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Abstract We study the scattering problem for the Schrödinger equation on the half-
line with the Robin boundary condition at the origin. We derive an expression for
the trace of the difference of the perturbed and unperturbed resolvent in terms of a
Wronskian. This leads to a representation for the perturbation determinant and to trace
identities of Buslaev–Faddeev type.

1 Introduction

Let H be the self-adjoint operator on L2[0,∞) defined by

H = H0 + V (x), H0 = − d2

dx2 , u′(0) = γ u(0), (1.1)

where γ ∈ R. The potential V is real-valued and goes to zero at infinity (in some aver-
aged sense). Then H has a continuous spectrum on the positive semiaxis and discrete
negative spectrum, consisting of eigenvalues {λ j }. If V decays fast enough, then there
are only finitely many negative eigenvalues.
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398 S. Demirel, M. Usman

The Hamiltonian H describes a one-dimensional particle restricted to the positive
semiaxis. The parameter γ describes the strength of the interaction of the particle with
the boundary. Negative γ correspond to an attractive interaction and positive γ to a
repulsive one.

In this paper we derive trace formulas for the negative eigenvalues of H . Formulas of
this type first appeared in 1953 in the paper of Gel’fand and Levitan [10], where some
identities for the eigenvalues of a regular Sturm–Liouville operator were obtained.
Later, also Dikiı̆ studied similar formulas, see [9]. The next important contribution
in this direction was made by Buslaev and Faddeev [6] in 1960. They studied the
singular Sturm–Liouville operator on the half-line with Dirichlet boundary condition
at the origin. Under some assumptions on the short range potential (i.e. integrable on
(0,∞) with finite first moment), they proved a series of trace identities. The second
one in this series states that

N∑

j=1

|λ j | − 2

π

∞∫

0

⎛

⎝η̃(k) − 1

2k

∞∫

0

V (x) dx

⎞

⎠ k dk = 1

4
V (0), (1.2)

where η̃(k) is the so-called limit phase and has a scattering theoretical nature. A more
precise definition will be given later. This result was extended in 1997 by Rybkin to
long-range potentials (nonintegrable on (0,∞)), [2,20]. Analog formulas for charged
particles were obtained already in 1972 by Yafaev [21].

Trace formulas for the whole line Schrödinger operator as well as their general-
izations to the multi-dimensional case have already been studied extensively (see,
e.g., the surveys [3,4,14,15]). Numerous papers are devoted to the subject of inverse
spectral problems for Schrödinger operators, where trace identities turn out to be a cen-
tral object, see e.g. [1,8,13] and references therein. The first application of sum rules
goes back to Levinson [17] in 1949 when he studied the uniqueness of the potential in
the Schrödinger equation for a given limit phase. In the context of inverse scattering,
the connection between conservation laws for nonlinear evolution equations and trace
formulas was studied in [4,19,23] and in [11] for more general settings. Other trace
formulas in connection with periodic potentials and certain classes of almost periodic
potentials have been important in solving the associated inverse spectral problem, see
[12] and references therein. Finally, we mention that various trace identities are used
also in the area of statistical mechanics and plasma physics, see [4].

An important consequence are the well-known Lieb–Thirring inequalities, which
in dimension one follow from the third Faddeev–Zakharov trace formula, see [23] and
[18]. This formula was extended in [16] by Laptev and Weidl to systems of Schröding-
er operators, which leads to sharp Lieb–Thirring inequalities in all dimensions. These
inequalities provide an upper bound for the moments of the negative eigenvalues of the
corresponding Schrödinger operator and can be extended also to magnetic Schrödinger
operators and Pauli operators. See also [5] for spectral estimates in the case of the half-
line Schrödinger operator. Consequences for the absolutely continuous spectrum of
one-dimensional Schrödinger operators were obtained by Deift and Killip in [7].

Our goal is to prove the analog of the Buslaev–Faddeev trace formulas for the half-
line Schrödinger operator with Robin boundary conditions (1.1). Thereby, we follow
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Trace formulas for Schrödinger operators on the half-line 399

Yafaev’s book “Mathematical Scattering Theory, Analytic Theory” [22], which con-
tains complete proofs in the case of Dirichlet boundary conditions. We aim to point
out the differences arising from the Robin boundary conditions and to give an inter-
pretation for them.

The outline of this paper is as follows. We consider the differential equation

− u′′ + V (x)u = zu, z = ζ 2, (1.3)

where ζ ∈ C and x > 0. We are concerned with two particular solutions of this
equation, the regular solution ϕ and the Jost solution θ . The first one is characterized
by the conditions

ϕ(0, ζ ) = 1, ϕ′
x (0, ζ ) = γ, (1.4)

and the latter one by the asymptotics θ(x, ζ ) ∼ eiζ x as x → ∞.
In Sect. 2 we prove existence and uniqueness of the regular solution. The corre-

sponding properties of the Jost solution are well-known. Further, we introduce a quan-
tity w(ζ ), which we call the Jost function. We emphasize that this function depends
on γ and does not coincide with what is called the Jost function in the Dirichlet case.
More precisely, w(ζ ) is defined as the Wronskian of the regular solution and the Jost
solution of (1.3). It turns out that

w(ζ ) = γ θ(0, ζ ) − θ ′(0, ζ ).

Section 3 contains our first main result. Denoting the resolvents of the unperturbed
and perturbed operators by R0(z) = (H0 − z)−1 and R(z) = (H − z)−1, respectively,
we derive an expression for Tr(R(z) − R0(z)) in terms of the Jost function.

Theorem 1.1 Assume that
∫ ∞

0 |V (x)| dx < ∞. Then

Tr(R0(z) − R(z)) = 1

2ζ

(
ẇ(ζ )

w(ζ )
+ i

γ − iζ

)
, ζ = z1/2, Im ζ > 0. (1.5)

From this relation we get a representation for the perturbation determinant in terms of
w(ζ ).

Section 4 deals with the asymptotic expansion of the perturbation determinant,
which we shall use to derive trace identities in Sect. 5. For complex numbers s, we
define the function

Ms(γ ) :=
{

(−γ )2s if γ < 0,

0 if γ ≥ 0.

Under some regularity and decay assumptions on the potential V we prove infinitely
many trace identities. The analogue to (1.2) will be given by
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N∑

j=1

|λ j | − M1(γ ) − 2

π

∞∫

0

⎛

⎝η(k) − 1

2k

∞∫

0

V (x) dx

⎞

⎠ k dk = −1

4
V (0), (1.6)

where η(k) is now the corresponding limit phase for the Robin boundary problem.
We recall that if γ ≥ 0, then H0 has purely absolutely continuous spectrum [0,∞).
If γ < 0, then H0 has the simple negative eigenvalue −γ 2 and purely absolutely
continuous spectrum on [0,∞). Hence the first two terms on the left-hand side of
(1.6),

∑N
j=1 |λ j | − M1(γ ), correspond to the shift of the discrete spectrum between

H and H0. Similarly, the last term on the left-hand side corresponds to the shift of the
absolutely continuous spectrum. The trace formula (1.6) and its higher order analogs
proved below relate this shift of the spectrum to the potential V .

Finally, in Theorem 5.5 we prove a trace formula of order zero. Namely, the so-called
Levinson formula for the Schrödinger operator H with Robin boundary condition.

2 The regular solution and the Jost solution

In this section, we prove existence and uniqueness of the regular solution and recall
some elementary results on the Jost solution. The γ -dependent Jost function is studied.

2.1 The associated Volterra equation and auxiliary estimates

Existence and uniqueness of the regular solution of (1.3) can be proved by using Vol-
terra integral equations. For different boundary conditions, equation (1.3) is associated
with different Volterra integral equations.

