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1 Introduction

The Dedekind eta-function η(z) and Ramanujan’s function f (−q) are defined by

f (−q) := (q; q)∞ = q−1/24η(z), q = e2π i z, Im(z) > 0. (1.1)

where(a; q)∞ = ∏∞
n=0 (1 − aqn).

Now, Weber–Ramanujan class invariants Gn and gn [4, p. 183, (1.3)] are defined by

Gn = 2−1/4q−1/24χ(q) and gn = 2−1/4q−1/24χ(−q), q := e−π
√

n, (1.2)

where n is a positive rational number and
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206 N. Saikia

χ(q) = (−q; q2)∞ = f (q)

f (−q2)
. (1.3)

In his notebooks [11] and paper [10], Ramanujan recorded a total of 116 class
invariants. The table at the end of Weber’s book [12, p. 721–726] contains the val-
ues of 107 class invariants. There are many applications of Weber–Ramanujan class
invariants Gn and gn . Weber primarily was motivated to calculate class invariants so
that he could construct Hilbert class fields. On the other hand Ramanujan calculated
class invariants to approximate π , and probably for finding explicit values of Rogers–
Ramanujan continued fractions, theta-functions, etc. For further applications of class
invariants see [5–9]. An account of Ramanujan’s class invariants and applications can
also be found in Berndt’s book [4].

In 2001, Yi [13] evaluated several new class invariants Gn and gn by finding explicit
values of the parameter rk,n (see [13, p. 11, (2.1.1)] or [14, p. 4, (1.11)]) defined as

rk,n := f (−q)

k1/4q(k−1)/24 f (−qk)
, q = e−2π

√
n/k, (1.4)

where n and k are positive real numbers. In particular, she established the result
[13, p. 18, Theorem 2.2.3]

gn = r2,n/2. (1.5)

Adiga et al. [1] and Baruah [2] also evaluated some new values of Gn and gn .
In this paper, we find further new values of Ramanujan’s class invariant gn and

also give new approach to some known values of Gn . We consider the parameter An

defined by

An = f (−q)

21/4q1/24 f (−q2)
, q := e−2π

√
n/2 (1.6)

where n is a positive rational number. Clearly, the parameter An is the particular case,
k = 2, of the Yi’s parameter rk,n defined above.

In Sect. 2, we record some transformation formulas and modular equations. We also
prove four eta-function identities which are also particular type of modular equations.
In Sect. 3, we find several values of Weber–Ramanujan class invariants gn . Finally
in Sect. 4, we use some new values of gn evaluated in Sect. 3 to prove some known
values on Gn .

Since modular equations are key in our evaluations, we now define a modular
equation. Let K , K ′, L , and L ′ denote the complete elliptic integrals of the first kind
associated with the moduli k, k′, l, and l ′, respectively. Suppose that the equality

n
K ′

K
= L ′

L
(1.7)

holds for some positive integer n. Then a modular equation of degree n is a rela-
tion between the moduli k and l which is implied by (1.7). Ramanujan recorded his
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Ramanujan’s modular equations 207

modular equations in terms of α and β, where α = k2 and β = l2. We say that β has
degree n over α.

Denoting zr = φ2(qr ), where

q = exp(−π K ′/K ), φ(q) = f (q, q), |q| < 1;

the multipliers m associated with α, β is defined by m = z1/zn .

2 Transformation formulas and modular equations

The section is devoted to record some transformation formulas and modular equations
which will be used in next section. The eta-function identities in Lemmas 2.7–2.9
are found by Yi [13] by using Garvan’s Maple q-series package and then proved by
verification. We give direct proofs of these identities. In our proofs, it is not necessary
to know the identities in advance and employ Ramanujan’s modular equations and
transformation formulas. Eta-function identity in Lemma 2.10 is new.

