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Abstract. A major challenge in glycomics is the characterization of complex glycan
structures that are essential for understanding their diverse roles in many biological
processes. We present a novel efficient computational approach, named
GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem
mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph
specifying how to interpret each peak using preceding interpreted peaks. It then
reconstructs the topologies of peaks that contribute to interpreting the precursor
ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative
feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to
effectively rank candidate topologies. IonClassifier is automatically learned from

experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results
showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandemmass
spectra.
Keywords: De novo glycan sequencing, Machine learning, Electronic excitation dissociation, Fourier-transform
ion cyclotron resonance mass spectrometry
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Introduction

Glycosylation is a commonmodification by which a glycan
(or oligosaccharide) is covalently attached to a target

biomolecule such as proteins and lipids. It serves important
purposes in many biological processes, including protein fold-
ing and clearance, cell adhesion, and immunological responses,
among others [1, 2]. Glycosylation is one of the key factors that
determine the solubility, stability, and efficacy of many
biopharmaceuticals [3, 4]. Change in glycosylation pattern is
often observed under different disease conditions, such as
tumorigenesis [5, 6]. Glycan structural analysis is essential
for understanding their diverse roles in biological systems,

yet it remains a challenging task, in part due to the vast number
of topologies that they may assume even for a moderate-sized
glycan. Glycans are tree ensembles of monosaccharides linked
via glycosidic bonds. A glycosidic bond is formed via conden-
sation reaction between the hemiacetal group of one monosac-
charide (the non-reducing-end residue) and a hydroxyl group
of another (the reducing-end residue). Theoretically, there
could be up to four branches at any branching point in an
oligosaccharide though these seldom occur naturally because
of steric hindrance.

Recently, tandem mass spectrometry (MS/MS) has become
one of the most powerful tools for elucidating glycan structures
[7, 8]. In a tandemMS experiment, a single glycosidic cleavage
produces B, C, Y, and Z ions, whereas cross-ring cleavages
generate A and X ions (Figure 1a) [9]. Internal fragment ions,
or fragment ions with loss of multiple branches may also be
formed by two or more glycosidic and/or cross-ring cleavages.
Here, we group A and X ions and internal fragment ions into a
category termed O ions (i.e., other ions). The glycosidic
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fragments are important for topology deduction. Since a Y ion
differs in mass from its related Z ion by that of a water
molecule, as does a B ion from its related C ion, C and Z ions
provide redundant information to B and Y ions. A and X ions
are useful for deciphering the branching pattern and linkages,
as well as for ranking the candidate topologies. The topology of
a glycan can be represented as a tree with nodes representing
monosaccharide residues and edges representing glycosidic
linkages (Figure 1b).

Several tools exist for determining the topologies of glycans
by searching their experimental spectra against prebuilt glycan
databases [10–13]. The accuracy of the search results depends
not only on the quality of the query (i.e., the tandem MS data)
but also on the quality and completeness of the databases. To
date, glycan databases are often populated with lower-quality
spectral data obtained on ion trap and time-of-flight instru-
ments, typically generated by collision-induced dissociation
(CID). This can adversely affect the performance of database
searching algorithms that identify and score candidate struc-
tures based on the similarity of the query to spectra in the
database, especially for experimental data generated by
radical-induced fragmentation methods, and/or on higher-
performance MS instruments. More importantly, because gly-
can databases are generally incomplete [14], it is necessary to
develop a de novo method for determination of glycan struc-
tures from their experimental spectra. Given enough informa-
tion (e.g., precursor ion mass, possible monosaccharide com-
ponents, charge carrier, and product ion masses), brute-force
search methods, such as STAT [15], may be used to exhaus-
tively compare an experimental tandemmass spectrum to those
of all possible theoretical structures. However, the number of
possible structures increases exponentially as the number of
monosaccharides in a glycan increases, and the search space
quickly becomes too big to explore for large glycans. Thus, the
brute-force approach is feasible only for relatively small gly-
cans. Mizuno et al. proposed to reconstruct glycan topologies
by building a relationship tree trying to interpret peaks as Y
ions [16], but it is not clear how their method deals with
branching except for those within the N-glycan core. Ethier
et al. improved the relationship tree approach mainly by in-
cluding more biosynthetic rules [17, 18]. However, our knowl-
edge of biosynthetic rules is incomplete for many organisms,

and this limits the general applicability of the above
relationship-tree based methods.

Tang et al. proposed an approach termed GLYCH that
constructs a set of prefix residue masses (PRMs) for each peak
and uses a dynamic programming algorithm to find a series of
PRMs for inferring glycan structures from tandem MS spectra
[19]. However, its topology scoring method may repeatedly
use peaks in scoring a structure, which should be avoided
because it favors linear structures over branched ones [20].
Shan et al. showed in theory that generating glycan topology
candidates without repeatedly counting peaks (i.e., the Peak
Assignment Problem) was an NP-hard problem, and proposed
a heuristic algorithm that saves time and space by keeping a
fixed number of high-score forests for each peak [21]. Bocker
et al. developed an algorithm for solving the Peak Assignment
Problem that uses the fixed-parameter tractability concept to
restrict the running time, and showed that the complexity of
counting the number of rooted trees is polynomial in time and
space with respect to the number of monosaccharides and the
maximal out-degree [20]. When the number of peaks in a
spectrum became too large, they deployed some heuristics to
make computation tractable, for example, by restricting the k
(e.g., k = 10) most intense peaks to be used at most once in
scoring candidates, whereas allowing all other peaks to be used
multiple times. Sun et al. proposed to reconstruct topologies
from the root to leaves by adding a monosaccharide at a time
[22], while keeping only a fixed number of topologies, the
theoretical spectra of whichbest match the data in each itera-
tion. Dong et al. represented a glycan structure as a directed
acyclic graph and developed an algorithm to reconstruct a
glycan iteratively by storing all confirmed substructures and
using them to build larger substructures [23]. To make compu-
tation manageable, they kept a limited number of top-scored
substructures (20 in their pseudo codes) in each iteration. They
also proposed a data preprocessing method to filter out noisy
peaks and a probability-based cleavage method to produce
theoretical tandem mass spectra for scoring candidate struc-
tures. To circumvent the NP difficulty in the Peak Assignment
Problem, Kumozaki et al. [24] applied Lagrangian relaxation
[25] to turn the Peak Assignment Problem into a relaxed
Integer Programming problem, which can then be optimized
by dynamic programming and subgradient optimization. They
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Figure 1. (a) The glycan fragmentation nomenclature system as proposed by Domon and Costello. (b) The linear, 2D, and graphic
representations of a glycan (Lewis B)
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also proposed to learn how to score structural elements (e.g.,
branching at a residue, connection between two residues, and
cleavage at a residue) from the experimental data.