Lemma 2.1 Let V ∈ L(loc)
1 ([0,∞)) and consider equation (1.3) on functions ϕ ∈

C1([0,∞)), such that ϕ′ is absolutely continuous. Then (1.3) with boundary conditions
(1.4) is equivalent to the Volterra equation

ϕ(x, ζ ) = cos(ζ x) + γ

ζ
sin(ζ x) + 1

ζ

x∫

0

sin(ζ(x − y))V (y)ϕ(y, ζ ) dy, (2.1)

considered on locally bounded functions ϕ.

Proof Suppose that equation (1.3) holds for ϕ. Then the equality

x∫

0

ζ−1 sin(ζ(x−y))V (y)ϕ(y, ζ ) dy =
x∫

0

ζ−1 sin(ζ(x−y))
(
ϕ′′(y, ζ )+ζ 2ϕ(y, ζ )

)
dy.

is true. We integrate the right-hand side twice by parts. Taking into account boundary
conditions (1.4), we see that the right-hand side equals ϕ(x, ζ )−cos(ζ x)− γ

ζ
sin(ζ x).
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Trace formulas for Schrödinger operators on the half-line 401

Thus equation (2.1) follows. Conversely, assume that equation (2.1) holds. Then ϕ ∈
C1

loc([0,∞)) and

ϕ′(x, ζ ) = −ζ sin(ζ x) + γ cos(ζ x) +
x∫

0

cos(ζ(x − y))V (y)ϕ(y, ζ ) dy. (2.2)

Therefore ϕ′ is absolutely continuous and

ϕ′′(x, ζ )=−ζ 2 cos(ζ x)−γ ζ sin(ζ x)−ζ

x∫

0

sin(ζ(x − y))V (y)ϕ(y, ζ ) dy. (2.3)

Comparing (2.3) with (2.1), we obtain equation (1.3). Inserting x = 0 in (2.1) and
(2.2) for ϕ(x, ζ ) and ϕ′(x, ζ ), we see that boundary conditions (1.4) are fulfilled. �	

In the following Lemma it is proved that the regular solution ϕ(x, ζ ) of (1.3) with
boundary conditions (1.4) exists uniquely. For the case of Dirichlet boundary condi-
tion, this result was represented e.g. by Yafaev [22].

Lemma 2.2 Let V ∈ L(loc)
1 ([0,∞)). Then for all ζ ∈ C, equation (1.3) has a unique

solution ϕ(x, ζ ) satisfying (1.4). For any fixed x ≥ 0, ϕ(x, ζ ) = ϕ(x,−ζ ) is an entire
function of the variable z = ζ 2. Moreover, for γ 
= 0 we have the estimate

∣∣∣∣ϕ(x, ζ ) − cos(ζ x) − γ

ζ
sin(ζ x)

∣∣∣∣

≤ c̃|γ |xe| Im ζ |x
(

exp

(
c
∫ x

0 |V (y)|(1 + |γ |y) dy

|γ |

)
− 1

)
. (2.4)

If γ = 0, then the estimate

|ϕ(x, ζ ) − cos(ζ x)| ≤ c̃e| Im ζ |x
⎛

⎝exp

⎛

⎝cx

x∫

0

|V (y)| dy

⎞

⎠ − 1

⎞

⎠ (2.5)

holds.

Proof We construct a solution of integral equation (2.1), which by Lemma 2.1 is
equivalent to the solution of (1.3). Set ϕ0(x, ζ ) = cos(ζ x) + γ

ζ
sin(ζ x),

ϕn+1(x, ζ ) =
x∫

0

ζ−1 sin(ζ(x − y))V (y)ϕn(y, ζ ) dy, n ≥ 0. (2.6)

Inductively one shows that all ϕn(x, ζ ) are entire functions of ζ 2. First, we consider
the case when γ 
= 0. Using the estimates
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∣∣∣∣
sin(ζ(x − y))

ζ

∣∣∣∣ ≤ c|x − y|e| Im ζ |(x−y) and
∣∣∣∣cos(ζ x) + γ

ζ
sin(ζ x)

∣∣∣∣ ≤ c̃e| Im ζ |x (1 + |γ |x), (2.7)

we obtain

|ϕ1(x, ζ )| ≤ cc̃xe| Im ζ |x
x∫

0

|V (y)|(1 + |γ | y) dy.

Successively, we have or all n ≥ 1,

|ϕn(x, ζ )| ≤ cnc̃

n! |γ |n−1 xe| Im ζ |x
⎛

⎝
x∫

0

|V (y)|(1 + |γ | y) dy

⎞

⎠
n

, (2.8)

which follows by an induction argument. Indeed, it follows from (2.6), (2.7) and (2.8)
that

|ϕn+1(x, ζ )| ≤ cn+1c̃

n! |γ |n−1 e| Im ζ |x
x∫

0

(x − y)y|V (y)|
⎛

⎝
y∫

0

|V (t)|(1 + |γ | t) dt

⎞

⎠
n

dy.

(2.9)

As |γ | > 0, we have y ≤ |γ |−1 (1 +|γ |y). Thus, the right-hand side in equation (2.9)
is bounded by

cn+1c̃

n!|γ |n e| Im ζ |x
x∫

0

(1 + |γ |y)(x − y)|V (y)|
⎛

⎝
y∫

0

|V (t)|(1 + |γ |t) dt

⎞

⎠
n

dy,

which is the same as

cn+1c̃

n!|γ |n e| Im ζ |x
x∫

0

(x − y)

n + 1

d

dy

⎛

⎝
y∫

0

|V (t)|(1 + |γ |t) dt

⎞

⎠
n+1

dy.

Finally, the last term is bounded from above by

cn+1c̃

(n + 1)!|γ |n e| Im ζ |x x

⎛

⎝
x∫

0

|V (y)|(1 + |γ |y) dy

⎞

⎠
n+1

.
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Thus, the limit

ϕ(x, ζ ) := lim
N→∞

N∑

n=0

ϕn(x, ζ ) (2.10)

exists uniformly for bounded ζ , x and |γ | > 0. Putting together definitions (2.6) and
(2.10), we see that

N∑

n=0

ϕn(x, ζ ) = cos(ζ x) + γ

ζ
sin(ζ x) − ϕN+1(x, ζ )

+
x∫

0

ζ−1 sin(ζ(x − y))V (y)

(
N∑

n=0

ϕn(y, ζ )

)
dy.

From this equation, we obtain in the limit N → ∞ equation (2.1). To prove estimate
(2.4), we consider

∣∣∣∣ϕ(x, ζ ) − cos(ζ x) − γ

ζ
sin(ζ x)

∣∣∣∣ =
∣∣∣∣∣ lim
N→∞

N∑

n=1

ϕn(x, ζ )

∣∣∣∣∣ . (2.11)

Because of (2.8), the right-hand side in (2.11) is bounded from above by

c̃|γ |xe| Im ζ |x
∞∑

n=1

1

n!

(
c
∫ x

0 |V (y)|(1 + |γ |y) dy

|γ |

)n

= c̃|γ |xe| Im ζ |x
(

exp

(
c
∫ x

0 |V (y)|(1 + |γ |y) dy

|γ |

)
− 1

)
.

If γ = 0, then we use the same estimates (2.7) and get successively,

|ϕn(x, ζ )| ≤ cnc̃xn

n! e| Im ζ |x
⎛

⎝
x∫

0

|V (y)| dy

⎞

⎠
n

.

From this estimate it follows that

|ϕ(x, ζ ) − cos(ζ x)| ≤ c̃e| Im ζ |x
∞∑

n=1

1

n!