Lemma 2.1 ([3, p. 43, Entry 27 (iii)]) If α and β are such that the modulus of each
exponential argument is less than 1 and αβ = π2, then

e−α/12 4
√

α f (−e−2α) = e−β/12 4
√

β f (−e−2β). (2.1)

Lemma 2.2 ([3, p. 124, Entry 12(ii), (iii), & (iv)])

f (−q) = √
z2−1/6(1 − α)1/6α1/24q−1/24. (2.2)

f (−q2) = √
z2−1/3(α(1 − α))1/12q−1/12. (2.3)

f (−q4) = √
z2−2/3(1 − α)1/24α1/6q−1/6. (2.4)

Lemma 2.3 ([3, p. 230, Entry 5(ii)]) If β has degree 3 over α, then

(αβ)1/4 + ((1 − α)(1 − β))1/4 = 1. (2.5)

Lemma 2.4 ([3, p. 280, Entry 13(i) & (x)]) If β has degree 5 over α, then

(αβ)1/2 + ((1 − α)(1 − β))1/2 + 2 {16αβ(1 − α)(1 − β)}1/6 = 1. (2.6)

{α(1 − β)}1/4 + {β(1 − α)}1/4 = 41/3 {αβ(1 − α)(1 − β)}1/24 . (2.7)

Lemma 2.5 ([3, p. 314, Entry 19(i)]) If β has degree 7 over α, then

(αβ)1/8 + ((1 − α)(1 − β))1/8 = 1. (2.8)

Lemma 2.6 ([4, p. 387, Entry 62]) Let

P = 1 − √
αβ − √

(1 − α)(1 − β),

Q = 64
(√

αβ + √
(1 − α)(1 − β) − √

αβ(1 − α)(1 − β)
)

,
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208 N. Saikia

and

R = 32
√

αβ(1 − α)(1 − β),

then, if β has degree 9 over α,

P6 − R(14P3 + PQ) − 3R2 = 0. (2.9)

Lemma 2.7 ([4, p. 387, Entry 62]) Let P, Q, and R be as defined in Lemma 2.6, then,
if β has degree 13 over α,

√
P(P3 + 8R) − √

R(11P2 + Q) = 0. (2.10)

Lemma 2.8 ([4, p. 387, Entry 62]) Let P, Q, and R be as defined in Lemma 2.6, then,
if β has degree 17 over α,

P3 − R1/3(10P2 + Q) + 13R2/3 P + 12R = 0. (2.11)

Lemma 2.9 ([4, p. 386, Entry 58]) Let

P = 1 − (αβ)1/4 − {(1 − α)(1 − β)}1/4,

Q = 16
(
(αβ)1/4 + {(1 − α)(1 − β)}1/4 − {αβ(1 − α)(1 − β)}1/4

)
,

and

R = 16{αβ(1 − α)(1 − β)}1/4,

then, if β has degree 19 over α,

P5 − 7P2 R − Q R = 0. (2.12)

Lemma 2.10 ([4, p. 386, Entry 59]) Let P, Q, and R be as defined in Lemma 2.9, then,
if β has degree 27 over α,

P9 − R P2(29P4 + 11P2 Q + Q2) − 17R2 P3 − 3R2(PQ + R) = 0. (2.13)

Lemma 2.11 ([4, p. 385, Entry 53]) Let

P = 1 + (αβ)1/8 + {(1 − α)(1 − β)}1/8,

Q = 4
(
(αβ)1/8 + {(1 − α)(1 − β)}1/8 + {αβ(1 − α)(1 − β)}1/8

)
,

and

R = 4{αβ(1 − α)(1 − β)}1/8,
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Ramanujan’s modular equations 209

then, if β has degree 15 over α,

P(P2 − Q) + R = 0. (2.14)

Lemma 2.12 ([13, p. 21, Theorem 3.2.2]) If P = f (−q)

q1/24 f (−q2)
and Q =

f (−q2)

q1/12 f (−q4)

then (PQ)4 +
(

4

PQ

)4

=
(

Q

P

)12

.

Proof Transcribing using Lemma 2.2, we get

P = 21/6(1 − α)1/12α−1/24 and Q = 21/3(1 − α)1/24α−1/12. (2.15)

From (2.15), we find that

α = 16

16 + (PQ)8 (2.16)

and

(
Q

P

)24

= 24 {α(1 − α)}−1 . (2.17)

Applying (2.16) in (2.17) and simplifying, we get

(
16P8 + P16 Q8 − Q16

) (
16P8 + P16 Q8 + Q16

)
= 0. (2.18)

By examining the behavior near origin, it can be shown that the second factor of the left
hand side of (2.18) is non-zero in a neighborhood of the origin. Thus, the first factor
vanishes in that neighborhood. Hence, by the identity theorem, this factor vanishes
identically, i.e.,

16P8 + P16 Q8 − Q16 = 0. (2.19)