We present in this paper a novel method, named
GlycoDeNovo, for de novo glycan topology reconstruction
using tandem MS data. Different from the catalog-library ap-
proaches [10–13], GlycoDeNovo does not rely on any database
of known glycans and can be used to discover new structures.
Given a tandem MS spectrum, it reconstructs the possible
glycan topologies in a bottom-up way by building an
interpretation-graph that interprets some non-precursor peaks
as B or C ions and specifies how to interpret each B or C ion by
appending one or more preceding B and/or C ions to a mono-
saccharide. The computational complexity of the above peak
interpretation procedure isO(NH + 1), where N is the number of
peaks in the spectrum andH is the highest number of branching
allowed. Hence GlycoDeNovo has significant advantages over
other recent de novo glycan sequencing algorithms [20, 23],
computational complexities of which are O(3N ⋅M2), whereM
is the precursor ion mass. GlycoDeNovo has the same compu-
tational complexity as that of GLYCH [19], but it does not
suffer from the problem of double peak counting in scoring
candidates. In addition, GlycoDeNovo avoids unnecessary re-
construction of sub-topologies that do not lead to interpretation
of the precursor ion. Hence, the constant factor in the compu-
tational complexity of GlycoDeNovo is actually much lower
than that of GLYCH. This also allows GlycoDeNovo to avoid
solving the NP-hard Peak Assignment Problem. It is possible
that GlycoDeNovo may misinterpret a peak as a B or C ion
when it belongs to a different type. To tackle this problem,
GlycoDeNovo learns IonClassifier from experimental data to
distinguish B and C ions from other types of ions. IonClassifier
greatly improves the accuracy of GlycoDeNovo in ranking
candidate topologies. GlycoDeNovo is capable of handling
missing cleavages, which happens occasionally in experimen-
tal data. In its current setting, GlycoDeNovo can handle miss-
ing ions corresponding to gaps of two monosaccharides (i.e.,
two monosaccharides are needed to link several substructures
into a bigger one).

Computational Approach
The pipeline of GlycoDeNovo (Figure 2) works as the follow-
ing. It first enriches the peak list by adding artificial peaks
complementary to those observed. This is necessary because
although each glycosidic cleavage could in theory generate a
pair of complementary ions, not all fragments are observed in
the experimental data due to the lack of charge carrier, second-
ary fragmentation, or other reasons. Since GlycoDeNovo only
attempts to interpret non-reducing-end glycosidic fragments,
complementary peaks are computationally added to facilitate
topology reconstruction. The second component of
GlycoDeNovo reconstructs glycan topologies using the peaks
in the enriched list. It calls PeakInterpreter (see pseudo codes
in Algorithm I) to build an interpretation-graph consisting of

nodes and edges to respectively represent peaks and how a
peak can be interpreted as a B or C ion by using the interpre-
tations of preceding peaks. In each iteration, PeakInterpreter
tries to interpret each peak as a B or C ion by attaching up to
four branches to a monosaccharide. The branches are the
interpretations of peaks lighter than the one being interpreted.
Figure 2b shows an example of the interpretation-graph.
GlycoDeNovo then calls CandidateSetReconstructor (pseudo
codes in Algorithm II), which is guided by the interpretation-
graph, to recursively reconstruct all candidate topologies of the
precursor ion. The detailed calculation process for peak inter-
pretation and topology reconstruction that produced the
interpretation-graph in Figure 2 can be found in the Supporting
Materials. Finally, GlycoDeNovo learns an ion classifier from
a collection of experimental data to score all candidate topolo-
gies of the precursor ion. Hereafter, we use the term Btopology^
loosely to denote also the Bpartial topologies^ or Bsub-
topologies^ of non-precursor ions.

Reconstructing Candidate Topologies

Given a spectrum and a user-defined mass accuracy constraint,
PeakInterpreter builds an interpretation-graph that specifies
how to interpret each peak using the topologies of other peaks
with lighter masses. CandidateSetReconstructor takes the
interpretation-graph and reconstructs all candidate topologies
of the precursor ion that satisfy the user-defined mass accuracy
constraint. We first explain the symbols and data structures
used in PeakInterpreter and CandidateSetReconstructor:

� Let G be the set containing all monosaccharide classes of
interest. No attempt is made to differentiate isomeric
monosaccharides.

� The enriched peak list contains a set of peaks sorted
ascendingly by their masses {m1,m2,…,mN}, where mN is
the observed mass of the precursor ion.

� Let τ be the user-defined mass accuracy.
� Each peak, say the n-th peak, has a candidate set sn, which is

represented as <peakID , cmass , lmass , hmass ,
topoReconstructionSet, topologySet>, where peakID = n,
cmass = mn, lmass and hmass, respectively, are the low- and
high-massboundsof the topologies thatcanbeusedto interpret
th i s peak and a re s to red in t opo logySe t , and
topoReconstructionSet is a set containing information for de-
riving topologySet.

� Each member in sn.topoReconstructionSet is an object
topoReconstruction = <root, branchSet, topologySet>
representing a set of topologies that use the same root (a
monosaccharide class∈ G) and choose their branches from
branchSet (each member in branchSet contributes one
branch). Eachmember inbranchSet is a candidate set of a peak
preceding the n-th peak. Basically, each topology in
topoReconstruction.topologySet chooses one branch from the
topologySet of eachmember in topoReconstruction.branchSet.