⎛

⎝cx

x∫

0

|V (y)| dy

⎞

⎠
n

= c̃e| Im ζ |x
⎛

⎝exp

⎛

⎝cx

x∫

0

|V (y)| dy

⎞

⎠ − 1

⎞

⎠ ,
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404 S. Demirel, M. Usman

which proves estimate (2.5). The uniqueness of a bounded solution of equation (2.1)
can be proved by contradiction. Suppose that ϕ1 and ϕ2 are two different solutions
of equation (2.1). Then ϕ1 − ϕ2 satisfies the corresponding homogeneous equation
and is bounded for an arbitrary n, by the right-hand side of (2.8) and hence is zero.
Therefore ϕ1 = ϕ2. �	

2.2 The Jost solution and the Jost function

The so-called Jost solution, which was first studied by Jost, is important in scattering
theory. This solution of equation (1.3) is characterized by the asymptotics θ(x, ζ ) ∼
eiζ x as x → ∞. It is proved, e.g., in [22], that under the assumption

∞∫

0

|V (x)| dx < ∞, (2.12)

equation (1.3) has for all ζ 
= 0, Im ζ > 0, a unique solution θ(x, ζ ) satisfying as
x → ∞ the conditions

θ(x, ζ ) = eiζ x (1 + o(1)), θ ′(x, ζ ) = iζeiζ x (1 + o(1)). (2.13)

For any fixed x ≥ 0, the function θ(x, ζ ) is analytic in ζ in the upper half-plane
Im ζ > 0 and continuous in ζ up to the real axis with a possible exception of the point
ζ = 0. Moreover, it satisfies the estimates

|θ(x, ζ ) − eiζ x | ≤ e− Im ζ x

⎛

⎝exp(|ζ |−1

∞∫

x

|V (y)| dy) − 1

⎞

⎠

and consequently, for |ζ | ≥ c > 0,

|θ(x, ζ ) − eiζ x | ≤ C |ζ |−1e− Im ζ x

∞∫

x

|V (y)| dy, (2.14)

where C depends on c and the value of the integral (2.12) only. We will need an analog
of estimate (2.14) for the derivative of the Jost solution.

Lemma 2.3 Assume condition (2.12) and ζ 
= 0, Im ζ > 0. Then for the derivative
of the solution θ(x, ζ ) with asymptotics (2.13), the following estimate holds

|θ ′(x, ζ ) − iζeiζ x | ≤ e− Im ζ x |ζ |
⎛

⎝exp

⎛

⎝|ζ |−1

∞∫

x

|V (y)| dy

⎞

⎠ − 1

⎞

⎠ . (2.15)
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Trace formulas for Schrödinger operators on the half-line 405

Moreover, for |ζ | ≥ k > 0, we have

|θ ′(x, ζ ) − iζeiζ x | ≤ K e− Im ζ x

∞∫

x

|V (y)| dy, (2.16)

where K depends only on k and the value of the integral (2.12).

The proof of this Lemma follows closely the arguments of [22]. For the sake of
completeness, we provide the necessary modifications in the appendix.

Next, we study some properties of the γ -dependent Jost function. Below we suppose
that condition (2.12) is satisfied and that Im ζ ≥ 0.

Definition 2.4 We denote by

w(ζ ) := ϕ′(x, ζ )θ(x, ζ ) − θ ′(x, ζ )ϕ(x, ζ ) (2.17)

the Wronskian of the regular solution and the Jost solution of the Schrödinger equation
(1.3). The Wronskian w(ζ ) is called Jost function.

Setting x = 0 in (2.17), we see that

w(ζ ) = γ θ(0, ζ ) − θ ′(0, ζ ). (2.18)

This is the definition of w(ζ ) that was used in the introduction. The Jost function w(ζ )

is analytic in ζ in the upper halfplane Im ζ > 0 and is continuous in ζ up to the real
axis, with a possible exception of the point ζ = 0. Moreover, it follows from (2.14)
and (2.16) that

w(ζ ) = −iζ + O(1), |ζ | → ∞, Im ζ ≥ 0. (2.19)

Remark 2.5 Usually, in the literature the Wronskian wD of the Jost solution and the
regular solution satisfying a Dirichlet boundary condition is called Jost function.
In our case of Robin boundary condition (1.4), the Wronskian differs from the usual
one and depends on γ . We emphasize, that for every γ ∈ R, the function w(ζ ) grows
linearly in ζ as |ζ | → ∞, whereas in the Dirichlet case we have for the corresponding
Jost function wD(ζ ) = 1 + O(|ζ |−1), |ζ | → ∞.

Our next goal is to give an integral representation for w(ζ ).

Lemma 2.6 For Im ζ ≥ 0, ζ 
= 0, the following representation for the Jost function
holds

w(ζ ) = γ − iζ +
∞∫

0

eiζ y V (y)ϕ(y, ζ ) dy. (2.20)
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406 S. Demirel, M. Usman

The proof of this Lemma relies on the following formula. For Im ζ > 0,

lim
x→∞ eiζ x (

ϕ′(x, ζ ) − iζϕ(x, ζ )
) = w(ζ ). (2.21)

To show this, one can introduce, as in [22], for all ζ with Im ζ > 0 a solution of
equation (1.3), which is linearly independent of θ(x, ζ ). Set

τ(x, ζ ) = −2iζθ(x, ζ )

x∫

x0

θ(y, ζ )−2 dy, x ≥ x0,

where x0 = x0(ζ ) is chosen such that θ(x, ζ ) 
= 0 for all x ≥ x0. Then τ(x, ζ )

satisfies equation (1.3) and according to (2.13),

τ(x, ζ ) = e−iζ x (1 + o(1)), τ ′(x, ζ ) = −iζe−iζ x (1 + o(1)),

as x → ∞. Since W {θ(ζ ), τ (ζ )} = 2iζ , we find that

ϕ(x, ζ ) = 1

2iζ

(
(γ τ(0, ζ ) − τ ′(0, ζ ))θ(x, ζ ) − (γ θ(0, ζ ) − θ ′(0, ζ ))τ (x, ζ )

)
.

(2.22)

Equation (2.21) now follows from (2.22). Given (2.21), we can prove Lemma 2.6.

Proof of Lemma 2.6 The differential equation (1.3) implies that

x∫

0

eiζ y V (y)ϕ(y, ζ ) dy =
x∫

0

eiζ yϕ′′(y, ζ ) dy + ζ 2

x∫

0

eiζ yϕ(y, ζ ) dy.

We integrate the first integral in the right-hand side twice by parts and get

x∫

0

eiζ y V (y)ϕ(y, ζ ) dy = eiζ x (
ϕ′(x, ζ ) − iζϕ(x, ζ )

) − γ + iζ.

Passing to the limit x → ∞ in the above equation and using (2.21), we arrive at (2.20)
for Im ζ > 0. By continuity, (2.20) can be extended to the real axis. �	

As the Jost solution of equation (1.3) is unique, it follows that

θ(x, ζ ) = θ(x,−ζ ), θ ′(x, ζ ) = θ ′(x,−ζ ) and hence w(ζ ) = w(−ζ ). (2.23)

For real numbers k > 0 both Jost solutions θ(x, k) and θ(x,−k) of the equation

− u′′ + V (x)u = k2u, k > 0, (2.24)
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Trace formulas for Schrödinger operators on the half-line 407

are correctly defined and their Wronskian W {θ(·, k), θ(·,−k)} equals 2ik. Thus, they
are linearly independent. In particular, we get from (2.23),

θ(x,−k) = θ(x, k) and hence w(−k) = w(k). (2.25)

It is useful to express the regular solution in terms of the Jost solutions as follows,

ϕ(x, k) = 1

2ik
(θ(x, k)w(−k) − θ(x,−k)w(k)) . (2.26)

Indeed, it is easy to verify that the right-hand side of (2.26) satisfies equation (2.24)
and conditions (1.4).

Now, we introduce the limit amplitude and phase shift for real values of k.

Definition 2.7 Set

w(k) = a(k)eiη(k)(γ − ik), a(k) = |w(k)|√
γ 2 + k2

. (2.27)

The functions a(k) and η(k) are called the limit amplitude and the limit phase, respec-
tively.

These functions determine the asymptotics of the regular solution of the Schröding-
er equation as x → ∞. Indeed, comparing (2.13) and (2.26), we find

ϕ(x, k) = 1

2ik

(
eikxw(−k) − e−ikxw(k)

)
+ o(1), x → ∞.

