x)(1 + 2x + x^{2} + \dots + 2x^{\frac{n}{2}-2} + x^{\frac{n}{2}-1}).

Thus there are four choices for the generator polynomial of each code.

For the cyclic codes of parameters $[50, 25]_3$, we have 8 possible choices for the generator polynomial g(x) of degree 25.

$$x^{50} - 1 = (1+x)(2+x)(1+x+x^2+x^3+x^4)(1+2x+x^2+2x^3+x^4)$$

(1+x⁵+x¹⁰+x¹⁵+x²⁰)(1+2x⁵+x¹⁰+2x¹⁵+x²⁰).

But in all cases, the maximal minimum distance d_C of such codes is equal to 4, and we have always:

$$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(x) \end{bmatrix}^{*} = \pm g(-x).$$

Proposition 3 For n = 34, 38, 50, 58, 62 the cyclic codes of parameters $[n, n/2]_3$ are isodual.

4.3 Cyclic codes of parameters [46, 23]₃

For cyclic codes of parameters [46, 23], the factorization of $x^{46} - 1$ yields $12 = 2 \times \binom{4}{2}$ possible generator polynomials of degree $23 = 1 + 2 \times 11$.

$$\begin{aligned} x^{46} - 1 &= (1+x)(2+x)(1+2x+x^2+x^3+2x^4+x^6+x^8+x^{11}) \\ &\quad (2+2x+2x^2+x^3+x^4+2x^6+2x^8+x^{11}) \\ &\quad (2+x^3+x^5+2x^7+2x^8+x^9+x^{10}+x^{11}) \\ &\quad (1+x^3+x^5+2x^7+x^8+x^9+2x^{10}+x^{11}). \end{aligned}$$

The analogue of Table 1 is Table 2 below. For the isodual cyclic codes $[46, 23]_3$ we have:

$$\begin{bmatrix} u^* = \epsilon v \\ v^* = \eta u \end{bmatrix}; \ \epsilon, \quad \eta = \pm 1$$

or

$$u^*(x) = -v^*(x)$$

with

$$\left[\frac{x^{46} - 1}{g(x)}\right]^* = \pm g(-x).$$

The optimum distance of such a cyclic codes is

Proposition 4 *We have* $d_C(46) = 13$ *. Note that* $d_3(46, 23) \in \{14, 15\}$ *.*

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{46}-1}{g(x)}\right]^* =$	wt(a)
222222111100220022000011	102020100000000000000000000000000000000	$u^{*}(x) = -v^{*}(x)$	-g(-x)	6
200202112120101200201221	211100000110000000000000000002000100022000020200			13
100000000000000000000000000000000000000	100000000000000000010000000000000000000	$\begin{bmatrix} u^*(x) = v(x) \\ v^*(x) = u(x) \end{bmatrix}$	g(-x)	2
1222222222222222222222222	110000000000000000002200000000000000000	$\begin{bmatrix} u^*(x) = -v(x) \\ v^*(x) = -u(x) \end{bmatrix}$	g(-x)	4
211201001202012122101001	221210010000000000000000000000000000000			13
22000011001100222111111	101020001000000000000000000000000000000	$u^{*}(x) = -v^{*}(x)$	-g(-x)	6
12121212100120012001200021	102020100000000000000000000000000000000	$u^{*}(x) = -v^{*}(x)$	g(-x)	6
112201002202011112202001	1222200100000000000000000001000002200000200011			13
221212121212121212121211	210000000000000000002100000000000000000	$u^{*}(x) = -v^{*}(x)$	-g(-x)	4
200000000000000000000000000000000000000	100000000000000000000000000000000000000	$\begin{bmatrix} u^*(x) = -v(x) \\ v^*(x) = -u(x) \end{bmatrix}$	-g(-x)	7
100202211110202200102211	221200000210000000000000000000000000000			13
120000210021001212212121	101020001000000000000000000000000000000	$u^{*}(x) = -v^{*}(x)$	g(-x)	6

