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Abstract. Abnormalities in mitochondrial metabolism and regulation of energy bal-
ance contribute to human diseases. The consequences of high fat and other nutrient
intake, and the resulting acquired mitochondrial dysfunction, are essential to fully
understand common disorders, including obesity, cancer, and atherosclerosis. To
simultaneously and noninvasively measure and quantify indirect markers of mito-
chondrial function, we have developed a method based on gas chromatography
coupled to quadrupole-time of flight mass spectrometry and an electron ionization
interface, and validated the system using plasma from patients with peripheral artery
disease, human cancer cells, and mouse tissues. This approach was used to in-
crease sensibility in the measurement of a wide dynamic range and chemical diver-

sity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabo-
lomics method allows for quick and accurate identification and quantification of molecules, including the mea-
surement of small yet significant biological changes in experimental samples. The apparently low process
variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of
correlations between interconnected pathways. Our results suggest that delineating the process of energy
generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in
biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust
and noninvasive source of biomarkers in specific pathophysiological scenarios.
Keywords: Arteriosclerosis, Biomarkers, Cancer, Energy metabolism, Gas chromatography, Mitochondrial
dysfunction, Targeted metabolomics
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Introduction

Energy metabolism is the process by which nutrients, such
as carbohydrates and fats, are broken down to generate

adenosine triphosphate (ATP), the main cellular energy store.
A state of energy balance is achieved when energy intake
matches expenditure. Deviations from this homeostatic
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regulation can result in obesity, where energy intake exceeds
demands. Obesity is a pathologic condition that combines
inflammatory and metabolic disturbances, which are the im-
mediate cause and/or consequence of many chronic and lethal
diseases, including diabetes, atherosclerosis, and cancer [1].
Some of the excess energy is stored as triglyceride in adipose
tissue without deleterious effects, but the capacity to store
energy is limited and regulated by poorly understood mecha-
nisms. The subsequent excessive accumulation of lipids and
other metabolites in tissues that are not designed to manage this
condition (e.g., liver, muscle, and pancreas) commonly ensues
in an unhealthy course of metabolic events [2, 3]. Detection
and treatment of subclinical metabolic derangements are chal-
lenging. The clinical picture is difficult to assess because of the
combination of multiple and variable stressors such as inflam-
mation, macrophage recruitment, alterations in muscle func-
tion, or the chemical composition of the diet. However, the
resulting metabolically-related disorders, each with distinct
phenotypes, are united by acquired deficiencies in the mito-
chondrial function and handling of energy [4]. Whether this
association is causal or consequential is a matter of debate.

To provide cellular energy, mitochondria use the free ener-
gy derived from breakdown of fatty acids and glucose to
produce ATP by oxidative phosphorylation. The immediate
outcome of deranged energy processing is the reduced ability
to switch from one fuel source (e.g., glucose) to another (e.g.,
fatty acids), resulting in altered flux between glycolytic path-
ways and oxidative capacity within cells and tissues. The
recognition that mitochondria may play a central role in disease
has renewed interest in the Randle cycle and theWarburg effect
in the pathogenesis of common diseases [5, 6], and may be
relevant because the inefficient use of glucose, lipotoxicity, and
decreased fat oxidation are key mechanisms to explain most
noncommunicable diseases [7, 8]. Consequently, the pharma-
cologic modulation of mitochondrial function mimicking the
effect of exercise and/or caloric restriction may be an attractive
therapeutic strategy [9, 10].

In cell-based models, it is relatively simple to assess mito-
chondrial dynamics, mitophagy (mitochondrial elimination),
and pathways aimed to restore and/or maintain mitochondrial
function [11, 12]. Assessment in vivo is considerably more
challenging and requires sophisticated analytical platforms and
stable isotopes to measure metabolites [13, 14]. We recently
demonstrated that mitochondrial dysfunction could be assessed
in plasma (i.e., noninvasively) using indirect markers of altered
cellular energy metabolism [15]. Contrary to the belief that a
high-throughput platform for massive metabolite profiling
without accurate quantification of each metabolite is the meth-
od of choice to provide useful data, we hypothesized that a
targeted approach, avoiding the intensive use of bioinformatics
and making available actual changes in the concentration of
metabolites under different experimental conditions, would be
a valuable addition to current analytical tools. To this end, we
have designed a simple and rapid method using advances in the
technology of gas chromatography coupled to quadrupole
time-of-flight mass spectrometry with an electron impact