Furthermore,

w(−k) = w(k) = a(k)e−iη(k)(γ + ik).

Thus,

ϕ(x, k) = a(k)
1

2ik

(
(γ + ik)ei(kx−η(k)) − (γ − ik)e−i(kx−η(k))

)
+ o(1), x → ∞.

This asymptotic behavior should be compared with the exact expression for the solu-
tion ϕ0(x, ζ ) of the equation −ϕ′′ = ζ 2ϕ satisfying the conditions (1.4), namely,

ϕ0(x, ζ ) = (2iζ )−1((γ + iζ )eiζ x − (γ − iζ )e−iζ x ).

Finally, we note that

w(k) 
= 0 for all k > 0. (2.28)

Indeed, if there was a number k such that w(k) = 0, then it would follow from relations
(2.25) and (2.26) that ϕ(x, k) = 0 for all x .
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3 A trace formula and the perturbation determinant

We consider the Hamiltonian

H = − d2

dx2 + V (x), V = V , (3.1)

with boundary condition (1.4) in the space L2(R+). More precisely, H is defined
through the quadratic form

∞∫

0

(
|u′(x)|2 + V (x)|u(x)|2

)
dx + γ |u(0)|2

with form domain H1(R+). By H0 = − d2

dx2 we denote the free Hamiltonian with
the same boundary condition (1.4) but with V ≡ 0. The resolvents of H and H0 are
denoted by R(z) and R0(z), respectively.

In this section, we derive an expression for Tr (R(z) − R0(z)) in terms of the Jost
function. From this relation we get a representation for the perturbation determinant.

It is a well-known fact that R(z) can be constructed in terms of solutions ϕ(x, ζ )

and θ(x, ζ ) of equation (1.3) and their Wronskian (2.17). Suppose that (2.12) holds.
Then for all z such that Im z 
= 0 and w(ζ ) 
= 0, the resolvent is the integral operator
with kernel

R(x, y; z) = w−1(ζ )ϕ(x, ζ )θ(y, ζ ), x ≤ y, ζ = z1/2, (3.2)

and R(x, y; z) = R(y, x; z). Moreover, the estimate

|R(x, y; z)| ≤ c|w(ζ )|−1|ζ |−1 exp(− Im ζ |x − y|)

holds. We note that in the particular case V ≡ 0, the unperturbed resolvent R0(z) has
the integral kernel

R0(x, y; z)= R0(y, x; z)= ((γ + iζ )eiζ x − (γ − iζ )e−iζ x )eiζ y

2iζ(γ −iζ )
, x ≤ y. (3.3)

The self-adjoint operator H has discrete negative spectrum, which consists of nega-
tive eigenvalues λ j =(iκ j )

2, κ j >0, which possibly accumulate at zero. It is important
to note that the zeros of the function w(ζ ) and the eigenvalues of H are related as
follows.

Lemma 3.1 Complex zeros of the function w(ζ ) are simple and lie on the imagi-
nary axis. Moreover, w(ζ ) = 0 if and only if λ = ζ 2 is a negative eigenvalue of the
operator H.
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Proof First, assume that w(ζ ) = 0 for Im ζ > 0. Then the Jost function θ(x, ζ )

fulfills boundary conditions (1.4) and is in the space L2(R+) because of (2.13) and
the positive imaginary part of ζ . Thus θ(x, ζ ) is an eigenfunction of the operator H
corresponding to the eigenvalue λ = ζ 2. Since H is self-adjoint, it follows that λ < 0.
Conversely, assume that λ is an eigenvalue of H . Then its resolvent R(z) has a pole
in λ. Therefore, it follows from (3.2) that w(ζ ) = 0. As the resolvent of a self-adjoint
operator has only simple poles, the zeros of w(ζ ) are simple. �	
Remark 3.2 It follows from the properties of the regular solution and Jost solution,
that the resolvent kernel (3.2) is an analytic function in the upper half-plane Im ζ > 0,
except for simple poles at eigenvalues of H . In view of (2.28), the resolvent kernel is
a continuous function of z up to the cut along [0,∞) with the possible exception of
the point z = 0.

Proposition 3.3 Assume condition (2.12), then

Tr(R0(z) − R(z)) = 1

2ζ

(
ẇ(ζ )

w(ζ )
+ i

γ − iζ

)
, ζ = z1/2, Im ζ > 0. (3.4)

Proof Since R − R0 is a trace class operator and kernels of the operators R and R0
are continuous functions, we have

Tr(R(z) − R0(z)) = lim
x→∞

x∫

0

(R(y, y; z) − R0(y, y; z)) dy. (3.5)

Using (3.3), we first compute

2ζ

x∫

0

R0(y, y; z) dy = 1

i(γ − iζ )

(
γ + iζ

2iζ
e2iζ x − (γ − iζ )x − γ + iζ

2iζ

)
. (3.6)

The following equation is true for any two arbitrary solutions of equation (1.3)

2ζϕ(x, ζ )θ(x, ζ ) = (ϕ′(x, ζ )θ̇ (x, ζ ) − ϕ(x, ζ )θ̇ ′(x, ζ ))′. (3.7)

Applying (3.7) to the regular solution ϕ(x, ζ ) and the Jost solution θ(x, ζ ), we get

2ζw(ζ )

x∫

0

R(y, y; z) dy = 2ζ

x∫

0

ϕ(y, ζ )θ(y, ζ ) dy

= [
ϕ′(y, ζ )θ̇ (y, ζ ) − ϕ(y, ζ )θ̇ ′(y, ζ )

]x
0 . (3.8)

Note that the contribution of the right-hand side in (3.8) for y = 0 is

ϕ′(0, ζ )θ̇ (0, ζ ) − ϕ(0, ζ )θ̇ ′(0, ζ ) = γ θ̇(0, ζ ) − θ̇ ′(0, ζ ) = ẇ(ζ ). (3.9)
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Consider now the case of potentials of compact support. Then, for all ζ ∈ C, we have
θ(x, ζ ) = eiζ x for sufficiently large x . Further, in this case we can generalize (2.26)
to complex ζ , namely

ϕ(x, ζ ) = 1

2iζ
(θ(x, ζ )w(−ζ ) − θ(x,−ζ )w(ζ )) . (3.10)

For large x we have,

θ(x, ζ ) = eixζ , θ ′(x, ζ ) = iζeixζ , θ̇ (x, ζ ) = i xeixζ , θ̇ ′(x, ζ ) = (i − xζ )eixζ .

Taking into account, that since Im ζ > 0, the terms containing e2i xζ tend to zero as
x → ∞ and using (3.10), we get for sufficiently large x

ϕ′(x, ζ )θ̇ (x, ζ ) − ϕ(x, ζ )θ̇ ′(x, ζ ) = (i x + (2ζ )−1)w(ζ ) + o(1). (3.11)

Combining (3.9) and (3.11), we arrive at

2ζ

x∫

0

R(y, y; z) dy = i x + 1

2ζ
− ẇ(ζ )

w(ζ )
+ o(1). (3.12)

Finally, we conclude from (3.6) and (3.12) that

lim
x→∞

x∫

0

(R0(y, y; z) − R(y, y; z)) dy = 1

2ζ

(
ẇ(ζ )

w(ζ )
+ i

γ − iζ

)
+ o(1).