Dividing (2.19) by P12 Q4, we complete the proof. ��

Lemma 2.13 ([13, p. 37, Theorem 3.5.2]) If P = f (−q)

q1/8 f (−q4)
and Q =

f (−q3)

q3/8 f (−q12)

then PQ + 4

PQ
=

(
Q

P

)2

+
(

P

Q

)2

.
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Proof Transcribing P and Q by using Lemma 2.2 and simplifying, we get

α = 16

16 + P8 and β = 16

16 + Q8 , (2.20)

where β has degree 3 over α. It follows that

1 − α = P8

16 + P8 and 1 − β = Q8

16 + Q8 . (2.21)

Using (2.20) and (2.21) in Lemma 2.3, we arrive at

(4 + P2Q2)4 = (16 + P8)(16 + Q8). (2.22)

Factorizing (2.22) using Mathematica, we get

(P4 − 4PQ − P3Q3 + Q4)(P4 + 4PQ + P3Q3 + Q4) = 0. (2.23)

Since the second factor is non-zero in a neighborhood of the origin, we deduce

P4 − 4PQ − P3Q3 + Q4 = 0. (2.24)

Dividing above equation by P2Q2, we complete the proof. ��

Lemma 2.14 ([13, p. 38, Theorem 3.5.3]) If P = f (−q)

q1/8 f (−q4)
and Q =

f (−q5)

q5/8 f (−q20)

then

(
P

Q

)3

+
(

Q

P

)3

= (PQ)2 +
(

4

PQ

)2

− 5

(
P

Q
+ Q

P

)

.

Proof By using Lemma 2.2, we find that

α = 16

16 + P8 and β = 16

16 + Q8 , (2.25)

where β has degree 5 over α. It follows that

1 − α = P8

16 + P8 and 1 − β = Q8

16 + Q8 . (2.26)

Now, combining (2.6) and (2.7), we obtain

2
{
(αβ)1/2 + {(1 − α)(1 − β)}1/2

}
= 2 −

{
{α(1 − β)}1/4 + {β(1 − α)}1/4

}4
.

(2.27)
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Ramanujan’s modular equations 211

Employing (2.25) and (2.26) in (2.27) and simplifying, we obtain

(16 + P4Q4)2(16 + P8)(16 + Q8) =
{
(16 + P8)(16 + Q8) − 8(P2 + Q2)4

}2

(2.28)

Factorizing (2.28) using Mathematica, we obtain

(P2 + Q2)2(P6 − 16PQ − 5P4Q2 − 5P2Q4 − P5Q5 + Q6)

×(P6 − 16PQ − 5P4Q2 − 5P2Q4 + P5Q5 + Q6) = 0. (2.29)

Now, proceeding as in the proof of Lemma 2.13, it can be shown that the first and last
factors of (2.29) are non-zero in a neighborhood of zero. Thus, we have

P6 − 16PQ − 5P4Q2 − 5P2Q4 − P5Q5 + Q6 = 0. (2.30)

Dividing above equation by P3Q3 and rearranging the terms, we complete the proof.
��

Lemma 2.15 If P = f (−q)

q1/8 f (−q4)
and Q = f (−q7)

q5/8 f (−q28)

then

(
P

Q

)4

+
(

Q

P

)4

= (PQ)3 +
(

4

PQ

)3

+ 7

((
4

PQ

)2

+ (PQ)2

)

+28

(
4

PQ
+ PQ

)

+ 70.

Proof Proceeding as in the proof of Lemma 2.13, we obtain

α = 16

16 + P8 , β = 16

16 + Q8 , 1 − α = P8

16 + P8 and 1 − β = Q8

16 + Q8 .

(2.31)

where β has degree 7 over α.
Employing (2.31) in Lemma 2.5 and simplifying, we deduce that

(2 + PQ)8 = (P8 + 16)(Q8 + 16). (2.32)

Simplifying (2.32), we get

P8 − 64PQ − 112P2Q2 − 112P3Q3 − 70P4Q4 − 28P5Q5 − 7P6Q6

−P7Q7 + Q8 = 0. (2.33)

Dividing above equation by P4Q4 and rearranging the terms, we complete the proof.
��
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212 N. Saikia

3 Evaluation of class invariants gn

Theorem 3.1 If An as defined in (1.6), then

(i)A1/n = 1/An, (i i)A1 = 1, and (i i i)An = g2n .

Proof To prove (i) we use the definition of An and Lemma 1.4. We set n = 1 in (i) to
prove (ii). (iii) follows directly from the definitions of An and gn from (1.6) and (1.2),
respectively. ��
Theorem 3.2 One has

α = 1

1 + (An A4n)8 and β = 1

1 + (Ak2n A4k2n)8 ,

where β has degree k over α.