 Table 2
 Length 46

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{68}-1}{g(x)}\right]^* =$	wt(a)
20101221001001021002021120020020121	2200110022001100			8
20201020102010201020102010201020101	20100002010000			4
22201002001122020022010020011220201	2100210021002100			8
21201001001221010021020020021120201	2200110022001100			8
200000000000000000000000000000000000000	1000200			2
20101122001002011001011220010020111	2100210021002100			8
10102121002012120021201012202101021	200100200100			4
11020220211010222001111020022220101	100100100			4
12010120221010212002121020012120101	200100200100			4
1020202020202020202020202020202020201	1010020200			4
10102222002011110022201011202202011	100100100100			4
100000000000000000000000000000000000000	100100			2

Table 3 Length 68

4.4 Cyclic codes of parameters [68, 34]₃

Likewise the factorization of $x^{68} - 1$ yields 12 possibilities for the generator polynomial of the code.

$$\begin{aligned} x^{68} - 1 &= (1+x)(2+x)(1+x^2)(1+2x+2x^4+2x^5+2x^6+2x^{10} \\ &+x^{11}+2x^{12}+x^{15}+x^{16})(1+x+x^2+x^3+x^4+x^5+x^6 \\ &+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}) \\ &(1+x+2x^4+x^5+2x^6+2x^{10}+2x^{11}+2x^{12}+2x^{15}+x^{16}) \\ &(1+2x+x^2+2x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^{10} \\ &+2x^{11}+x^{12}+2x^{13}+x^{14}+2x^{15}+x^{16}). \end{aligned}$$

The analogue of Table 1 is Table 3. If we take all g(x) that divide $x^{68} - 1$, as indicated in Table 4, we have always:

$$\left[\frac{x^{68}-1}{g(x)}\right]^* \neq \pm g(-x)$$

and

$$\left[\frac{x^{68}-1}{g(x)}\right]^* \neq [-g(-x)]^*.$$

This shows that the isodual cyclic codes of parameters [68, 34]₃ are not isodual by the constructions of the preceding section.

Proposition 5 *We have* $d_C(68) = 8$ *. Note that* $d_3(68, 34) \ge 16$ *.*

i	2	
1	ength)
,	۲	
•	4	
	e	
,	ğ	

Table 4 Length 70				
g(x)	codeword(a)	$\begin{bmatrix} u^*(x) \\ v^*(x) \end{bmatrix}$	$\left[\frac{x^{70}-1}{g(x)}\right]^* =$	wt(a)
102111010000020212012102202110001101	1111020201022201010200	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x)^{*} \end{bmatrix}$	g(-x)	12
122220111010002022100122220020210211	1110201010222010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	12
122222222222222222222222222222222222222	110	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	4
112010110022210102201012220011010211	22001001002200100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	8
112012020022221001220200010111022221	11102020010222010010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	12
101100011202201210212020000010111201	1110201010222010200200	$[u^*(x) = u(x)$ $[v^*(x) = v(-x)^*$	g(-x)	12
111121121012120120100201210012120011	1010101010101010100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	g(-x)	10
10000102022020121122011111022222221	1010101010101010100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
1000002000002000002000002000001	10010200200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	4
122220111102222011110222201111022221	2000010020000100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	4
1222222201111102211210202020100001	10101010.010101010100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
110021210012102001021021210121121111	1010101010101010100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	g(-x)	10
111120021202101010122010121121020011	20201010100102010202010200	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x)^{*} \end{bmatrix}$	g(-x)	12
1000000020000100220101200210122221	1010101010101010101010101010.0	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	14
10000200002000020000200001	1000010020000200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	4
12222220111111022222201111110222221	200100200100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	4
12222101200210102200100000200000001	1010101011010010010101010100100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	14
11002012112101022101010101202120021111	1010200200101002010010200020200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	g(-x)	12
12122210222201210101212210112220021	21002002001002100200100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	g(-x)	10