� A topology is represented by a structure <mass, representation,
supports>,wheremass is its theoreticalmass,representation is a
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text string following the modified IUPAC condensed text no-
menclature without linkage information, and supports contains
peaks in the enrichedpeak list that can be interpreted asB- orC-
type ionsandbegenerated fromthis topology.

� Let S be the candidate pool containing all non-empty can-
didate sets.
The current design of PeakInterpreter allows candidate

topologies to have up to four branches at each branching
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point, but this constraint can be tightened to allow a lower
degree of branching if needed. PeakInterpreter maintains a
candidate pool S. Each candidate serves as a potential
bui lding block for interpret ing a heavier peak.
PeakInterpreter starts from the lightest peak and tries to
interpret every peak as a B ion, C ion, or the precursor ion
by searching for all allowable combinations of building
blocks in the candidate pool S (steps 4–9) that can be
appended to a monosaccharide g to obtain a candidate set
with mass within the accuracy range specified by τ. The
mass difference δ in step 5 depends on the ion type and the
g lycan de r i va t i z a t i on me thod employed ( e . g . ,
permethylation). We use the intensities of non-precursor
peaks interpretable by PeakInterpreter to normalize the
intensities of all peaks into z-scores [26].

We do not need to reconstruct the topologies (i.e.,
sn.topologySet) at this step. Topology reconstruction will be
done later by calling CandidateSetReconstructor after
PeakInterpreter terminates. Although PeakInterpreter does
not have the accurate mass of each candidate topology that is
yet to be reconstructed, the test performed at step 6 gives an
estimate of the mass range tight enough to include all true
positives, but it may also include a small number of false
positives (i.e., topologies with masses outside of the accuracy
range). Because each interpreted peak is still represented as one
yet-to-be-reconstructed candidate set, the false positives will
not increase the computational complexity, and they will be
removed later by CandidateSetReconstructor.

Theorem The complexity of building an interpretation-graph
is O(|G| ×NH + 1), where G is the monosaccharide set, N is the

number of peaks in the given spectrum, and H ≤ 4 is the
maximal branching number permitted.

Proof The computation of PeakInterpretermainly resides in
the for-loop between steps 4 and 9 complexity of which is
O(|G| × |S(n)|H), where S(n) is the value of the candidate pool S at
the n-th loop and |S(n)| is the size of S(n) (i.e., the number of
interpretable peaks up to the n-th loop). The overall complexity
of PeakInterpreter is O(|G| ×∑n = 1

N|S(n)|H). Since |S(n)| ≤ n,
O(|G| ×∑n = 1

N|S(n)|H) =O(|G| ×∑n = 1
NnH) =O(|G| ×NH + 1).

Comment In practice, we found that most peaks cannot be
interpreted so that |S(n)| is often much smaller than n. Therefore,
the empirical complexity of PeakInterpreter has a small con-
stant in O(|G| ×NH + 1).

After obtaining the interpretation-graph, GlycoDeNovo passes
the candidate set object of the precursor ion into
CandidateSetReconstructor to reconstruct all legal candidate
topologies. CandidateSetReconstructor first checks if each
topoReconstruction object r in the input candidate set s has been
reconstructed. If not, it recursively calls itself to reconstruct all
branches of r. Then CandidateSetReconstructor creates all legal
topologies of r (steps 11–19), which are rooted at r.root and
satisfy the mass accuracy constraint. At step 14, the branches
are linked by their alphabetic order to r.root so that isomorphic
topologies can be effectively detected and removed at step 16.
The union operation at step 15 effectively and efficiently solves
the problem of repeated counting of supporting peaks, which was
a problem in GLYCH [19]. Finally, at step 19, the candidate
topology set of r is added to that of s.CandidateSetReconstructor
runs extremely fast, and its running time is negligible compared
with that of PeakInterpreter.

Algorithm I: S PeakInterpreter( { , , … , } )

(1) Initialize the candidate pool S = { }.

(2) for n = 1 to N
(3) Initialize the candidate set sn of the n-th peak: sn.cmass = mn, sn.lmass = mn , sn.hmass = mn

+ , sn.topoReconstructionSet = , sn.topologySet = .

(4) for all possible combinations of up to 4 candidate sets sa, sb, sc, sd S
(5) Calculate lm = sa.lmass + sb.lmass + sc.lmass + sd.lmass

hm = sa.hmass + sb.hmass + sc.hmass + sd.hmass
= mass difference caused by creating a B-ion (or the precursor ion if n = N) 

by linking sa, sb, sc, sd to a monosaccharide.

(6) if g G s.t. (lm, hm) = (mn , mn + ) (g.mass + lm + , g.mass + hm + ) 

(7) Create a topoReconstruction object r = <g, {sa, sb, sc, sd}, >, and add r to 

sn.topoReconstructionSet.
Set sn.lmass = min(sn.lmass, lm) and sn.hmass = max(sn.hmass, hm).

(8) end

(9) end

(11) if sn.topoReconstructionSet , add sn to S, end

(12) end
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One of the major differences between GlycoDeNovo and
previous de novo approaches [19–21, 23, 27] is that it uses the
mass range to confine the search space within the experimental
mass accuracy window without reconstructing any topology
during the peak interpretation process. GlycoDeNovo delays
topology reconstruction until it finishes deriving the interpretation
group of the precursor ion, and hence it only needs to reconstruct
topologies that are required to interpret the precursor ion. In our
experiments, since most of the partial topologies did not lead to
precursor ions, this simple strategy dramatically reduced the
computational time and space. GlycoDeNovo starts from the
non-reducing end to incrementally build up interpretations of B
and C ions because (1) glycosidic fragments are in general
substantially more likely to be observed than cross-ring frag-
ments; and (2) Y and Z ions provide redundant mass information
to B andC ions, and even in cases where onlyY and/or Z ions are
observed at a cleavage site, their information is recaptured in the
enriched peak list. This strategy is different from the one used by
Mizuno et al. [16] and by Sun et al. [22] that start the reconstruc-
tion procedure from the reducing end. Growing topologies from
the reducing end may run into difficulties when dealing with
branching points where each of the branches contain more than
one monosaccharide residue. In such a scenario, some of the
reconstructed topologies can correspond to internal fragments,
which are more likely to be missing in data, thus making it
difficult to evaluate those topologies.