source (GC-EI-QTOF-MS). The method is sensitive for the
accurate and simultaneous measurement of organic acids par-
ticipating in the citric acid cycle (CAC) and selected metabo-
lites representative of the catabolic and anabolic status of
several biological systems. We also reasoned that the quantita-
tive exploration of mitochondrial function might rapidly iden-
tify correlations between related pathways of metabolism, fa-
cilitating the understanding of metabolic conditions. Our re-
sults support the usefulness of this technique in in vitro and
in vivo settings, and ongoing studies point to a potentially
valuable role as a recently available methodology in the search
for quantitative biomarkers of disease in epidemiologic cohorts
and drug targets to restore cellular energy homeostasis [16–18].

Material and Methods
Chemicals

Methanol (MS grade), methoxyamine hydrochloride (MA),
pyridine, N-methyl-N-(trimethylsilyl)-trifluoroacetamide
(TMS) and standards (2-hydroxyglutarate, 3-hydroxybutyrate,
3-phosphoglycerate, 6-phosphogluconate, α-ketoglutarate,
acetyl-CoA, aconitate, alanine, aspartic acid, citrate, fructose-
1,6-bisphsophate, fructose-6-phosphate, fumarate, glucose,
glucose-6-phosphate, glutamate, glutamine, glyceraldehyde-
3-phosphate, isoleucine, lactate, leucine, malate, malonyl-
coenzyme A, oxaloacetate, phosphoenolpyruvate, pyruvate,
ribose-5-phosphate, serine, succinate, and succinyl-coenzyme
A and valine) were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

Instrumentation

We used a 7890A gas chromatograph coupled with an electron
impact source to a 7200 quadrupole time-of-flight mass spec-
trometer equipped with a 7693 autosampler module and a J&W
Scientific HP-5MS column (30 m × 0.25 mm, 0.25 μm)
(Agilent Technologies, Santa Clara, CA, USA). Helium was
used as a carrier gas at a flow rate of 1.5 mL/min in constant-
flow mode. The initial oven temperature was set to 70°C,
increased to 190°C at 12°C/min, then raised to 325°C at a rate
of 20°C/min and held for 3.25 min. For the MS, ionization was
performed using electron impact with a source temperature of
230°C using an electron energy of 70 eV, an emission intensity
of 35 μA, and a mass-to-charge range from 70 to 400 m/z. The
initially selected metabolites to be identified and quantified
using this GC-EI-QTOF-MS method are shown in Figure 1,
and the selection criteria were based on available knowledge
[19].

Isolation and Preparation of Biological Samples

To test the analytical performance and robustness of the meth-
od in different biological systems, we used human plasma, cell-
culture lysates, and rodent tissues. The procedures used in
humans were performed according to protocols approved by
our Ethics Committee and Institutional Review Board, and all
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participants signed an informed consent (EPINOLS 12-03-29/
3proj6). Briefly, these included the recruitment of 50 ostensibly
healthy participants, aged between 55 and 65 y with an ankle-
brachial index (ABI) >0.9, which were body weight- and age-
matched with patients presenting intermittent claudication (i.e.,
peripheral artery disease), ABI <0.9 and staged at grade II
according to Fontaine. A sample of blood was drawn from
each patient. Participants with diabetes mellitus were excluded
to avoid metabolic bias and to limit variability. Further clinical
details on the inclusion and exclusion criteria have been previ-
ously described [20].

To test the performance of the method in cultured cells, we
used MCF10A cells infected with a retroviral KRASV12 ex-
pression construct, which were generously provided by the

Ben-Ho Park’s laboratory and maintained under the previously
described culture conditions [21]. Cells were grown to conflu-
ence in 6-well plates, then trypsinized and counted (approxi-
mately 2 × 106 cells per experiment). We pooled the results
obtained in four experiments in triplicate (n = 12).