This proves (3.4) for compactly supported potentials V . By density arguments (see
[22, Prop. 4.5.3]) based on the fact, that

√|V |(H0 +1)−1/2 is a Hilbert-Schmidt oper-
ator under condition (2.12), the result can be extended to all potentials V satisfying
this condition. �	

We conclude this section by relating the Jost function to the perturbation deter-
minant. Since

√|V |(H0 + 1)−1/2 is a Hilbert-Schmidt operator, the operator√
V R0(z)

√|V | is a trace class operator (here
√

V := (sgn V )
√|V |) and therefore

the (modified) perturbation determinant

D(z) := det(1 + √
V R0(z)

√|V |), z ∈ ρ(H0)

is well-defined. Here ρ(H0) denotes the resolvent set of the operator H0. Furthermore,
it can easily be verified that the perturbation determinant is related to the trace of the
resolvent difference by

D′(z)
D(z)

= Tr(R0(z) − R(z)), z ∈ ρ(H0) ∩ ρ(H).
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Thus, it follows from (3.4) that

D′(z)
D(z)

= 1

2ζ

d

dζ
(ln w(ζ ) − ln(γ − iζ )) = 1

2ζ

d

dζ
ln

(
w(ζ )

γ − iζ

)
=

(
w(

√
z)

γ−i
√

z

)′

(
w(

√
z)

γ−i
√

z

) .

Therefore, we conclude that D(z) = Cw(
√

z)/(γ − i
√

z). Because of the asymptotics
(2.19), it follows that

D(z) = w(
√

z)

γ − i
√

z
.

This is the sought after relation.

4 Low and high-energy asymptotics

Here we derive an asymptotic expansion of the perturbation determinant D(ζ ) as
|ζ | → ∞.

4.1 High-energy asymptotics

In this subsection, we assume that V ∈ C∞(R+) and that

|V ( j)(x)| ≤ C j (1 + x)−ρ− j , ρ ∈ (1, 2], j ∈ N0. (4.1)

The asymptotic expansion of the Jost solution θ(x, ζ ) for |ζ | → ∞ can be found, e.g.,
in [22]. Thereby, it is more convenient to consider the function b(x, ζ ) defined by

b(x, ζ ) := e−i xζ θ(x, ζ ). (4.2)

Note that equation (1.3) for θ(x, ζ ) is equivalent to the equation

− b′′(x, ζ ) − 2iζb′(x, ζ ) + V (x)b(x, ζ ) = 0. (4.3)

It follows from (4.2) that asymptotics (2.13) and the asymptotics

b(x, ζ ) = 1 + o(1), b′(x, ζ ) = o(1), x → ∞, (4.4)

are equivalent to each other. For an arbitrary N , the equality

b(x, ζ ) =
N∑

n=0

bn(x)(2iζ )−n + rN (x, ζ ) (4.5)
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holds with the remainder satisfying the estimates

|∂ j rN (x, ζ )/∂x j | ≤ CN , j |ζ |−N−1(1 + |x |)−(N+1)(ρ−1)− j , j ∈ N0,

for all x ≥ 0 and Im ζ ≥ 0, |ζ | ≥ c > 0. Here b0(x) = 1 and bn(x) are real C∞
functions defined by the recurrent relation

bn+1(x) = −b′
n(x) −

∞∫

x

V (y)bn(y) dy.

Further the following estimates hold,

b( j)
n (x) = O(x−n(ρ−1)− j ), j ∈ N0, x → ∞.

Now, we can prove the asymptotic expansion of the perturbation determinant for
|ζ | → ∞.

Lemma 4.1 Suppose V ∈ C∞(R+) and (4.1). Then the perturbation determinant
admits the expansion in the asymptotic series

D(ζ ) =
∞∑

n=0

dn(2iζ )−n, (4.6)

as |ζ | → ∞, Im ζ ≥ 0. The coefficients dn are given by

d0 = 1, dn := bn(0) + 2
n−1∑

m=1

b′
m(0)(2γ )n−m−1, n ≥ 1. (4.7)

We emphasize that expansion (4.6) is understood in the sense of an asymptotic series.

Proof It follows from (4.5) that

b′(x, ζ )+(iζ −γ )b(x, ζ )

iζ −γ
= 1

iζ −γ

∞∑

n=0

b′
n(x)(2iζ )−n +

∞∑

n=0

bn(x)(2iζ )−n . (4.8)

Applying the geometric series to the first sum in the right-hand side of (4.8) for
|ζ | > γ , we conclude

b′(x, ζ )+(iζ −γ )b(x, ζ )

iζ −γ
=b0(x)+

∞∑

n=1

(
bn(x)+2

n−1∑

m=0

b′
m(x)(2γ )n−m−1

)
(2iζ )−n .

(4.9)
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On the other hand, it is easy to see that

b′(x, ζ ) + (iζ − γ )b(x, ζ ) = e−iζ x (θ ′(x, ζ ) − γ θ(x, ζ )) (4.10)

Thus, setting x = 0 and combining (4.9) with (4.10), we arrive at (4.6). �	
Note that because of (2.19), we have for |ζ | → ∞, Im ζ ≥ 0,

D(ζ ) = w(ζ )

γ − iζ
= 1 + O(|ζ |−1). (4.11)

Thus, we can fix the branch of the function ln D by the condition ln D(ζ ) → 0 as
|ζ | → ∞. The following Corollary is an immediate consequence of Lemma 4.1.

Corollary 4.2 Suppose V ∈ C∞(R+) and (4.1). Then for |ζ | → ∞, Im ζ ≥ 0, we
have

ln D(ζ ) =
∞∑

n=1


n(2iζ )−n,

where the coefficients 
n are given by


1 := d1, 
n := dn − n−1
n−1∑

j=1

jdn− j
 j , n ≥ 2. (4.12)

The first coefficients 
n work out to be


1 = −
∞∫

0

V (x) dx, 
2 = V (0), 
3 = 4γ V (0) − V ′(0) +
∞∫

0

V 2(x) dx,


4 = V ′′(0) − 2V 2(0) − 4γ V ′(0) + 8γ 2V (0).

From (2.27) it follows for k ∈ R that

ln D(k) = ln

(
w(k)

γ − ik

)
= ln a(k) + iη(k).

Separating in Corollary 4.2 the function ln D(k) into its real and imaginary part, we
finally conclude, that for k → ∞,

ln a(k) =
∞∑

n=1

(−1)n
2n(2k)−2n, (4.13)

η(k) =
∞∑

n=0

(−1)n+1
2n+1(2k)−2n−1.
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4.2 Low-energy asymptotics

In this section we assume that

∞∫

0

(1 + x)|V (x)| dx < ∞. (4.14)

We denote the regular solution for ζ = 0 by ϕ(x). This is the solution of the integral
equation (2.1),

ϕ(x) = 1 + xγ +
x∫

0

(x − y)V (y)ϕ(y) dy. (4.15)

This solution exists under condition (2.12). As shown in [22], the stronger condition
(4.14) guarantees the existence of a Jost solution θ(x, ζ ) at ζ = 0. For any fixed x ≥ 0,
the Jost solution θ(x, ζ ) is continuous as ζ → 0, Im ζ ≥ 0. Moreover,

|θ(x, ζ ) − eiζ x | ≤ e− Im ζ x

⎛

⎝exp

⎛

⎝C

∞∫

x

y|V (y)| dy

⎞

⎠ − 1

⎞

⎠ ,

where C does not depend on ζ and x . The function θ(x) := θ(x, 0) = θ(x, 0) satisfies
the equation

− u′′ + V (x)u = 0 (4.16)

and, as x → ∞,

θ(x)=1 + O

⎛

⎝
∞∫

x

y|V (y)| dy

⎞

⎠=1 + o(1), θ ′(x)= O

⎛

⎝
∞∫

x

|V (y)| dy

⎞

⎠=o(x−1).

(4.17)

Indeed, asymptotics (4.17) follow from the integral equation (.18) for ζ = 0, namely,

θ(x) = 1 +
∞∫

x

(y − x)V (y)θ(y) dy.

One can also show that the Jost function w(ζ ) is continuous as ζ → 0, Im ζ ≥ 0,
and from (2.20) we get for ζ = 0

w(0) = γ +
∞∫

0

V (y)ϕ(y) dy. (4.18)
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If (4.14) holds, then the integral in (4.18) is convergent, in view of the estimate

|ϕ(x, 0) − 1| ≤ ĉγ x,

following from (2.4). Moreover, we have w(0) = w(0).
After these preliminaries we claim that the operator H has no zero eigenvalue.

