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Abstract. A collision induced dissociation (CID) structure for lossless ion manipula-
tions (SLIM) module is introduced and coupled to a quadrupole time-of-flight (QTOF)
mass spectrometer. The SLIM CID module was mounted after an ion mobility (IM)
drift tube to enable IM/CID/MS studies. The efficiency of CIDwas studied by using the
model peptide leucine enkephalin. CID efficiencies (62%) compared favorably with
other beam-type CID methods. Additionally, the SLIM CID module was used to
fragment a mixture of nine peptides after IM separation. This work also represents
the first application of SLIM in the 0.3 to 0.5 Torr pressure regime, an order of
magnitude lower in pressure than previously studied.
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Introduction

C ollision induced dissociation (CID) is ubiquitous in mass
spectrometry (MS). Since the advent of widely used

Bsoft^ ionization methods (viz. electrospray ionization (ESI)
and matrix-assisted laser desorption ionization (MALDI) [1,
2]), CID has been invaluable for proteomics identification [3–
8] and quantitation [9–11]. An important CID figure of merit is
the CID efficiency (ECID; Equation 1)

ECID ¼
X

Iproduct
� �

100%ð Þ
I0

¼ EFragmentation

� �
ECollectionð Þ 100%ð Þ ð1Þ

where Iproduct is product ion intensity and I0 is the initial
precursor ion intensity. CID efficiency can also be calculated

as the product of fragmentation efficiency (Equation 2) and
collection efficiency (Equation 3).

EFragmentation ¼
X

Iproduct
� �

100%ð Þ
X

Iproducts þ Iprecursor
ð2Þ

ECollection ¼
X

Iproducts þ Iprecursor
� �

100%ð Þ
I0

ð3Þ

where Iprecursor is remaining precursor ion intensity.
Previously, fragmentation techniques, such as photodisso-

ciation [12], surface-induced dissociation [13, 14], and
collision-induced dissociation [15–22] have been coupled to
IMS for mobility-separated fragmentation of precursor ions.
Fragment ions will retain the arrival ions of their respective
precursors, provided the fragmentation occurs after the IM
separation. In addition, recent reports have also demonstrated
IM-selection for action spectroscopy [23, 24]. In this work,
we introduce a new structure for lossless ion manipulations
(SLIM) CID module for CID/MS. SLIM devices have been
previously demonstrated for ion mobility (IM) separations
[25–28], mobility-based ion selection [29], and ion trapping
[30]. In this study, we demonstrate that SLIM is adaptable
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(and highly suitable) to applications outside of IM. We also
show that SLIM devices are not limited to ~4 Torr and can
provide effective ion transmission at lower pressures. The
SLIM CID module was used to dissociate ions after an IM
stage, providing fragmentation precursor peptides after a mo-
bility separation. In this work, we used the well-studied ESI
thermometer ion, leucine enkephalin [31], as well as a mix-
ture of nine peptides, to evaluate the effectiveness of the
SLIM CID module.

Experimental
Leucine enkephalin was prepared in a 1 μMsolution of 50/50/1
(vol/vol/vol) water/methanol/acetic acid. An equimolar 1 μM/
each solution of nine peptides (angiotensin I and II, bradykinin,
fibrinopeptide A, kemptide, melittin, neurotensin, renin sub-
strate tetradecapeptide, and substance P) was also prepared in
50/50/1 water/methanol/acetic acid. Water was purified by a
Ba rn s t e ad Nanopu r e s e t t o 18 MΩ r e s i s t i v i t y
(ThermoScientific, Waltham, MA, USA); peptides were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA), and meth-
anol and acetic acid were purchased from Fisher Scientific
(Pittsburgh, PA, USA). Solutions were infused at 300 nL/min
from a chemically etched emitter nanoelectrospray source [32]
into a home-built IM/MS [21, 22, 33]. The design of the SLIM
module, shown in Figure 1, was based upon previous designs
used for ion mobility separations [25] and other manipulations
[30, 34]. Briefly, ions are confined laterally using DC from
‘guard’ electrodes and vertically by pseudopotentials generated
by rf applied in opposite phase to each adjacent electrode. The
DC/rf electrodes have a superimposed DC gradient applied
across a section of electrodes such that ions will experience a
constant electric field and traverse the device from high to low
DC potentials (left to right in Figure 1). Two SLIM surfaces
fabricated from PCBs are then mounted parallel to each other.
The DC-only guards are black in Figure 1, and electrodes with
both DC and rf are red. There are three independently control-
lable DC regions on the device. The first two regions (gradients
1 and 2) each span 11 DC-only guard electrodes, and the final

region contains a planar quadrupole-like geometry (exit region)
to focus ions into the center of the device for entrance into the
mass spectrometer (Agilent 6538 QTOFMSwith a 1.5 m flight
tube; Agilent Technologies, Santa Clara, CA, USA).
Therefore, higher electric fields suitable for CID can be applied
across two regions: between the first two gradients and between
the second gradient and quadrupole-like region. The DC fields
in the gradients were restricted to a maximum of 15–16 V/cm,
so that fragmentation was minimized when CID fields were not
applied. The guards in the first two regions were biased 10 VDC