LDL receptor-deficient (Ldlr–/–) mice develop spontaneous
hyperlipidemia and are a useful model for studying atheroscle-
rosis since they present features similar to those observed in the
human metabolic syndrome. Mice (C57BL/6J background,
The Jackson Laboratory) were housed under standard condi-
tions and given a commercial low fat mouse diet (14% protein
rodent maintenance diet; Harlan, Barcelona, Spain). Male mice
were sacrificed at 24 wk of age following previously described
procedures [22] and tissues (liver and epididymal white

Figure 1. (a)Metabolic pathways ofmeasuredmetabolites involved in energymetabolism. (b) Extracted compound chromatogram
(ECC) of the quantifier ion of all metabolites, numbered according to their elution order. ECCwas obtained after deconvolution of raw
data with a retention time window size factor of 100.00, a signal-to-noise threshold of 2.00 and an absolute area filter of 5000 counts
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adipose tissue; n = 10 samples, each tissue) were extracted. All
procedures were carried out in accordance with institutional
guidelines (CEIA, 2014-237).

To ensure high quality data and reduced false discov-
ery rates, a rigorous optimization of pre-analytical steps
prior to chromatography was essential. This may vary
between laboratories and experimental conditions but in-
cludes sample collection, storage, pretreatment and clean-
up, as well as software parameters used in data align-
ment and peak picking. It is particularly important to
minimize the time between sample collection and storage
at –80°C to less than 1 h to reduce variability. Of note,
this method may be used in the quantification of 13C
isotopic substrates (data not shown), indicating its suit-
ability for metabolic flux analysis to define the pattern of
carbon flow through a metabolic network in cells and
tissues [23].

Metabolite Extraction

We investigated different extraction protocols and found
that methanol/water (4/1) extraction was efficient for
these metabolites. To minimize complexity in the metab-
olite extraction, we used methanol/water (4/1) mixed
with deuterated D4-succinic acid as surrogate standard
(MeOHW-D4S) to obtain a final concentration of 1 μg/
mL. The choice of a unique surrogate standard was
considered sufficient as injection quality control and
considerably simplifies the procedure. Further, although
this method was designed for targeting metabolomics,
during experimentations it is not uncommon to require
measurement of additional metabolites in the same sam-
ples by nuclear magnetic resonance (NMR) or LC/MS.
With these procedures, results did not differ significantly
using isotopic compounds as internal standard, and there
was no need for solvent exchange as previously de-
scribed [24–26].

Thawed plasma (100 μL) was added to 900 μL of
MeOHW-D4S, vortexed, placed at –20°C for 2 h to
precipitate proteins, and centrifuged at 14,000 rpm for
10 min at 4°C to collect the supernatant. As a cautionary
note, the use of lower amounts of plasma results in the
lack of reliable detection of some metabolites present at
low concentrations (e.g., acetyl-CoA or oxaloacetate).
Cell pellets were resuspended in 500 μL of MeOHW-
D4S, lysed with three cycles of freezing and thawing
using liquid N2 and sonicated with three cycles of 30
s. Samples were maintained on ice for 1 min between
each sonication step. Proteins were precipitated, samples
centrifuged, and supernatant collected. Animal tissues
(100 mg) were placed in plastic tubes containing 1 mL
of MeOHW-D4S and homogenized using a Precellys 24
system (Izasa, Barcelona, Spain). After centrifugation at
14,000 rpm 10 min at 4°C, supernatant was collected
and the homogenization step was repeated. Then proteins
were precipitated, samples centrifuged, and supernatant

collected. The extraction of nonpolar compounds was
performed adding chloroform to have a final proportion
of chloroform/methanol (2/1), according to Folch proto-
col [27]. All supernatants were further vortexed, centri-
fuged, filtered using 0.22 μm filters, and freeze-dried
overnight.

Derivatization

Samples were dried under N2 and derivatized to rapidly form
silyl derivatives. Briefly, in order to protect ketone groups [28],
we added 30 μL of methoxylamine hydrochloride dissolved in
pyridine [40 mg/mL (0.48 M)] to each sample, which was then
incubated for 1.5 h at 37°Cwith agitation. Then, 45 μL of TMS
was added and samples were agitated for 10 min and placed in
the dark for 1 h and transferred into a vial before immediate
analysis.

Data Analysis

Raw data were processed and compounds were detected and
quantified using the Qualitative and Quantitative Analysis
B.06.00 software (Agilent Technologies), respectively.
Results were compared by one-way ANOVA with Dunnett’s
multiple pair-wise comparison tests using a significance thresh-
old of 0.05. Other calculations including comparisons with the
U of Mann–Whitney test and/or correlations were made using
GraphPad Prism software 6.01 (GraphPad Software, San
Diego, CA, USA).