Indeed, the function defined by

τ(x) = θ(x)

x∫

x0

θ(y)−2 dy, x ≥ x0,

is a solution of equation (4.16) and is linearly independent of θ(x). Again, x0 is an
arbitrary point such that θ(x) 
= 0 for x ≥ x0. Further,

τ(x) = x + o(x), τ ′(x) = 1 + o(1) as x → ∞ and W {θ, τ } = −1.

Thus, the equation (4.16) does not have solutions, tending to zero at infinity, as claimed.
While the operator does not have a zero eigenvalue, it may have a so-called zero

resonance.

Definition 4.3 Under assumption (4.14), one says that the operator H has a resonance
at ζ = 0 if w(0) = 0.

Since the Jost function is the Wronskian of the Jost and the regular solution, the
resonance condition means that ϕ is a multiple of θ and therefore that equation (4.16)
has a bounded solution satisfying boundary condition (1.4).

Now, we want to analyze the behavior of the Jost function w(ζ ) as ζ → 0. More
precisely, we want to show, that if w(0) = 0, then it vanishes not faster than linearly.
In order to prove this, we need the following technical Lemma.

Lemma 4.4 Assume (4.14) and let w(0) = 0. Then

|ϕ(x, ζ ) − ϕ(x)| ≤ C |ζ |xeIm ζ x , Im ζ ≥ 0. (4.19)

Proof We set �(x, ζ ) = ϕ(x, ζ ) − ϕ(x) and

�0(x, ζ ) = cos(ζ x) + γ

ζ
sin(ζ x) − 1 − xγ −

x∫

0

(x − y)V (y)ϕ(y) dy

+
x∫

0

ζ−1 sin(ζ(x − y))V (y)ϕ(y) dy. (4.20)

It follows from (2.1) and (4.15) that

�(x, ζ ) = �0(x, ζ ) +
x∫

0

ζ−1 sin(ζ(x − y))V (y)�(y, ζ ) dy.
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We first prove that

|�0(x, ζ )| ≤ C |ζ |xeIm ζ x . (4.21)

Note that the condition w(0)=0 is equivalent to the condition
∫ ∞

0 V (y)ϕ(y) dy =−γ .
Therefore, we can rewrite (4.20) as

�0(x, ζ ) = cos(ζ x) − 1 − (ζ−1 sin(ζ x) − x)

∞∫

x

V (y)ϕ(y) dy

+
x∫

0

K (x, y, ζ )V (y)ϕ(y) dy, (4.22)

where

K (x, y, ζ ) = −ζ−1 sin(ζ x) + y + ζ−1 sin(ζ(x − y)).

The third and fourth term in the right-hand side of (4.22) are bounded from above
by C |ζ |xeIm ζ x . This follows in the same way as shown in [22], which only uses that
ϕ(x) is bounded. It remains to give an estimate for the first and second term in (4.22),
which we write as

cos(ζ x) − 1 = −2 sin2(ζ x/2).

Using the estimates

| sin(ζ x/2)| ≤ ce| Im ζ |x/2 and | sin(ζ x/2)| ≤ c|ζ |xe| Im ζ |x/2,

we get

| cos(ζ x) − 1| ≤ c|ζ |xe| Im ζ |x .

Thus, we conclude (4.21). This inequality implies (4.19) by Gronwall’s Lemma exactly
as in [22, Lemma 4.3.6]. �	
Proposition 4.5 Under the assumption (4.14) and w(0) = 0 we have the following
asymptotics for the Jost function,

w(ζ ) = −iw0ζ + o(ζ ), ζ → 0, (4.23)

where w0 = 1 − ∫ ∞
0 yV (y)ϕ(y) dy 
= 0.

Proof Since w(0) = 0, we have
∫ ∞

0 V (y)ϕ(y) dy = −γ and therefore it follows
from representation(2.20) that
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w(ζ ) =
∞∫

0

(
eiζ xϕ(x, ζ ) − ϕ(x)

)
V (x) dx − iζ

= −iw0ζ +
∞∫

0

(
eiζ x − 1 − iζ x

)
ϕ(x)V (x) dx

+
∞∫

0

eiζ x (ϕ(x, ζ ) − ϕ(x)) V (x) dx . (4.24)

It can be shown as follows that both integrals in the right-hand side of (4.24) are o(ζ )

as ζ → 0. Since the function eiζ x − 1 − iζ x is bounded by C |ζ |x and is O(|ζ |2) for
all fixed x , it follows that the first integral in the right-hand side is o(ζ ) as ϕ(x) is a
bounded function. The second integral in the right-hand side of (4.24) is also o(ζ ).
Indeed it follows from Lemma 4.4 that the function eiζ x (ϕ(x, ζ ) − ϕ(x)) is bounded
by C |ζ |x and further it is O(|ζ |2) for all fixed x as the function ϕ is analytic in ζ 2.
Thus the asymptotics (4.23) holds.

In order to prove that w0 
= 0, we use equation (4.15) to write

ϕ(x) = x

⎛

⎝γ +
∞∫

0

V (y)ϕ(y) dy

⎞

⎠ + w0 − x

∞∫

x

V (y)ϕ(y) dy +
∞∫

x

yV (y)ϕ(y) dy

= w0 + o(1)

as x → ∞. On the other hand, ϕ is proportional to θ , which satisfies (4.17). This
shows that w0 
= 0, as claimed. �	

5 Trace identities

We now put the material from the previous sections together to prove our main result,
namely, a family of trace formulas for the operator H . These identities provide a rela-
tion between the shift of the spectra between H and H0 and quantities involving the
potential V . The spectral shift consists of two parts, one coming from the discrete
spectrum (expressed in terms of the eigenvalues of H and H0) and the other one
coming from the continuous spectrum (expressed in terms of the quantities η and a).

In this section we assume that
∫ ∞

0 (1 + x)|V (x)| dx < ∞ which guarantees that
H has only a finite number N of negative eigenvalues λ1, . . . , λN . We recall that H0
has a single negative eigenvalue −γ 2 if γ < 0 and no negative eigenvalues if γ ≥ 0.
We also recall that Ms(γ ) was defined at the end of the introduction.

While we are mainly interested in trace formulas of integer and half-integer order,
we prove a version of these formulas for every complex s with Re s > 0. We proceed
by analytic continuation, where the starting point is the following proposition.
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Proposition 5.1 Suppose that (4.14) holds and define for s ∈ C, 0 < Re s < 1/2, the
functions

F(s) :=
∞∫

0

ln a(k)k2s−1 dk, G(s) :=
∞∫

0

η(k)k2s−1 dk. (5.1)

Then

π

2s

N∑

j=1

|λ j |s − π

2s
Ms(γ ) = sin(πs)F(s) − cos(πs)G(s). (5.2)

Proof Let �R,ε be the contour (with counterclockwise direction) which consists of
the halfcircles C+

R = {|ζ | = R, Im ζ ≥ 0} and C+
ε = {|ζ | = ε, Im ζ ≥ 0} and the

intervals (ε, R) and (−R,−ε), see Fig. 1.
The argument of ζ ∈ C is fixed by the condition 0 ≤ arg ζ ≤ π . We consider the

integral

∫

�R,ε

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s dζ.

The set of the singularities of the integrand is the set of zeros of the function w(ζ )/(γ −
iζ ).

Calculating the integral by residues, we see that for κ j = |λ j |1/2

∫

�R,ε

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s dζ = 2π i
N∑

j=1

Resζ=iκ j

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s

−2π i

⎧
⎪⎨

⎪⎩
Resζ=−iγ

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s, if γ < 0

0, if γ ≥ 0.

(5.3)

Fig. 1 Contour of integration
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Since by Lemma 3.1, zeros iκ j of w(ζ ) are simple, the residues work out to be eiπsκ2s
j .