Table 4 continued

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{70-1}}{g(x)}\right]^* =$	wt(a)
112121201100002002001200021000200001	2100200200100210020020100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]_{*}$	10
112120110022202101101202220011021211	12001001002100200200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	8
100000000000000000000000000000000000000	1001001	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	g(-x)	2

4.5 Cyclic codes of parameters [70, 35]₃

The factorization of $x^{70} - 1$ yields 48 possibilities for the generator polynomial g(x) of degree 35 of the code.

$$\begin{aligned} x^{70} - 1 &= (1+x)(2+x)(1+x+x^2+x^3+x^4)(1+2x+x^2+2x^3+x^4) \\ &\quad (1+x+x^2+x^3+x^4+x^5+x^6)(1+2x+x^2+2x^3+x^4+2x^5+x^6) \\ &\quad (1+2x+2x^2+x^3+2x^4+x^5+x^7+2x^8+x^{10}+x^{12}) \\ &\quad (1+x+2x^2+2x^3+2x^4+2x^5+2x^7+2x^8+x^{10}+x^{12}) \\ &\quad (1+x^2+2x^4+2x^5+2x^7+2x^8+2x^9+2x^{10}+x^{11}+x^{12}) \\ &\quad (1+x^2+2x^4+x^5+x^7+2x^8+x^9+2x^{10}+2x^{11}+x^{12}). \end{aligned}$$

For this codes we have 3 cases:

$$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(x) \end{bmatrix}^{u^{*}} \text{ or } \begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x)^{*} \end{bmatrix}^{u^{*}} \text{ with } \begin{bmatrix} \frac{x^{70} - 1}{g(x)} \end{bmatrix}^{u^{*}} = \pm g(-x)$$

or

$$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x) \end{bmatrix}^{*} = [-g(-x)]^{*}$$

We summarize the parameters of the cyclic codes [70, 35]₃ in Tables 4 and 5 below.

Remark The cyclic codes of parameters [70, 35]₃ are all isodual.

Proposition 6 The optimal minimum distance of the cyclic codes of parameters $[70, 35]_3$ is $d_C(70) = 14$.

4.6 Cyclic codes of parameters [74, 37]₃

The determination of the minimum distance for these codes required in some cases up to 12 hours of CPU time on a PC. The factorisation of $x^{74} - 1$ yields 12 possible choices for a generator polynomial of degree 37.

$$\begin{aligned} x^{74} - 1 &= (1+x)(2+x)(1+2x^2+2x^4+x^5+2x^7+2x^{11}+x^{13}+2x^{14}+2x^{16}\\ &+x^{18})(1+2x^2+2x^4+2x^5+x^7+x^{11}+2x^{13}+2x^{14}+2x^{16}+x^{18})\\ &(1+x+2x^2+2x^3+x^4+2x^5+2x^6+2x^8+2x^9+2x^{10}+2x^{12}\\ &+2x^{13}+x^{14}+2x^{15}+2x^{16}+x^{17}+x^{18})(1+2x+2x^2+x^3+x^4\\ &+x^5+2x^6+2x^8+x^9+2x^{10}+2x^{12}+x^{13}+x^{14}+x^{15}+2x^{16}\\ &+2x^{17}+x^{18}). \end{aligned}$$

The analogue of Table 1 is Table 6.

Proposition 7 We have $d_C(74) = 14$.