To handle the problem of missing peaks, we made one
modification to PeakInterpreter so that it will consider mono-
saccharide pairs in addition to individual monosaccharides at

step 6. Basically, for each possible ordered pair of monosac-
charides [g1, g2] satisfying the mass accuracy constraint, we
can expand the interpretation graph by (1) creating a
topoReconstruction object r1 that links sa, sb, sc, and sd to g2
and then another topoReconstruction object r2 that links r1 to g1
or (2) for each s in {sa, sb, sc, sd}, creating a topoReconstruction
object r1 that links s to g2 and then another topoReconstruction
object r2 that link r1 ∪ ({sa, sb, sc, sd } – s) to g1. Obviously,
allowing missing peaks greatly increases the search space.
Therefore, we suggest turning this option on only when no
topology can be found without considering missing cleavages.
Biosynthetic rules (e.g., the chitobiose N-glycan core) can also
be incorporated to constrain the search space of
PeakInterpreter.

Scoring Topologies via Machine Learning

Mass spectrometry data can be noisy. In addition, the presence
of internal fragments can greatly complicate the de novo topol-
ogy reconstruction process. PeakInterpreter may misinterpret
some Y, Z, or O ions as B or C ions and generate ambiguities.
Misinterpretation may lead to false topologies being ranked as
high as or better than the correct topology based on the
supporting peak count alone. To tackle this problem, we ap-
plied machine learning to build an IonClassifier for
distinguishing B and C ions from other ion types (Figure 2c).
IonClassifier takes a peak and its context, currently defined as
the neighboring peaks within a predetermined mass-difference

Algorithm II: CandidateSetReconstructor( s )

(1) if s.topologySet
(2) return // s has been reconstructed.

(3) end

(4) for each r s.topoReconstructionSet
(5) if r.topologySet
(6) continue // r has been reconstructed

(7) end

(8) for each branch r.branchSet
(9) CandidateSetReconstructor( branch )

(10) end

(11) for each of all possible branch combinations (a combination is formed by choosing one 

topology from the topologySet of each s r.branchSet)
(12) Calculate tmass = total mass of the topology with the chosen branches linked to r.root.
(13) if tmass (massLow, massHigh)

(14) Create a topology by linking the chosen branches to r.root, let t.mass = tmass.

(15) t.supports = {peakID} {peak supports of t branches}.

(16) Add t to r.topologySet.
(17) end

(18) end

(19) Add r.topologySet to s.topologySet.
(20) end
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Table 1. Glycan Standards Used in This Study

Short Name Formula
Structure (CFG with 

linkage placement notation)

SLA [Neu5Ac(α2-3) Gal(β1-3)] [Fuc(α1-4)] GlcNAc

SLX [Neu5Ac(α2-3) Gal(β1-4)] [Fuc(α1-3)] GlcNAc

Lewis B [Fuc(α1-2) Gal(β1-3)] [Fuc(α1-4)] GlcNAc

Lewis Y [Fuc(α1-2) Gal(β1-4)] [Fuc(α1-3)] GlcNAc

LNT Gal(β1-3) GlcNAc(β1-3) Gal(β1-4) Glc

LNnT Gal(β1-4) GlcNAc(β1-3) Gal(β1-4) Glc

LNFP I Fuc(α1-2) Gal(β1-3) GlcNAc(β1-3) Gal(β1-4) Glc

LNFP II [Gal(β1-3)] [Fuc(α1-4)] GlcNAc(β1-3) Gal(β1-4) Glc

LNFP III [Gal(β1-4)] [Fuc(α1-3)] GlcNAc(β1-3) Gal(β1-4) Glc

CelHex Glc(β1-4) Glc(β1-4) Glc(β1-4) Glc(β1-4) Glc(β1-4) Glc

MalHex Glc(α1-4) Glc(α1-4) Glc(α1-4) Glc(α1-4) Glc(α1-4) Glc

N002

[Neu5Ac(α2-3) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] 

[Neu5Ac(α2-3) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

Man(β1-4) GlcNAc(β1-4) GlcNAc

N003

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] 

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

Man(β1-4) GlcNAc(β1-4) GlcNAc

N012

[Neu5Ac(α2-3) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)]

[[Man(α1-3)] [Man(α1-6)] Man(α1-6)] Man(β1-4)

GlcNAc(β1-4) GlcNAc

N013

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] 

[[Man(α1-3)] [Man(α1-6)] Man(α1-6)] Man(β1-4)

GlcNAc(β1-4) GlcNAc

N222

[Neu5Ac(α2-3) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

[Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] Man(β1-4)

GlcNAc(β1-4) GlcNAc

N223

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

[Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] Man(β1-4)

GlcNAc(β1-4) GlcNAc

N233

[Neu5Ac(α2-3) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] 

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

Man(β1-4) GlcNAc(β1-4) GlcNAc

NA2F

[Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] [Gal(β1-4)

GlcNAc(β1-2) Man(α1-3)] Man(β1-4) GlcNAc(β1-4)

[Fuc(α1-6)] GlcNAc

A2F

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-3)] 

[Neu5Ac(α2-6) Gal(β1-4) GlcNAc(β1-2) Man(α1-6)] 

Man(β1-4) GlcNAc(β1-4) [Fuc(α1-6)] GlcNAc

Man9

[[Man(α1-2) Man(α1-6)] [Man(α1-2) Man(α1-3)] 

Man(α1-6)] [Man(α1-2) Man(α1-2) Man(α1-3)] 

Man(β1-4) GlcNAc(β1-4) GlcNAc
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window (e.g., 105 Da), and classifies the peak as +1 (i.e., a B or
C ion) or –1 (i.e., a non-B or C ion). The neighboring peaks can
be expressed as an array of contextual features (i.e., mass shifts
from the peak of interest). The final score of a candidate
topology is calculated by summing up the IonClassifier values
of its supporting peaks. IonClassifier is trained by boosting [28]
the decision tree classifier [29] on the experimental tandem
mass spectra of a set of known glycans. For each glycan
standard, we can match its theoretical spectrum to the experi-
mental spectrum to collect the observed context of each theo-
retical peak found in the experimental spectrum. We grouped
the supporting peaks of candidates into true B ions, true C ions,
true Y ions, true Z ions, and O ions, and trained IonClassifier to
distinguish true B,ions and true C ions fromY, Z, and O ions. If
a supporting peak is interpreted by PeakInterpreter as a B ion,
it will be validated by the B-ion classifier of IonClassifier.
Similarly, if a supporting peak is interpreted by
PeakInterpreter as a C ion, it will be validated by the C-ion
classifier of IonClassifier.