Proof For positive number k, set

P1 = f (−q)

q1/8 f (−q4)
and Q1 = f (−qk)

qk/8 f (−q4k)
. (3.1)

Transcribing using Lemma 2.2, we obtain

α = 16

16 + P8
1

and β = 16

16 + Q8
1

. (3.2)

Setting q := e−2π
√

n/2 in (3.2) and using the definition of An , we complete the proof.
��

Next theorem is due to Yi [13, p. 42, Theorem 4.1.1].

Theorem 3.3 We have

4

(

(An A4n)4 + 1

(An A4n)4

)

=
(

A4n

An

)12

.

Proof follows easily from Lemma 2.12 and the definition of An .

Theorem 3.4 We have

(
An A4n

A9n A36n

)2

+
(

A9n A36n

An A4n

)2

= 2
{

An A4n A9n A36n + (An A4n A9n A36n)−1
}

.

Proof We set q := e−2π
√

n/2 in Lemma 2.13 and use the definition of An . ��
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Ramanujan’s modular equations 213

Theorem 3.5 We have

A6 = g12 = 21/6(2 + √
3)1/8, A1/6 = g1/3 = 2−1/6(2 − √

3)1/8,

A3/2 = g3 = 2−1/6(2 + √
3)1/8, A2/3 = g4/3 = 21/6(2 − √

3)1/8.

Proof Setting n = 1/6 in Theorem 3.4 and simplifying using Theorem 3.1(i), we
obtain

(
A2/3/A6

)4 + (
A2/3/A6

)−4 = 4. (3.3)

Solving (3.3) for (A2/3/A6), we get

(A2/3/A6) = (2 − √
3)1/4. (3.4)

Now setting n = 1/6 in Theorem 3.3 and simplifying by using Theorem 3.1(i), we
obtain

4
{(

A2/3/A6
)4 + (

A2/3/A6
)−4

}
= (

A6 A2/3
)12 (3.5)

Using (3.3) in (3.5), we deduce that

A6 A2/3 = 21/3. (3.6)

From (3.4) and (3.6), we easily deduce the values of A6 and A2/3. The values of A1/6
and A3/2 immediately follow from Theorem 3.3(i). ��
Theorem 3.6 We have

4
{

An A4n A25n A100n) + (An A4n A25n A100n)
−1

}

=
(

A25n A100n

An A4n

)3

+
(

An A4n

A25n A100n

)3

− 5

(
A25n A100n

An A4n
+ An A4n

A25n A100n

)

.

Proof We set q := e−2π
√

n/2 in Lemma 2.14 and use the definition of An . ��
Theorem 3.7 We have

A10 = g20 = 2−1/8(
√

5 + 2)1/24
(

1 + √
5 +

√

2 + 2
√

5

)1/4

,

A5/2 = g5 = 2−3/8(
√

5 − 2)1/24
(

1 + √
5 +

√

2 + 2
√

5

)1/4

,

A1/10 = g1/5 = 21/8(
√

5 − 2)1/24
(

1 + √
5 +

√

2 + 2
√

5

)−1/4

,

A2/5 = g4/5 = 23/8(
√

5 + 2)1/24
(

1 + √
5 +

√

2 + 2
√

5

)−1/4

,
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214 N. Saikia

Proof Setting n = 1/10 in Theorem 3.6 and simplifying using Theorem 3.1(i), we
obtain

(A10 A5/2)
6 + (A10 A5/2)

−6 − 5
{
(A10 A5/2)

2 + (A10 A5/2)
−2

}
= 8. (3.7)

From (3.7), we deduce that

(A10 A5/2)
2 + (A10 A5/2)

−2 = 1 + √
5. (3.8)

Solving (3.8) for A10 A5/2, we obtain

A10 A5/2 =
√

1 + √
5 +

√
2 + 2

√
5√

2
. (3.9)

Now setting n = 1/10 in Theorem 3.3 and simplifying using Theorem 3.1(i), we
deduce that

4
{
(A10 A5/2)

4 + (A10 A5/2)
−4

}
= (

A10/A5/2
)12

. (3.10)

Squaring (3.8), we deduce that

(A10 A5/2)
4 + (A10 A5/2)

−4 = 2(2 + √
5). (3.11)