higher than the neighboring rf/DC electrodes. All three elec-
trodes in the exit region were biased to the same VDC. For IM/
CID/MS, ions were accumulated in the ion funnel trap [35–37]
and released into the drift tube (4 Torr, 16 V/cm constant field)
in 488 μs pulses. The drift tube was followed by a rear ion
funnel with a conductance limiting orifice, a short rf-only
transmission quad, another conductance limiting orifice, and
the SLIM CID module. Therefore, the pressure in the SLIM
region could be varied without affecting the drift tube pressure.

Results
Leucine enkephalin was chosen as a model peptide for fragmen-
tation as the fragmentation patterns are widely documented and
understood [31]. Figure 2 shows representative spectra of proton-
ated leucine enkephalin. The DC voltage in Figure 2a between
the end of gradient 2 and the exit region (VCID) was 0 V.
Applying a VCID of 30 V (Figure 2b) results in extensive frag-
mentation, including cleavage of all peptide bonds (y4, b2, b3, and
b4). The CID efficiency was 62%, comparing favorably to effi-
ciencies in a triple-quadrupole and for 200 mTorr in a segmented
quadrupole CID (36% in both cases) [21], and dipolar resonant
excitation CID ofmethionine enkephalin at 80mTorr (44%) [22].

Next, the CID efficiencies from applying VCID between gra-
dient 1/gradient 2 and gradient 2/exit region were measured
(Supplementary Figure 1). VCID was increased for each case
until the fragmentation efficiency remained roughly constant
(Equation 2). The maximum CID efficiency from gradient 2/
exit region CID was 62% (30 VCID). The maximum efficiency
when VCID was applied between gradients 1 and 2 was 50%
(20 VCID). The fragmentation efficiency for VCID between gra-
dient 2 and the exit region was 80% and between gradient 1 and
gradient 2 was 84%. Therefore, the increase in CID efficiency for
application of VCID in between gradient 2 and the exit region was
due to increased collection efficiency (77% versus 60%).
Although both methods are equally efficient with the application
of 20 VCID, the collection efficiency was 60% between gradients
1 and 2 and 81%between gradient 2 and the exit region. Changes
in collection efficiency are likely due to stronger ion focusing of
product ions in the quadrupolar region than the rf/DC region,
where ions move in closer proximity to surfaces [26, 27].

Figure 3 shows two nested IM/MS spectra of a nine peptide
mix. Figure 3a was taken with 0 VCID, and Figure 3b was taken
with a 45VCID potential between gradient 2 and the exit region.
After the application of CID, characteristic dissociation

Figure 1. Layout of electrodes on one of the two planar SLIM
surfaces. Black (guard) electrodes are DC-only, and red elec-
trodes are rf/DC. The DC was divided into two separate gradi-
ents of equal length, followed by an independently controlled
DC for the planar pseudo-quadrupole region at the exit, where rf
on the guard electrodes is the same phase and the rf on the
central electrode is 180 out of phase with respect to the guards.
Ions traverse the SLIM module from left to right
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Bladder^ patterns appear in the nested spectra. The product ions
in the nested spectra appear vertically aligned with the arrival
time of the precursor. Extensive dissociation was observed,
showing the utility of IM/SLIM CID for ‘all-ion’
fragmentation.

Conclusions
We have introduced a CID-capable SLIM module including
two CID regions. The most efficient CID was observed when
the VCID was applied between the second voltage gradient and
the exit region. SLIM CID resulted in extensive fragmentation
of the thermometer peptide ion protonated leucine enkephalin.
SLIM CID coupled to an IM separation was exemplified with
all-ion fragmentation of a mixture of peptides. In the future,
SLIM CID will be coupled to high resolution SLIM IM sepa-
rations to give higher peak capacities and direct connectivity of
precursor ions to product ions without requiring mass selec-
tions for data-independent analysis experiments. Additionally,
this study showed the ability of SLIM devices to transmit ions
at lower pressures than pressures used in previous studies (i.e.,

4 Torr). Present work is ongoing to optimize SLIM CID for
higher pressures for more direct coupling to IM measurements
without losses of resolving power or sensitivity due to changes
in pressure. Once SLIM CID is integrated into existing SLIM
modules, slower heating trapping/longer activation time exper-
iments can be performed, which will allow for higher CID
efficiencies.
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Figure 3. Nested IM/MS spectra of a mix of nine peptides at
365 mTorr, 750 kHz, 200 Vp-p rf. (a) 0 VCID, (b) 45 VCID

Figure 2. Representative spectra of protonated leucine en-
kephalin at 265 mTorr, 750 kHz, 200 Vp-p rf. (a) VCID =0. (b)
VCID=30, CID efficiency=62%
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