Skip to main content
Log in

DSP-Based Modified SPWM Switching Technique with Two-Degrees-of-Freedom Voltage Control for Three-Phase AC–DC Buck Converter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a modified sinusoidal pulse-width modulation (SPWM) switching technique in three-phase ac–dc buck converter with new modulation strategy. The modulation strategy used two reference signals (0°–60° and 120°–180° sine wave) and one type of carrier signal, instead of two types of carrier signal to generate pulse-width modulation signals. A conventional 6-switch three-phase ac–dc buck converter is extended by comprising four diodes in each switch to achieve bidirectional power flow capability. A digital feedback voltage control using two-degrees-of-freedom-control approach is implemented to achieve the output voltage to equal the reference voltage with high dynamic performance and to obtain sinusoidal ac current with unity power factor. The modified SPWM switching strategy of ac–dc power flow and vice versa is discussed and verified via mathematical model. The validity of the proposed three-phase ac-dc buck converter with bidirectional capability its PWM and the feedback control strategy is verified through simulation and is implemented in a prototype using TMS320F28335 Digital Signal Processor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raihan S.R.S., Rahim N.A.: Comparative analysis of three-phase ac–dc converters using HIL-simulation. J. Power Electr. 13, 104–112 (2013)

    Article  Google Scholar 

  2. Ortiz-Lopez M.G., Leyva-Ramos J., Carbajal-Gutierrez E.E., Morales-Saldana J.A.: Modelling and analysis of switch-mode cascade converters with a single active switch. IET Power Electron. 4, 478–487 (2008)

    Article  Google Scholar 

  3. Yang L.S., Liang T.J., Chen J.F.: Analysis and design of a novel three phase AC–DC buck-boost converter. IEEE Trans. Power Electron. 2, 707–714 (2008)

    Article  Google Scholar 

  4. Kolar J.W., Friedli T.: The essence of three-phase PFC rectifier systems—part I. IEEE Trans. Power Electron. 1, 176–198 (2013)

    Article  Google Scholar 

  5. Green T.C., Taha M.H., Rahim N.A., Williams B.W.: Three-phase step-down reversible AC–DC power converter. IEEE Trans. Power Electron. 2, 319–324 (1997)

    Article  Google Scholar 

  6. Yang, L.S.; Liang, T.J.; Chen, J.F.: Three-phase AC/DC buck converter with bidirectional capability. In: Power Electronics Specialists Conference 2006, pp. 1–6 (2006)

  7. Rodríguez J., Morán L., Pontt J., Osorio R., Kouro S.: Modeling and analysis of common-mode voltages generated in medium voltage PWM-CSI drives. IEEE Trans. Power Electron. 3, 873–879 (2003)

    Article  Google Scholar 

  8. Zargari N., Rizzo S., Xiao Y., Iwamoto H., Satoh K., Donlon J.: A new current-source converter using a symmetric gate-commutated thyristor (SGCT). IEEE Trans. Ind. Appl. 3, 896–903 (2001)

    Article  Google Scholar 

  9. Zhang W., Feng G., Liu Y.-F., Wu B.: A digital power factor correction (PFC) control strategy optimized for DSP. IEEE Trans. Power Electron. 6, 1474–1485 (2004)

    Article  Google Scholar 

  10. Zhang W., Feng G., Liu Y.-F., Wu B.: New digital control method for power factor correction. IEEE Trans. Ind. Electron. 3, 987–990 (2006)

    Article  Google Scholar 

  11. Daigavane M., Suryawanshi H., Khan J.: A novel three phase series-parallel resonant converter fed DC-drive system. J. Power Electron. 3, 222–232 (2007)

    Google Scholar 

  12. Malinowski M., Jasinski M., Kazmierkowski M.: Simple direct power control of three-phase PWM rectifier using space-vector modulation. IEEE Trans. Ind. Electron. 2, 447–454 (2004)

    Article  Google Scholar 

  13. Ellabban O., Mierlo J.V., Lataire P.: A DSP-based dual loop digital controller design and implementation of a high power boost converter for hybrid electric vehicles applications. J. Power Electron. 2, 113–119 (2011)

    Article  Google Scholar 

  14. Mansor, M.; Rahim, N.A.: Phase angle analysis for three-phase PWM-switched autotransformer voltage-sag compensator. Arab. J. Sci. Eng. 37, 1987–2001 (2012)

  15. Alesina A., Venturini M.G.B.: Solid-state power conversion: a Fourier analysis approach to generalized transformer synthesis. IEEE Trans. Circuits Syst. 4, 319–330 (1981)

    Article  MathSciNet  Google Scholar 

  16. Alesina A., Venturini M.G.B.: Analysis and design of optimum-amplitude nine-switch irect ac/ac converter. IEEE Trans. Power Electron. 1, 101–112 (1989)

    Article  Google Scholar 

  17. Holmes D.G., Lipo T.A.: Implementation of a controlled rectifier using ac–ac matrix converter theory. IEEE Trans. Power Electron. 1, 240–250 (1992)

    Article  Google Scholar 

  18. Milanovic M., Prosen R., Martinez-Salamero L.: Unity input displacement factor correction principle for direct ac to ac matrix converters based on modulation strategy. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2, 221–230 (2000)

    Article  Google Scholar 

  19. Raihan S.R.S., Rahim N.A.: FPGA-based PWM for three phase SEPIC rectifier. IEICE Electron. Express 18, 1335–1341 (2010)

    Article  Google Scholar 

  20. Hwu K.I., Chen H.W., Yau Y.T.: Fully digitalized implementation of PFC rectifier in CCM without ADC. IEEE Trans. Power Electron. 9, 4021–4029 (2012)

    Article  Google Scholar 

  21. Singh B., Singh B.N., Chandra A., Al-Haddad K., Pandey A., Kothari D.P.: A review of three-phase improved power quality AC–DC converters. IEEE Trans. Ind. Electron. 3, 641–660 (2004)

    Article  Google Scholar 

  22. Rodríguez J.R., Dixon J.W., Espinoza J.R., Lezana P.: PWM regenerative rectifiers: state of the art. IEEE Trans. Ind. Electron. 1, 5–22 (2005)

    Article  Google Scholar 

  23. Holtz J.: Pulsewidth modulation for electronic power conversion. Proc. IEEE. 82, 1194–1214 (1994)

    Article  Google Scholar 

  24. Rashid H.M.: Power Electronics: Circuits, Devices and Applications. Pearson Prentice Hall, Englewood Cliffs, NJ (2004)

    Google Scholar 

  25. Milanovic M., Slibar P.: IDF correction based PWM algorithm for a three-phase AC–DC buck converter. IEEE Trans. Ind. Electron. 8, 3308–3316 (2011)

    Article  Google Scholar 

  26. Omar A.M., Rahim N.A.: FPGA-based ASIC design of the three-phase synchronous PWM flyback converter. IEE Proc. Electr. Power Appl. 3, 263–268 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azrita Alias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alias, A., Rahim, N.A. & Hussain, M.A. DSP-Based Modified SPWM Switching Technique with Two-Degrees-of-Freedom Voltage Control for Three-Phase AC–DC Buck Converter. Arab J Sci Eng 39, 8001–8013 (2014). https://doi.org/10.1007/s13369-014-1370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1370-6

Keywords

Navigation