Employing (3.11) in (3.10) and solving the resulting equation, we obtain

(
A10/A5/2

) = 21/4(2 + √
5)1/2. (3.12)

Combining (3.9) and (3.12), we derive the values of A10 and A5/2. Then values of
A1/10 and A2/5 follow from Theorem 3.1(i). ��

Theorem 3.8 We have

(
An A4n

A49n A196n

)4

+
(

An A4n

A49n A196n

)−4

= 8
{
(An A4n A49n A196n)

3 + ((An A4n A49n A196n)
−3

}

+28
{
(An A4n A49n A196n)

2 + ((An A4n A49n A196n)
−2

}

+56
{

An A4n A49n A196n + ((An A4n A49n A196n)
−1

}
+ 70.

Proof We set q := e−2π
√

n/2 in Lemma 2.15 and use the definition of An . ��
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Ramanujan’s modular equations 215

Theorem 3.9 We have

A14 = g28 = 21/4(127 + 48
√

7)1/16, A7/2 = g7 = 2−1/4(127 + 48
√

7)1/16,

A1/14 = g1/7 = 2−1/4(127 − 48
√

7)1/16, A2/7 = g4/7 = 21/4(127 − 48
√

7)1/16.

Proof Setting n = 1/14 in Theorem 3.8 and simplifying using Theorem 3.1(i), we
deduce that

(A14 A7/2)
8 + (A14 A7/2)

−8 = 254. (3.13)

Solving (3.13), we obtain

A14 A7/2 = (127 + 48
√

7)1/8. (3.14)

Now setting n = 1/14 in Theorem 3.3 and simplifying using Theorem 3.1(i), we
arrive at

4
{
(A14 A7/2)

4 + (A14 A7/2)
−4

}
= (

A14/A7/2
)12 (3.15)

Squaring (3.15) and then using (3.13), we deduce that

(
A14/A7/2

) = √
2. (3.16)

Combining (3.14) and (3.16), we derive the values of A14 and A7/2. Then the values
of A1/14 and A2/7 follow from Theorem 3.1(i). ��
Theorem 3.10 We have

A18 = g36 = 21/8
(

7 + 4
√

3
)1/6

(

1 + 2

√

−24 + 14
√

3

)1/8

,

A9/2 = g9 = 2−1/8
(

7 + 4
√

3
)1/12

(

1 + 2

√

−24 + 14
√

3

)1/8

,

A1/18 = g1/9 = 2−1/8
(

7 − 4
√

3
)1/6

(

1 + 2

√

−24 + 14
√

3

)−1/8

,

A2/9 = g4/9 = 21/8
(

7 − 4
√

3
)1/12

(

1 + 2

√

−24 + 14
√

3

)−1/8

.

Proof Setting k = 9 in Theorem 3.2, we get

α = 1

1 + (An A4n)8 and β = 1

1 + (A81n A324n)8 . (3.17)

Now setting n = 1/18 in (3.17) and simplifying using Theorem 3.1(i), we obtain

α = (A18 A9/2)
8

1 + (A18 A9/2)8 and β = 1

1 + (A18 A9/2)8 . (3.18)
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216 N. Saikia

From (3.18) it is readily seen that

α = (A18 A9/2)
8β, 1 − α = β, and 1 − β = α. (3.19)

Employing (2.3) in Lemma 2.6 and simplifying, we get

P = 1 − 2x, Q = 64x(2 − x), and R = 32x2, (3.20)

where

x = (A18 A9/2)
4β. (3.21)

Employing (3.20) in (2.9) and factorizing, we obtain

(1 + 8x − 4x2)2(1 − 28x + 4x2) = 0. (3.22)

The first factor in (3.22) is not zero and do not give real value of x such the 0 < x < 1,
so we have

4x2 − 28x + 1 = 0. (3.23)

Solving (3.23) and noting 0 < x < 1 and (A18 A9/2)
4 > 1 is real, we get

x = (7 − 4
√

3)/2. (3.24)

Combining (3.18), (3.21), and (3.24), we deduce that

(A18 A9/2)
4 =

(
7 + 4

√
3
) (

1 + 2

√

−24 + 14
√

3

)

. (3.25)

Now, setting n = 1/18 in Theorem 3.3 and simplifying using Theorem 3.1(i), we
arrive at

4
{
(A18 A9/2)

4 + (A18 A9/2)
−4

}
= (

A18/A9/2
)12

. (3.26)