Hence,

∫

�R,ε

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s dζ = 2π i eiπs
N∑

j=1

κ2s
j − 2π i eiπs Ms(γ ). (5.4)

Next, we show that the integral over the semicircle C+
r tends to zero as r → ∞ or

r → 0. Integrating by parts, we see that

∫

C+
r

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) ζ 2s dζ = −2s
∫

C+
r

ln

(
w(ζ )

γ − iζ

)
ζ 2s−1 dζ

+ ln

(
w(−r)

γ + ir

)
(−r)2s − ln

(
w(r)

γ − ir

)
r2s .

Note that we can choose ln(w(ζ )/(γ −iζ )) as a continuous function on C+
r . If r → ∞,

then this integral tends to zero for Re s < 1/2 because of (4.11). If r → 0, then the
integral also tends to zero. Indeed, this follows from the fact that either w(0) 
= 0 or
w(ζ ) satisfies (4.23) with w0 
= 0. Therefore passing to the limits R → ∞ and ε → 0
in equality (5.4), we obtain that

∞∫

−∞

d
dk

(
w(k)
γ−ik

)

(
w(k)
γ−ik

) k2s dk = 2π i eiπs
N∑

j=1

κ2s
j − 2π i eiπs

{
(−γ )2s, if γ < 0
0, if γ ≥ 0.

(5.5)

Integrating in the left-hand side by parts and taking into account relations (2.25) and
(2.27), we obtain

∞∫

−∞

d
dk

(
w(k)
γ−ik

)

(
w(k)
γ−ik

) k2s dk = −2s

∞∫

−∞
ln

(
w(k)

γ − ik

)
k2s−1 dk

= −2s

∞∫

−∞
(ln a(k) + iη(k))k2s−1 dk

= −2s

∞∫

0

(ln a(k) + iη(k))k2s−1 dk

+2se2iπs

∞∫

0

(ln a(k) − iη(k))k2s−1 dk

= 2s(e2iπs − 1)F(s) − 2is(e2iπs + 1)G(s).

Comparing this equation with (5.5), we arrive at (5.2). �	
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In order to prove trace identities for arbitrary powers s ∈ C+, we need the analytic
continuation of the functions F(s) and G(s) to the entire half-plane Re s > 0.

Lemma 5.2 Let estimates (4.1) and (4.14) be satisfied. Then the functions F and G
are meromorphic in the half-plane Re s > 0. The function F is analytic everywhere
except for simple poles at integer points s = n, n ∈ N, with residues

Ress=n F(s) = (−1)n+12−2n−1
2n, n ∈ N.

If Re s < 1, then representation (5.1) for F(s) remains true. If n < Re s < n +1, then

F(s) =
∞∫

0

⎛

⎝ln a(k) −
n∑

j=1

(−1) j
2 j (2k)−2 j

⎞

⎠ k2s−1 dk.

The function G is analytic everywhere except for simple poles at half-integer points
s = n + 1/2, n ∈ N0, with residues

Ress=n+1/2G(s) = (−1)n2−2n−2
2n+1, n ∈ N0.

If n ≥ 1 and n − 1/2 < Re s < n + 1/2, then

G(s) =
∞∫

0

⎛

⎝η(k) −
n−1∑

j=0

(−1) j+1
2 j+1(2k)−2 j−1

⎞

⎠ k2s−1 dk. (5.6)

Proof We can write the function F , given in Lemma 5.2 as follows

F(s) =
1∫

0

ln a(k)k2s−1 dk +
∞∫

1

⎛

⎝ln a(k) −
n∑

j=1

(−1) j
2 j (2k)−2 j

⎞

⎠ k2s−1 dk

−
1∫

0

n∑

j=1

(−1) j
2 j (2k)−2 j k2s−1 dk. (5.7)

The first integral in the right-hand side of equation (5.7) is an analytic function of s
in the entire half-plane Re s > 0. The second integral is in view of (4.13) an analytic
function of s in the strip 0 < Re s < n + 1. For Re s > n, we have

1∫

0

n∑

j=1

(−1) j
2 j (2k)−2 j k2s−1 dk =
n∑

j=1

(−1) j 2−2 j−1
2 j (s − j)−1.

Thus, the function F is an analytic function in the strip n < Re s < n + 1.
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Similarly, we split the integral in the right-hand side of (5.6). Note that we now
have for n ≥ 1 and Re s > n − 1/2,

1∫

0

n−1∑

j=0

(−1) j+1
2 j+1(2k)−2 j−1k2s−1 dk =
n−1∑

j=0

(−1) j+1
2 j+12−2 j−2(s− j −1/2)−1.

Therefore, it follows with analog arguments as for F that the function G, given in
(5.6), is an analytic function of s in the strip n − 1/2 < Re s < n + 1/2. �	
Theorem 5.3 Let estimates (4.1) and (4.14) be satisfied. Then

N∑

j=1

|λ j |1/2 − M1/2(γ ) − 1

π

∞∫

0

ln a(k) dk = 1

4

1 (5.8)

and for n ≥ 1, n ∈ N,

N∑

j=1

|λ j |n − Mn(γ ) + (−1)n 2n

π

∞∫

0

⎛

⎝η(k) −
n−1∑

j=0

(−1) j+1
2 j+1(2k)−2 j−1

⎞

⎠

×k2n−1 dk = − n

22n

2n, (5.9)

N∑

j=1

|λ j |n+1/2−Mn+1/2(γ )+(−1)n+1 2n + 1

π

∞∫

0

⎛

⎝ln a(k)−
n∑

j=1

(−1) j
2 j (2k)−2 j

⎞

⎠

×k2n dk = 2n + 1

22n+2 
2n+1. (5.10)

The coefficients 
n are given as in (4.12).

Proof Using the analytic continuation, given in Lemma 5.2, formula (5.2) can be
extended to all s in the half-plane Re s > 0. In particular, setting s = n, n ∈ N, we
obtain

π

2n

N∑

j=1

|λ j |n − π

2n
Mn(γ ) = (−1)n (π Ress=n F(s) − G(n)) .

Taking into account Lemma 5.2, we conclude formula (5.9). Similarly, we have for
s = n + 1/2, where n ∈ N0, the following identity

π

2n+1

N∑

j=1

|λ j |n+1/2− π

2n+1
Mn+1/2(γ )=(−1)n (

F(n+1/2)+π Ress=n+1/2G(s)
)
.

Again, in view of Lemma 5.2, we conclude formulas (5.8) and (5.10). �	
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We compute the first four trace formulas.

Corollary 5.4 Let estimates (4.1) and (4.14) be satisfied. Then

N∑

j=1

|λ j |1/2 − M1/2(γ ) − 1

π

∞∫

0

ln a(k) dk = −1

4

∞∫

0

V (x) dx,

N∑

j=1

|λ j | − M1(γ ) − 2

π

∞∫

0

(
η(k) −

∫ ∞
0 V (x) dx

2k

)
k dk = −1

4
V (0),

N∑

j=1

|λ j |3/2 − M3/2(γ ) + 3

π

∞∫

0

(
ln a(k) + V (0)

(2k)2

)
k2 dk

= 3

16

⎛

⎝
∞∫

0

V 2(x) dx − V ′(0) + 4γ V (0)

⎞

⎠ ,

N∑

j=1

|λ j |2 − M2(γ )

+ 4

π

∞∫

0

(
η(k) −

∫ ∞
0 V (x) dx

2k
−

∫ ∞
0 V 2(x) dx + 4γ V (0) − V ′(0)

(2k)3

)
k3 dk = −1

8

4,

where


4 = V ′′(0) + 8γ 2V (0) − 4γ V ′(0) − 2V 2(0).

Finally, we prove a trace formula of order zero for the operator H with boundary
conditions (1.4). Such formulas are called in the literature the Levinson formula and
relate the number of negative eigenvalues of H to the phase shift η.

We define η(0) = limζ→0+ η(ζ ). Obviously this limit exists if w(0) 
= 0. In the
case w(0) = 0 the existence follows from asymptotics (4.23).