Experimental
Although GlycoDeNovo can handle glycans containing resi-
due(s) with up to four branches, its performance was tested
only on bifurcated structures due to the availability of glycan
standards. The structures of glycans used in our study are listed
in Table 1.

Materials
Sialyl lewis A (SLA), sialyl lewis X (SLX), lewis B,
lewis Y, lacto-N-tetraose (LNT), and lacto-N-neotetraose
(LNnT) were purchased from Dextra Laboratories (Read-
ing, UK). Lacto-N-fucopentaose (LNFP) I, II, and III
were acquired from V-LABS, Inc. (Covington, LA,
USA). Cellohexaose (CelHex), maltohexaose (MalHex),
A2F, and NA2F glycans were purchased from
Carbosynth Ltd. (Berkshire, UK). Synthetic N-linked gly-
can standards (N002 to N233) were obtained from
Chemily Glycoscience (Atlanta, GA, USA). Man9 N-gly-
can, H2

18O (97%) water, 2-aminopyridine, acetic acid,
dimethyl sulfoxide (DMSO), sodium hydroxide, methyl
iodide, chloroform, sodium borodeuteride, and cesium
acetate were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Pierce PepClean C18 spin columns were
acquired from ThermoFisher Scientific.

Sample Preparation

For reducing-end 18O-isotope labeling, each dry native glycan
(5 μg) was dissolved in 20 μL of H2

18O to which 2 μL of
catalyst solution (2.7 mg/mL 2-aminopyridine in anhydrous
methanol) and 1 μL of acetic acid were added. The reaction
mixture was incubated at 65 oC for 16 h. Solvent was removed
by a SpeedVac concentrator before permethylation. For

deutero reduction, approximately 10 μg each of glycan stan-
dards were incubated with 0.5 M sodium borodeuteride in
0.2 M ammonium hydroxide solution for 2 h at room temper-
ature while mixing, followed by drop-by-drop addition of
acetic acid (10%) until bubbling stopped. The reaction mixture
was dried down in a centrifugal evaporator. Excess borates
were removed by repeated resuspension and drying of the
samples in methanol. Permethylation was performed according
to the method described previously [30, 31]. Briefly, the
underivatized, 18O-labeled, or deutero-reduced glycan was
suspended in 100 μL of DMSO/NaOH solution and gently
vortexed for 1 h at room temperature. Methyl iodide (50 μL)
was added to the reaction mixture and the reaction was allowed
to proceed for another 1 h at room temperature in the dark.
Additional NaOH/DMSO (100 μL) and methyl iodide (50 μL)
were added together followed by 1 h of vortexing. This process
was repeated up to five times to ensure complete methylation
before the reaction was terminated by addition of 200 μL of
chloroform and 200 μL of water. Permethylated glycans were
extracted by liquid–liquid fractionation in water and chloro-
form, and desalted using PepClean C18 spin columns.

Mass Spectrometry Analysis

Permethylated glycans were dissolved to a concentration
of 2–5 μM in 50/50 (v/v) methanol/water solution that
also contains 20–50 μM of sodium hydroxide or cesium
acetate to produce sodium or cesium adducts of
permethylated glycans. For electronic excitation dissocia-
tion (EED) analysis, each glycan sample was loaded onto
a pulled glass capillary tip with a 1-μm orifice diameter
and directly infused into a solariX hybrid Qh-Fourier
transform ion cyclotron resonance (FTICR) mass spec-
trometer (Bruker Daltonics, Bremen, Germany) equipped
with a hollow cathode dispenser. Sodiated or cesiated
precursor ions were isolated by the quadrupole mass
filter, externally accumulated in the collision cell, and
fragmented in the ICR cell by irradiation of electrons for
up to 1 s, with the cathode bias voltage set at –14 V and
the ECD lens voltage at –13.95 V. Each transient was
recorded at a 0.55-s length, and up to 40 transients were
summed for improved S/N ratio. Peak picking and
deconvolution were achieved with the DataAnalysis soft-
ware (Bruker Daltonics), using the SNAP algorithm [32]
with the quality factor threshold set at 0.01, S/N thresh-
old set at 2. All tandem MS spectra were internally
calibrated with several fragment ions assigned with high
confidence to give a typical mass accuracy of <2 ppm.

Results and Discussions
Experimental Considerations

The output accuracy of a computer analysis is intimately tied to
the quality of the input data. For the task at hand, the quality of
the glycan tandem mass spectral data is characterized by its

P. Hong et al.: Efficient Algorithm for Accurate de novo Glycan Sequencing 2295



cleavage coverage and the data ambiguity. Although
GlycoDeNovo can analyze spectral data with missing cleav-
age(s) by considering addition of two monosaccharide residues
at a time during the peak interpretation and topology recon-
struction steps, such a practice inevitably increases the compu-
tational cost by effectively making |G| larger, while leaving part
of the glycan sequence undetermined. Thus, complete se-
quence determination requires glycosidic cleavage at every
linkage site. However, the prevailing glycan fragmentation
method to date, CID, often fails to produce a complete series
of glycosidic cleavages. Lately, a number of radical-induced
dissociationmethods have been applied to structural analysis of
glycans, many of which were capable of producing more
extensive sequence information than CID [33–43]. Among
them, the recently developed EED is a particularly powerful
method, as it can generate rich structural information for glycan
characterization, including linkage differentiation, for a wide
variety of glycans, with or without derivatization [40, 41, 44,
45]. Figure 3 shows the CID and EED spectra and cleavage
maps of deutero-reduced and permethylated LNFP II, [M +
Na]+, with all assigned peaks listed in Supporting Table S1.
Whereas CID failed to cleave between the Fuc and GlcNAc
residues, and between the reducing-end Gal and Glc residues,
EED generated complete sets of B, C, Y, and Z ions. Since
complete elucidation of the glycan topology requires cleavages
of all glycosidic bonds, the performance of GlycoDeNovo was
initially evaluated on EED spectra of glycan standards.