 Table 5
 Length 70 continued

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{70}-1}{g(x)}\right]^* =$	wt(a)
1000020001200021002002000011021211	21002001001002100200100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
120022211012212101012102222201222121	21002001001002100200100100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	g(-x)	10
222212201212102220202222110122120011	11001002001002200200100200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	10
20000200011000110010020000210222221	22001002001001100200100200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
200000000000000000000000000000000000000	10020	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	2
211111102100001002002200022000100001	11001002001002200200100200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
220012112022111101011102121201121111	22001002001001100200100200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	10
21211002220220202022102022111020021	20201010101020102002010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	12
22121101100220201200200000100000001	1010101012001010101010101010	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	14
221212102121210212121021212102121211	1001002000200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	4
20000200001000200001000020000100001	200100200100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	4
20000000200000100120101100220221211	10101010101010210101010100100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	14
21001022211101021101010101101110022121	1010202010102010102020200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	12
212111222022220110200201110022220021	1020100201020102010200	$\begin{bmatrix} u^{*}(x) = u(x) \\ v^{*}(x) = v(-x)^{*} \end{bmatrix}$	-g(-x)	10
22121212102121201221110202101020001	102010201020102010.0200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
2212102121021210212102121021210212101	1000010	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	4
2000002000001000002000001000001	2010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	4
200001020210102221120121210212121211	1020100201020102010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	10
210011110022201001022011110111222121	102010201020102010200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	10

D Springer

continued
S
le
q
Ē

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) \end{bmatrix}$	$\left[\frac{x^{70}-1}{g(x)}\right]^* =$	wt(a)
211110210012101101202202120021022221	22001001002200100100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	8
20112101000002022011102101120002101	212010201021201020100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	12
211022020012122001120200010121021211	212010201021201020100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	12
211020210012110102102022120021010221	12010100210200200	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	8
221212121212121212121212121212121211	210	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(x) \end{bmatrix}$	-g(-x)	4
221210212020001012200112120010110221	212010201021201020100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x) \end{bmatrix}$	$[-g(-x)]^*$	12
202100012202102220111010000020212201	212010201021201020100	$\begin{bmatrix} u^*(x) = u(x) \\ v^*(x) = v(-x)^* \end{bmatrix}$	-g(-x)	12

 Table 6
 Length 74

D Springer

g(x)	codeword(a)	$\begin{bmatrix} u^*(x) = \\ v^*(x) = \end{bmatrix}$	$\left[\frac{x^{74}-1}{g(x)}\right]^* =$	wt(a)
11112222112222002222200222221111	1010200020001001001001010020020			11
12222100020202002222002020202000122221	21002002001020010010020100200200012	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	g(-x)	14
100000000000000000000000000000000000000	1001001	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	g(-x)	7
122222222222222222222222222222222222222	11002200	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	g(-x)	4
10000100012002100111100120021000100001	110020020020020011002001101100200	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	g(-x)	14
11002200222200110000001100222200220011	2010100020010020001010200100100	2		11
2121121221121200121212001212211212121	1010200020001001001001010020020			11
20000100011002200121200110022000200001	1200200100200100120020021002100100	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	-g(-x)	14
22121212121212121212121212121212121211	210021002	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	-g(-x)	4
200000000000000000000000000000000000000	100200	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	-g(-x)	2
22121100020210100212100202101000221211	110002002002010010020020100100100022	$\begin{bmatrix} u^* = u \\ v^* = v \end{bmatrix}$	-g(-x)	14
21001200121200210000002100121200120021	2010100020010020001010200100100			11

Acknowledgments The authors thanks the referees for helpful suggestions that greatly improved the presentation of the material. They are very grateful to H. Aissaoui (Telecom ParisTech) for the optimization of the research algorithm of the minimum distance of a cyclic codes C [26, 13]₃.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- Cary Huffman, W., Pless, V.: Fundamentals of Error Correcting Codes. Cambridge University Press, Cambridge (2003)
- Dougherty, S.T., Gulliver, T.A., Harada, M.: Optimal ternary formally self-dual codes. Discrete Math. 196, 117–135 (1999)
- 3. Grassl, M.: Bounds on the minimum distance of linear codes (Electronic table; online). http://www.codetables.de.win/math/dw/voorlincood.html
- MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
- Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998)
- 6. Voloch, J.F.: Computing the minimal distance of cyclic codes. Comp. Appl. Math. 24, 393–398 (2005)