Using (3.25) in (3.26) and solving the resulting equation, we obtain

(
A18/A9/2

) = 21/4
(

7 + 4
√

3
)1/12

. (3.27)

From (3.25) and (3.27), we easily deduce the values of A18 and A9/2. Then the values
of A1/18 and A2/9 follow from Theorem 3.1(i). ��

Theorem 3.11 We have

A26 = g52 = 21/8
(

5
√

13 + 18
)1/6

(

1 + 6

√

5
√

13 − 18

)1/8

,

A13/2 = g13 = 2−1/8
(

5
√

13 + 18
)1/12

(

1 + 6

√

5
√

13 − 18

)1/8

,
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A1/26 = g1/13 = 2−1/8
(

5
√

13 − 18
)1/6

(

1 + 6

√

5
√

13 − 18

)−1/8

,

A2/13 = g4/13 = 21/8
(

5
√

13 − 18
)1/12

(

1 + 6

√

5
√

13 − 18

)−1/8

.

Proof Setting k = 13 in Theorem 3.2 and then setting n = 1/26 and simplifying
using Theorem 3.1(i), we obtain

α = (A26 A13/2)
8

1 + (A26 A13/2)8 and β = 1

1 + (A26 A13/2)8 . (3.28)

so that

α = (A26 A13/2)
8β, 1 − α = β, and 1 − β = α. (3.29)

Employing (3.29) in Lemma 2.7 and simplifying, we get

(1 + 2x)(1 + 28x + 4x2)2(−1 + 72x + 4x2) = 0, (3.30)

where

x = (A26 A13/2)
4β. (3.31)

Since first two factors are not zero, so we have

4x2 + 72x − 1 = 0. (3.32)

Solving (3.32), we obtain

x = (5
√

13 − 18)/2. (3.33)

From (3.29), (3.31), and (3.33) and noting A26 A13/2 > 1, we deduce that

(
A26 A13/2

)4 =
(

5
√

13 + 18
) (

1 + 6

√

5
√

13 + 18

)

. (3.34)

Setting n = 1/26 in Theorem 3.3, simplifying using Theorem 3.1(i), employing (3.34)
and then solving the resulting equation, we arrive at

(
A26/A13/2

) = 21/4
(

5
√

13 + 18
)1/12

. (3.35)

From (3.34) and (3.35), we easily calculate the values of A26 and A13/2. Then the
values of A1/26 and A2/13 follow from Theorem 3.1(i). ��
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Theorem 3.12 We have

A34 = g68 = 21/8
(

20 + 5
√

17 + 2

√

206 + 50
√

17

)1/6

×
⎛

⎝1 +
√

1 −
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)2
⎞

⎠

1/8

,

A17/2 = g17 = 2−1/8
(

20 + 5
√

17 + 2

√

206 + 50
√

17

)1/12

×
⎛

⎝1 +
√

1 −
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)2
⎞

⎠

1/8

,

A1/34 = g1/17 = 2−1/8
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)1/6

×
⎛

⎝1 +
√

1 −
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)2
⎞

⎠

−1/8

,

A2/17 = g4/17 = 21/8
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)1/12

×
⎛

⎝1 +
√

1 −
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)2
⎞

⎠

−1/8

.

Proof Setting k = 17 in Theorem 3.2 and then setting n = 1/34 and simplifying
using Theorem 3.1(i), we obtain

α = (A34 A17/2)
8

1 + (A34 A17/2)8 and β = 1

1 + (A34 A17/2)8 . (3.36)

so that

α = (A34 A17/2)
8β, 1 − α = β, and 1 − β = α. (3.37)

Employing (3.37) in Lemma 2.8 and solving the resulting equation, we get

x =
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)

/2. (3.38)

where

x = (A34 A17/2)
4β. (3.39)
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From (3.36), (3.38), and (3.39) and noting A34 A17/2 > 1, we arrive that

(
A34 A17/2

)4 =
(

20 + 5
√

17 + 2

√

206 + 50
√

17

)

×
⎛

⎝1 +
√

1 −
(

20 + 5
√

17 − 2

√

206 + 50
√

17

)2
⎞

⎠ . (3.40)

Setting n = 1/34 in Theorem 3.3, simplifying using Theorem 3.1(i), employing
(3.40) and then solving the resulting equation, we find that

(
A34/A17/2

) = 21/4
(

20 + 5
√

17 + 2

√

206 + 50
√

17

)1/12

. (3.41)