Data ambiguity can arise from several origins. A common
confounding factor in de novo glycan sequencing is the pres-
ence of internal fragments that may be misinterpreted as a
terminal glycosidic fragment with the same saccharide compo-
sition. Permethylation is a useful strategy for differentiating
terminal and internal fragments based on the number of
unmethylated Bscars^ generated by each glycosidic cleavage.
Therefore, all glycans analyzed here were permethylated before
tandemMS analysis. Another challenge is that B and Z ions, as
well as C and Y ions, are isomeric if they contain the same set
of monosaccharide residues. This symmetry may be broken by
18O-stable isotope labeling, leading to a mass shift of 2.004 Da
for all reducing-end fragments. However, because typical 18O-
labeling conditions can lead to facile loss of sialic acid residues,
deutero-reduction was performed as an alternative for glycans
containing sialic acid residues, which introduced a 17.038-Da
mass shift to all reducing-end fragments. A third complicating
factor is that glycans are typically analyzed as metal adducts to
minimize proton-mediated gas-phase structural rearrangement
[46, 47], yet the number of metal cations in a fragment ion does
not always equal to its charge state. Whereas it is possible to
expand the peak list by assigning a fragment ion in n+ charge
state with either n-1, n, or n+1 (if n is less than the precursor ion
charge state) metal cations, this practice not only dramatically
increases the computational time by increasing N, but also
increases the chance of spurious matches. Since analysis of
glycans adducted with a metal cation having a large mass
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defect can facilitate metal counting [41], the performance of
GlycoDeNovo on EED spectra of both sodiated and cesiated
glycans was evaluated here. Finally, glycan tandem mass spec-
tra, especially those generated by EED, can be extremely
complex. All experimental data here were acquired on an
FTICR instrument, as the high mass accuracy measurement it
affords is essential for reducing the chance of fortuitous
matches due to the presence of isobaric (but not isomeric)
fragments.

Topology Reconstruction

The test results for reducing-end modified glycans are summa-
rized in Table 2. The number of peaks in the enriched spectrum
ranged from 216 to 2683. The percentage of interpretable peaks
ranged from ~4.4% to ~23.2%, but the percentage of recon-
structed peaks was substantially lower, ranging from ~1% to
~5.7%, because GlycoDeNovo only needed to build small
interpretation-graphs and reconstruct the topologies of a small
number of peaks. These numbers confirmed the computational
advantage of the strategy used by GlycoDeNovo to first build
the interpretation-graph and delay topology reconstruction after
interpreting the precursor ion. For example, the largest peak list

(from the EED spectrum of a syntheticN-glycan standard of the
hybrid type, N012) contained 2683 peaks with 273 interpret-
able as non-reducing end glycosidic fragments, only 50 of
which needed to be reconstructed.

As the masses used in the GlycoDeNovo algorithm were
those of the singly protonated species, the m/z values of peaks
found in the experimental spectrum, typically those of metal-
adducts, needed to be converted first. To reduce the run time
and to minimize spurious matches, we assumed that the num-
ber of metal cations in a given fragment is the same as its
charge state. Although this may not be the case for all fragment
ions, we asserted that the presence of nonconforming frag-
ments would not prevent reconstruction of the correct topology
so long as at least one fragment ion produced by each glyco-
sidic cleavage carried the same number of metal cations as its
charge state. This appeared to be a reasonable assumption,
since the correct topologies were recovered in all cases studied.
The nature of the metal charge carriers did not seem to have a
major impact on the accuracy of topology reconstruction.

Ultimately, the performance of a de novo glycan sequencing
algorithm should be judged by not only whether it is capable of
deducing the correct topology, but also how the correct topol-
ogy is ranked among all candidate structures. Although

Table 2. Experimental Results

Glycan REM Metal #Peaks #Interpretable #Reconstructed #Candidates Rank by SPN Rank by IonClassifier

Lewis B O18 Cs 329 (133) 18 6 2 1 (0) 1 (0)
Lewis B O18 Na 216 (76) 24 8 4 1 (0) 1 (0)
Lewis Y O18 Cs 461 (193) 28 8 4 1 (0) 1 (0)
Lewis Y O18 Na 283 (105) 26 6 2 1 (0) 1 (0)
LNFP I O18 Cs 469 (209) 45 19 16 1 (1) 1 (0)
LNFP I O18 Na 516 (224) 23 11 13 1 (4) 1 (0)
LNFP II O18 Cs 390 (178) 26 14 16 5 (0) 1 (0)
LNFP II O18 Na 534 (245) 32 12 1 1 (4) 1 (0)
LNFP III O18 Cs 471 (212) 24 11 10 5 (3) 1 (0)
LNFP III O18 Na 477 (210) 21 13 17 3 (2) 1 (0)
LNFP II D-R Na 546 (232) 50 16 13 1 (2) 1 (0)
NA2F O18 Na 2389 (1109) 395 24 22 5 (5) 1 (1)
Man9 O18 Na 2532 (1182) 588 101 1870 205 (563) 1 (4)
A2F Red Na 2646 (1222) 597 151 990750 207829 (201169) 1 (1)
A2F D-R Na 914 (435) 71 25 37 5 (5) 1 (1)
N002 D-R Na 2320 (1063) 262 52 116290 26628 (19903) 1 (0)
N003 D-R Na 1571 (731) 175 49 834 599 (80) 1 (0)
N012 D-R Na 2683 (1229) 273 50 4619 25 (79) 1 (0)
N013 D-R Na 2544 (1179) 351 48 2385 7 (5) 2 (0)
N222 D-R Na 953 (411) 78 18 34 1 (0) 1 (0)
N223 D-R Na 2674 (1189) 226 30 1577 1 (0) 1 (0)
N233 D-R Na 2326 (1078) 234 33 1920 568 (420) 1 (0)
Lewis B None Na 218 (91) 30 9 4 1 (1) 1 (0)
LNT None Na 317 (126) 21 7 5 1 (1) 1 (0)
LNnT None Na 270 (105) 23 9 5 1 (1) 1 (0)
SLA None Na 459 (195) 48 17 14 1 (2) 1 (0)
SLX None Na 333 (125) 55 18 22 1 (2) 1 (0)
CelHex None Na 412 (166) 47 11 11 1 (0) 1 (0)
MalHex None Na 468 (207) 58 18 22 1 (0) 1 (0)