Theorem 5.5 Suppose (4.14) and let N be the number of negative eigenvalues of the
operator H with boundary condition (1.4). Then, the following formulas hold.
For w(0) 
= 0,

η(∞) − η(0) =

⎧
⎪⎨

⎪⎩

π N if γ > 0,

π(N − 1
2 ) if γ = 0,

π(N − 1) if γ < 0.

(5.11)
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For w(0) = 0,

η(∞) − η(0) =

⎧
⎪⎨

⎪⎩

π(N + 1
2 ) if γ > 0,

π N if γ = 0,

π(N − 1
2 ) if γ < 0.

(5.12)

Proof We apply the argument principle to the function D(ζ ) and the contour �R,ε

given in Fig. 1. We choose R and ε such that all of the N negative eigenvalues of H
lie inside the contour �R,ε. Remember that if γ < 0, then H0 has a simple negative
eigenvalue −γ 2. Thus, it follows with Lemma 3.1 that

∫

�R,ε

d
dζ

(
w(ζ )
γ−iζ

)

(
w(ζ )
γ−iζ

) dζ =
{

2π i N if γ ≥ 0,

2π i(N − 1) if γ < 0.
(5.13)

Note that the branch of the function ln D(ζ ) was fixed by the condition ln D(ζ ) → 0
as |ζ | → ∞. Thus, we have ln D(ζ ) = ln |D(ζ )| + iarg D(ζ ). As for k ∈ R,
arg D(k) = η(k) and η(−k) = −η(k), it follows from equation (5.13) that

2(η(R)−η(ε))+varC+
R

arg D(ζ )+varC+
ε

arg D(ζ )=
{

2π N if γ ≥ 0,

2π(N − 1) if γ < 0.

(5.14)

Note that limR→∞ varC+
R

arg D(ζ ) = 0 because of (4.11). To compute limε→0

varC+
ε

arg D(ζ ), we rewrite

varC+
ε

arg D(ζ ) = varC+
ε

arg w(ζ ) − varC+
ε

arg(γ − iζ ). (5.15)

Considering (4.23), we get

lim
ε→0

varC+
ε

arg w(ζ ) =
{

0 if w(0) 
= 0,

−π if w(0) = 0.
(5.16)

The second term in the right-hand side of (5.15) depends on the sign of γ and turns
out to be in the limit,

lim
ε→0

varC+
ε

arg(γ − iζ ) =

⎧
⎪⎨

⎪⎩

0 if γ > 0,

−π if γ = 0,

0 if γ < 0.

(5.17)

Combining (5.16) and (5.17) with equation (5.14), formulas (5.11) and (5.12) follow
immediately. �	
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Appendix A: Proof of Lemma 2.3

For the sake of completeness, we prove here Lemma 2.3. In order to do so, we have
to recall the construction of the Jost solution from [22, Lemma 4.1.4].

Instead of constructing θ(x, ζ ), it is more convenient to construct the function
b(x, ζ ), defined in (4.2) with asymptotics (4.4). The differential equation (4.3) is
equivalent to the integral equation

b(x, ζ ) = 1 + (2iζ )−1

∞∫

x

(e2iζ(y−x) − 1)V (y)b(y, ζ ) dy (.18)

considered on the class of bounded functions b(x, ζ ). Its solution b(x, ζ ) can be con-
structed by the method of successive approximations. Set b0(x, ζ ) = 1 and

bn+1(x, ζ ) = (2iζ )−1

∞∫

x

(e2iζ(y−x) − 1)V (y)bn(y, ζ ) dy. (.19)

Under assumption (2.12), it follows successively that

|bn(x, ζ )| ≤ |ζ |−n(n!)−1

⎛

⎝
∞∫

x

|V (y)| dy

⎞

⎠
n

. (.20)

This follows inductively as follows. Using the estimate

|e2iζ(y−x) − 1| ≤ 2, x ≤ y, Im ζ ≥ 0,

we get from (.19) the estimate

|bn+1(x, ζ )| ≤ |ζ |−n−1(n!)−1

∞∫

x

|V (y)|
⎛

⎝
∞∫

y

|V (t)| dt

⎞

⎠
n

dy

= |ζ |−n−1(n!)−1(n + 1)−1

∞∫

x

d

dy

⎛

⎝
∞∫

y

|V (t)| dt

⎞

⎠
n+1

dy.

Thus, |bn+1(x, ζ )| is bounded from above by |ζ |−n−1((n+1)!)−1
(∫ ∞

x |V (y)| dy
)n+1

,
which proves (.20). For any fixed x ≥ 0, every function bn(x, ζ ) is analytic in ζ in the
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upper half-plane Im ζ > 0 and is continuous in ζ up to the real axis, with exception
of the point ζ = 0. It follows from (.20) that the limit

b(x, ζ ) := lim
N→∞ b(N )(x, ζ ), where b(N )(x, ζ ) =

N∑

n=0

bn(x, ζ ), (.21)

exists for all x ≥ 0 uniformly with respect to ζ for |ζ | ≥ c > 0. Therefore the
function b(x, ζ ) has the same analytic properties in the variable ζ as the functions
bn(x, ζ ). Moreover, estimates (.20) show that b(x, ζ ) is a bounded function of x .
Putting together definitions (.19) and (.21), we see that

b(N )(x, ζ ) = 1 − bN+1(x, ζ ) + (2iζ )−1

∞∫

x

(e2iζ(y−x) − 1)V (y)b(N )(y, ζ ) dy.

Passing here to the limit N → ∞, we arrive at equation (.18). The uniqueness of a
bounded solution b(x, ζ ) of equation (.18) follows from estimate (.20) for a solution
of the corresponding homogeneous equation. This estimate implies that b(x, ζ ) = 0.

Proof of Lemma 2.3 By (.21), we have

θ(x, ζ ) = eiζ x lim
N→∞

N∑

n=0

bn(x, ζ ), (.22)

where bn(x, ζ ) is given as in (.19). As the limit in (.22) exists for all x ≥ 0 uniformly
with respect to ζ for |ζ | ≥ c > 0, it follows that

θ ′(x, ζ ) = iζeiζ x lim
N→∞

N∑

n=0

bn(x, ζ ) + eiζ x lim
N→∞

N∑

n=0

b′
n(x, ζ ).

Obviously, we have b′
0(x, ζ ) = 0 and from (.19), we derive

b′
n(x, ζ ) = −

∞∫

x

e2iζ(y−x)V (y)bn−1(y, ζ ) dy.

Thus,

∣∣∣θ ′(x, ζ ) − iζeiζ x
∣∣∣ = e− Im ζ x |ζ |

∣∣∣∣∣ lim
N→∞

N∑

n=1

bn(x, ζ ) + 1

iζ
b′

n(x, ζ )

∣∣∣∣∣

= e− Im ζ x

2

∣∣∣∣∣∣
lim

N→∞

N∑

n=1

∞∫

x

(
e2iζ(y−x) + 1

)
V (y)bn−1(y, ζ ) dy

∣∣∣∣∣∣
.

(.23)
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Using the estimate

|e2iζ(y−x) + 1| ≤ 2, x ≤ y, Im ζ ≥ 0,

we see that the term in (.23) does not exceed

e− Im ζ x lim
N→∞

N∑

n=0

∞∫

x

|V (y)| |bn(y, ζ )| dy. (.24)

Because of (.20), expression (.24) is less or equal

e− Im ζ x lim
N→∞

N∑

n=0

|ζ |−n(n!)−1

∞∫

x

|V (y)|
⎛

⎝
∞∫

y

|V (t)| dt

⎞

⎠
n

dy,

which is equivalent to

e− Im ζ x |ζ |
⎛

⎝exp

⎛

⎝|ζ |−1

∞∫

x

|V (y)| dy

⎞

⎠ − 1

⎞

⎠ .

This proves (2.15). If |ζ | ≥ k > 0 and condition (2.12) is satisfied, then estimate
(2.16) follows from (2.15). �	
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