From (3.40) and (3.41), we easily calculate the values of A34 and A17/2. Then the
values of A1/34 and A2/17 follow from Theorem 3.1(i). ��
Theorem 3.13 We have

A38 = g76 = 25/24 31/12 r−1/6
(

576 +
√

331776 − 4r2
)1/8

,

A19/2 = g19 = 2−11/24 3−1/12 r−1/12
(

576 +
√

331776 − 4r2
)1/8

,

A1/38 = g1/19 = 2−5/24 3−1/12 r1/6
(

576 +
√

331776 − 4r2
)−1/8

,

A2/19 = g4/19 = 211/24 31/12 r1/12
(

576 +
√

331776 − 4r2
)−1/8

,

where r = 528−40(2944−384
√

57)1/3+(2944−384
√

57)2/3−160(46+6
√

57)1/3+
16(46 + 6

√
57)2/3.

Proof Setting k = 19 in Theorem 3.2 and then setting n = 1/38 and simplifying
using Theorem 3.1(i), we arrive at

α = (A38 A17/2)
8

1 + (A34 A19/2)8 and β = 1

1 + (A38 A19/2)8 . (3.42)

so that

α = (A38 A19/2)
8β, 1 − α = β, and 1 − β = α. (3.43)

Employing (3.43) in Lemma 2.9 and factorizing, we get

(1 + 2y)2(8y3 + 20y2 + 14y − 1) = 0, (3.44)
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where

y = (A38 A19/2)
2
√

β. (3.45)

Since the first factor in (3.44) is non-zero, so we have

8y3 + 20y2 + 14y − 1 = 0. (3.46)

Solving (3.46), we obtain

y =
(
−20 + (2944 − 384

√
57)1/3 + 4(46 + 6

√
57)1/3

)
/24. (3.47)

From (3.42), (3.45), and (3.47) and noting A38 A19/2 > 1, we deduce that

(
A38 A19/2

)4 =
(

576 +
√

331776 − 4r2
)/

2r, (3.48)

wherer = 528 − 40(2944 − 384
√

57)1/3 + (2944 − 384
√

57)2/3 − 160(46 +
6
√

57)1/3 + 16(46 + 6
√

57)2/3.

Setting n = 1/38 in Theorem 3.3, simplifying using Theorem 3.1(i), employing
(3.48) and then solving the resulting equation, we find that

(
A38/A19/2

) = 22/331/6r−1/12. (3.49)

From (3.48) and (3.49), we easily find the values of A38 and A19/2. Then the values
of A1/38 and A2/19 follow from Theorem 3.1(i). ��
Theorem 3.14 We have

A54 = g108 =21/6
(

2+
√

3−100 · 21/3+80 · 22/3
)1/8 (

6 · 22/3−24/3−7
)−1/6

,

A27/2 = g27 =2−1/6
(

2+
√

3−100 · 21/3+80 · 22/3
)1/8 (

6 · 22/3−24/3−7
)−1/12

,

A1/54 = g1/27 =2−1/6
(

2+
√

3−100 · 21/3+80 · 22/3
)−1/8 (

6 · 22/3−24/3−7
)1/6

,

A2/27 = g4/27 =21/6
(

2+
√

3−100 · 21/3+80 · 22/3
)−1/8 (

6 · 22/3−24/3−7
)1/12

.

Proof Setting k = 27 in Theorem 3.2 and then setting n = 1/38 and simplifying
using Theorem 3.1(i), we arrive at

α = (A54 A27/2)
8

1 + (A54 A27/2)8 and β = 1

1 + (A54 A27/2)8 . (3.50)

so that

α = (A54 A27/2)
8β, 1 − α = β, and 1 − β = α. (3.51)
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Employing (3.51) in Lemma 2.10 and factorizing Mathematica, we get

(1 + 6x − 4x2 + 8x3)2(−1 + 30y − 12y2 + 8y3) = 0, (3.52)

where

y = (A54 A27/2)
2
√

β. (3.53)

Since the first factor in (3.52) is non-zero, so we have

− 1 + 30y − 12y2 + 8y3 = 0. (3.54)

Solving (3.54), we obtain

y = (−1 + 21/3)2/2. (3.55)

From (3.50), (3.53), and (3.55) and noting A54 A27/2 > 1, we deduce that

(
A54 A27/2

)4 = 2 + √
3 − 100 · 21/3 + 80 · 22/3

6 · 22/3 − 24/3 − 7
. (3.56)