All glycans are permethylated. The BREM^ column indicates the type of reducing end modifications (O18 = 18O-labeled, D-R = deutero-reduced, Red = reduced).
The B#Peaks^ column lists the number of peaks in each enriched spectrum with the number of complementary peaks inside the parentheses. The B#Interpretable^
column lists the number of peaks that can be interpreted as B or C ions byPeakInterpreter. The B#Reconstructed^ column lists the number of peaks reconstructed by
CandidateSetReconstructor. The B#Candidates^ column lists the number of reconstructed topology candidates. The BRank by SPN^ and BRank by IonClassifier^
columns list the rank of the true topology among all inferred candidates using their supporting peaks and IonClassifier, respectively. The number inside the parenthesis
is the number of other candidates that were ranked the same as the true topology. Cells containing bold text in the last column indicate improved ranking by
IonClassifier
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experimental measures, such as permethylation, reducing-end
isotope labeling, and high-mass-accuracy measurement, may
be taken to improve the accuracy of ranking by reducing the
data ambiguity, it is not always feasible to perform all these
procedures experimentally. For example, reducing-end isotope
labeling is only applicable towards glycans with a free reducing
end, and not suitable for O-linked glycans released via reduc-
tive β-elimination that result in a reduced reducing end. The
experimental strategies and necessary modifications to the
GlycoDeNovo algorithm to allow its effective application to
analysis of native (as in not permethylated) glycans are beyond
the scope of the current study, and will be addressed in a later
report. Here, we focus our discussion on the influence of mass
accuracy and reducing-end modification on the performance of
GlycoDeNovo.

The results presented in Table 2 were obtained with the
mass tolerance set to 5 ppm, which was considerably higher
than the typical mass accuracy (<1–2 ppm) achieved here
(see, for example, Supporting Table S1). Nonetheless, the
5 ppm mass tolerance was chosen because it is easily at-
tainable, even without internal calibration, thus allowing
realistic performance evaluation since internal calibration
is not always possible, especially for unknown structures
and/or for LC-MS/MS data. We note that the 5 ppm mass
tolerance was sufficiently tight for differentiating the most
common isobar in glycan tandem mass spectra, with Δm of
0.036 Da (CH4 versus O), for fragment ions with a mass of
up to ~4000 Da. As demonstrated by the numbers in the
BRank by SPN (number of supporting peaks)^ column in
Table 2, our algorithm performed fairly well for small
glycans, including Lewis antigens, human milk oligosac-
char ides (LNFP ’s , LNT, and LNnT) and l inear
hexasaccharides. In most cases, the correct topology was
ranked the highest, either by itself or with a small number
(≤2) of other structures. For larger synthetic N-linked gly-
can standards, the accuracy of SPN ranking is very incon-
sistent, with the rank of the true topology ranging from 1 (0)
out of 1577 candidate structures (N223, deutero-reduced) to
207829 (201169) out of 990750 candidates (A2F, reduced),
where the number inside the parenthesis following the can-
didate rank indicates the number of other candidates that
were ranked the same as the true topology. One way to
improve the ranking accuracy is to enforce the biosynthetic
rules. For N-glycans, when only candidate structures con-
taining the pentasaccharide core (Man3GlcNAc2) were con-
sidered, the rank of true topologies greatly improved. For
example, the number of candidates dropped to 52 from 4619
for N012, with the true topology now ranked at third with
four other structures; for Man9, the rank of true topology
was promoted to 1 (4) out of 6 from 205 (563) out of 1870.
However, sequencing with biosynthetic rules enforced is no
longer truly de novo, and incapable of discovering unusual
structures. Furthermore, even with this option turned on, the
SPN ranking for some N-glycans remains unsatisfactory.
For instance, the rank of the true topology for N233 was
29 (2) out of 32, which is the worst in the shrunk candidate

pool. Clearly, there is a need to develop a better scoring
method for ranking candidate structures. In the next section,
we will demonstrate that IonClassifier gives much better
performance by utilizing the peak context information.

Candidate Ranking by IonClassifier

The analysis result of A2F (reduced, Na+-adduct) offers a
perfect example to showcase the utility of IonClassifier in
candidate ranking. It should come as no surprise that a large
number of candidate topologies (990,750) were derived by
GlycoDeNovo for this 12-residue complex N-glycan (the larg-
est studied here) without a reducing-end label, the enriched
peak list of which contains 2646 peaks. When ranked by SPN
alone, the true topology was placed at the 207,829th along with
201,169 other candidates. This is because PeakInterpreter
misinterpreted 97 peaks as B or C ions. For example, the peak
at m/z 406.2071 was misinterpreted as a B ion, BNeu5Gc^,
which was used to support 34,741 candidates ranked higher
than the true topology; the peak at m/z 464.249 was
misinterpreted as a B ion with two possible topologies, BHex
HexNAc^ and BHexNAc Hex^, which supported 139,971
candidates ranked higher than the true topology. IonClassifier
was able to recognize these peaks as non-B or C ions, and rank
the true topology at 1st based on the cumulative IonClassifier
values of all its supporting peaks. The use of IonClassifier can
also boost the ranking of the true topology for glycans with a
reducing-end isotope label. For example, ranking by
IonClassifier promoted the correct topology of 18O-labeled
Man9 N-glycan (Na+-adduct) from the 205th to the 1st with
four other structures; it also ranked the true topology of every
18O-labeled LNFP glycan as the top candidate by itself. Nota-
bly, this superior performance of IonClassifier was achieved
without enforcing the biosynthetic rules.

Importantly, IonClassifier can be very useful for ranking
topologies for glycans without any reducing-end modification
(including reduction), where misinterpretation of a Y ion as a C
ion or a Z ion as a B ion cannot be avoided based on the
accurate mass measurement alone. We recognized that the
context for a C ion and that for a Z ion can be very different.
For example, a C ion may be accompanied by a 1,5A ion that is
46.005 Da lighter, whereas a Z ion may be accompanied by a
1,5X ion that is 27.995 Da heavier. The topology reconstruction
results for glycans without any reducing-end modification are
shown in the last seven rows of Table 2. For symmetric linear
structures, such as cellohexaose and maltohexaose, the peak
lists for C and Y ion series are identical, so are those for B and
Z ion series, thus there is no need to differentiate C and Y or B
and Z ion pairs. Consequently, ranking by SPN was sufficient
to place the correct topology as the top-ranked candidate by
itself. For asymmetric linear structures (e.g., LNT) and for
branched structures (e.g., SLA), ranking by SPN often resulted
in several structures (including the correct one) sharing the top
rank because of its inability to differentiate C and Y, or B and Z
ion pairs. When ranked by IonClassifier, however, the correct
topology was always ranked the highest by itself. This result is
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significant, as it demonstrates that GlycoDeNovo can be effec-
tively applied to analysis of non-reducing glycans.

Close inspection showed that IonClassifier could detect
meaningful contextual features that were useful for differenti-
ating ion types and identifying fragmentation patterns. Some of
these features can be easily assigned, e.g., Bn – 27.9949 (

1,5An),
Bn + 18.0089 (Cn), Bn + 15.9937 (Cn – 2H), Cn – 46.0052
(1,5An), and Cn + 70.0428 (2,4An+1), whereas others may have
resulted from fragmentation processes that are not yet under-
stood, e.g., Bn + 48.0208 (Bn + CH4O2). IonClassifier also
captured some contextual features that were significantly more
likely to appear in the context of Y, Z, or O ions than in the

context of B or C ions. For example, –46.0052 and +34.0043
were barely observed in the context of B ions, and –14.0152
and +15.9937 appeared scarcely in the context of C ions. The
distributions of these contextual features are shown in Figure 4.
Fragmentation patterns such as these can be difficult for human
eyes to capture because of the volume of data and noises. It is
important to note that the IonClassifier is not perfect and needs
further improvements. In some cases, it was not able to distin-
guish the true topology from a few other candidates because
they shared the same set of supporting (glycosidic) peaks, and
had identical cumulative IonClassifier score. For example, the
canonical Man9 topology shared the top rank with four other

Figure 4. Distributions of example contextual features that are useful for differentiating B (top two rows) and C (bottom two rows)
ions (blue bars) from Y, Z, or O ions (yellow bars). Horizontal axes indicate if a feature exists in a spectrum: 0 – not present; 1 –
present. Vertical axes indicate the percentage of a certain type (or types) of ions displaying or missing a given feature
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structures (Figure 5) even when ranked by IonClassifier. Dif-
ferentiation of structures sharing the same set of supporting
peaks would require consideration of other types of ions, such
as cross-ring fragments, but this cannot be achieved until the
linkage configuration is established, and will be the subject of
future studies.

We adopted the leave-one-out approach for IonClassifier
training, that is, for any given glycan spectrum that was being
tested by IonClassifier, it was excluded from being used to train
IonClassifier. In addition, only the spectral data of reducing-
end modified glycans were used to train IonClassifier. The
rationale is that without any reducing-end modification, many
B (or C) ions would have the same mass as Z (or Y) ions, even
for asymmetric structures, such as B1 and Z1 ions, as well as B3

and Z3 ions, of LNT and LNnT. Because the contexts of
isomeric B and Z, or C and Y ions are essentially the same,
inclusion of these spectral data for training would only serve to
misguide the training of IonClassifier. Nonetheless, the
IonClassifier learned from the spectral data of modified glycans
appeared to work very well for unmodified glycans (see, for
example, the last seven rows of Table 2). This is perhaps not
surprising as the reducing-end isotope-labeling is not expected
to significantly alter the glycan fragmentation pattern. Natural-
ly, presence of similar structural motifs in the training dataset
can boost the performance of IonClassifier. Thus, the accuracy
and robustness of IonClassifier can be further improved as
more experimental data become available for training.

Conclusions
GlycoDeNovo is an efficient and robust algorithm for accurate
reconstruction of glycan topologies from their tandem mass
spectra. It uses an efficient strategy with a polynomial time
complexity to reconstruct candidate topologies. In addition,
GlycoDeNovo is equipped with a machine learning-based
IonClassifier for candidate topology scoring. The experimental
results clearly demonstrated the power of GlycoDeNovo and
IonClassifier for de novo glycan sequencing. The present study
showed that it is possible to automatically learn fragmentation
patterns from real-world tandem MS data. We expect that the
availability of more experimental data will allow us to develop
better machine learning techniques for building a more

powerful and accurate IonClassifier. In the future, we will
improve IonClassifier to further take advantage of local struc-
tural information in decision making. The IonClassifier can be
trained to be specific to different derivatization schemes and
fragmentation modes, thus allowing a broader application of
GlycoDeNovo. Currently, GlycoDeNovo is implemented in
MATLAB, and will be converted into Java for faster compu-
tation. Presently, GlycoDeNovo considers eight common
monosaccharide classes (Xyl, Fuc, Hex, HexA, HexNAc,
Kdo, NeuAc, and NeuGc). Other types of monosaccharide
residues (e.g., HexN, Kdn) can be easily incorporated as need-
ed to expand the capability of GlycoDeNovo to analyze a wide
variety of glycans (e.g., glycans from lower organisms, and
modified glycans).
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