Setting n = 1/54 in Theorem 3.3, simplifying using Theorem 3.1(i), employing (3.56)
and then solving the resulting equation, we find that

(
A54/A27/2

) = 21/3
(

6 · 22/3 − 24/3 − 7
)−1/12

. (3.57)

From (3.56) and (3.57), we easily find the values of A54 and A27/2. Then the values
of A1/54 and A2/27 follow from Theorem 3.1(i). ��
Theorem 3.15 We have

A30 = g60 = 27/24
(

16 +
√

162 + 42
√

5

)1/8 (
7 − 3

√
5

)−1/6
,

A15/2 = g15 = 2−7/24
(

16 +
√

162 + 42
√

5

)1/8 (
7 − 3

√
5

)−1/12
,

A1/30 = g1/15 = 2−7/24
(

16 +
√

162 + 42
√

5

)−1/8 (
7 − 3

√
5
)1/6

,

A2/15 = g4/15 = 27/24
(

16 +
√

162 + 42
√

5

)−1/8 (
7 − 3

√
5

)1/12
.

Proof Setting k = 15 in Theorem 3.2 and then setting n = 1/30 and simplifying
using Theorem 3.1(i), we arrive at

α = (A30 A15/2)
8

1 + (A30 A15/2)8 and β = 1

1 + (A30 A15/2)8 . (3.58)
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so that

α = (A30 A15/2)
8β, 1 − α = β, and 1 − β = α. (3.59)

Employing (3.59) in Lemma 2.11, we get

4z2 + 2z − 1 = 0, (3.60)

where

z = (A30 A15/2)β
1/4. (3.61)

Solving (3.60), we obtain

z = (−1 + √
5)/4. (3.62)

From (3.58), (3.61), and (3.62) and noting A30 A15/2 > 1, we deduce that

(
A30 A15/2

)4 =
(

16 +
√

162 + 42
√

5

)/ (
7 − 3

√
5
)

. (3.63)

Setting n = 1/30 in Theorem 3.3, simplifying using Theorem 3.1(i), employing (3.63)
and then solving the resulting equation, we find that

(
A30/A15/2

) = 27/12
(

7 − 3
√

5
)−1/12

. (3.64)

From (3.63) and (3.64), we easily deduce the values of A30 and A15/2. Then the values
of A1/30 and A2/15 follow from Theorem 3.1(i). ��

4 Evaluation of class invariants Gn

In his paper [10] and also in page 294 of his second notebook [11, Vol. II], Ramanujan
recorded two simple formulas relating the class invariants gn and Gn , namely, for
n > 0

g4n = 21/4gnGn (4.1)

and

(gnGn)8(G8
n − g8

n) = 1

4
. (4.2)

Thus, if we know gn and g4n or only gn then the corresponding Gn can be calculated
by the above formulas. We now find some values of Gn by using (4.1) and the new
values of gn and g4n evaluated in above section.
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Theorem 4.1 We have

(i) G3 = 21/12, (ii) G5 = (
√

5 + 2)1/12, (iii) G7 = 21/4,

(iv) G9 = (7 + 4
√

3)1/12, (v) G13 = (5
√

13 + 18)1/12,

(vi) G17 =
(

20 + 5
√

17 + 2

√

206 + 50
√

17

)1/12

,

(vii) G19 = 25/1231/6r−1/12, where r is given in Theorem 3.13.

(viii) G27 = 21/12(6 · 22/3 − 24/3 − 7)−1/12, (ix) G15 = 21/3(7 − 3
√

5)−1/12.

Proof For (i), we use the values of g12 and g3 from Theorem 3.5 in (4.1). To prove
(ii), we employ the values of g20 and g5 from Theorem 3.7 in (4.1). To prove (iii),
employ the values of g28 and g7 from Theorem 3.9 in (4.1). To prove (iv), we use the
values of g36 and g9 from Theorem 3.10 in (4.1). Employing the values of g52 and
g13 from Theorem 3.11 in (4.1) we arrive at (v). Employing the values of g17 and g68
from Theorem 3.12 in (4.1), we prove (vi). For (vii), we use the values of g19 and
g76 from Theorem 3.13 in (4.1). To prove (viii), we use the values of g27 and g108
from Theorem 3.14 in (4.1). To prove (ix), we employ the values of g15 and g60 from
Theorem 3.15 in (4.1). ��
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source are credited.
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