Results and Discussion
Method Validation

Calibration curves were obtained for each metabolite by
plotting the standard concentration as a function of the
peak area. Because the differences in concentration of
some metabolites may be highly variable, we required, in
some cases, the simultaneous use of different calibration
curves covering the expected concentration range for
each metabolite. Recovery of each metabolite was calcu-
lated and the variation in the percentage of recovery was
between 83% and 99%. Ten points of the selected range
of all calibration curves were injected and showed line-
arity with regression coefficients higher than 0.99. The
limit of detection (LOD) and quantification (LOQ) for
each metabol i t e were ca lcu la ted accord ing to
International Union of Pure and Applied Chemistry rec-
ommendations [29]. Within-day precision or repeatability
was calculated injecting each standard on the same day,
and between-day repeatability on 5 separate d (n = 5 repli-
cates at three concentration levels) and expressed as relative
standard deviation (RSD). Values for each metabolite were
considered excellent (RSD from 0.65% to 3.68% and from
1.12 to 4.15%, respectively). Selected and relevant validation
parameters are shown in Table 1, and results for other variables
may be also examined in Supplemental Table 1.
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Identification and Quantification

The relevant analytical data are summarized in
Supplemental Table 2. For some organic acids (3-
hydroxybutyrate, fumarate, lactate, oxaloacetate,
phosphoenolpyruvate, pyruvate, and succinate) and the
internal standard (D4-succinate), the ion [M]+ was used
as qualifier ion and the most abundant ion [M-CH3]

+

resulting from the characteristic loss of a methyl group
in TMS after the electron impact, was used as quantifier
ion. As shown in Figure 2a, the proposed quantifier ion
of acetyl-CoA was observed at m/z 219, which is the
result of acetate moiety linked to S–C2H4–N–TMS from
the 4'-phosphopantetheine moiety included in the CoA
moiety. The subsequent loss of 15 u suggests the loss
of a methyl group from the TMS resulting in an ion at
m/z 204 that was used as qualifier. For malonyl-CoA, the
loss of the TMS from the acid group in malonate moiety
linked to S–C2H4–N–TMS from the CoA moiety gives a
qualifier ion with m/z at 262. The presence of other
minor ions with a consecutive loss of 16 u (m/z 246
and 230) suggest the loss of the TMS group linked to
the acid group of the malonate moiety, which can lose
two oxygen atoms consecutively. This is followed by the

loss of the methoxyl group from the methoxyamine,
giving an ion at m/z 187. To stabilize this ion, a rear-
rangement is made through a cyclation between the rad-
icals CH2• in malonate moiety and the N• linked to the
TMS (Figure 2b). A similar reasoning was used to ex-
plain the presence in succinyl-CoA of an ion at m/z 276
(qualifier) and minor ions at m/z 260 and 244. The N–
TMS group and t h e me thy l g roup f r om the
methoxyamine are finally lost, giving a quantifier ion at
m/z 174. In this case, to stabilize this structure, the CH2•
radical should be linked to the oxygen from the
oxyamine group (Figure 2c). Special attention is required
in the identification of phosphate compounds (Figure 2d)
because they yield three characteristic fragments [30] and
retention time is crucial. Quantifier and qualifier ions
used to identify phosphate compounds are summarized
in Supplemental Table 2. Of note, with this method
isocitrate and citrate have the same retention time. In
addition, both give a qualifier ion corresponding to the
loss of a carboxyl group and the most abundant ion was
[M-COOTMS-OTMS]+ due to the consecutive loss of an
OTMS group from the ion ([M-COOTMS]+ (Figure 2e).
Although the signal for isocitrate using pure standards is

Table 1. Validation method parameters: regression curve values (slope and intercept), linearity, limit of detection (LOD), limit of quantification (LOQ), intra- and
interday % RSD, and recovery (see also Supplemental Table 1)

Metabolite Slope / intercept Linearity (R2) LOD (μM) LOQ (μM) Intraday RSD (%) Interday RSD (%) Recovery (%)

2-Hydroxyglutarate 330378 / –64056 0.9991 0.127 0.425 1.12 1.95 91.65
3-Hydroxybutirate 101090 / –15769 0.9976 0.010 0.032 0.65 1.15 96.74
3-Phosphoglycerate 237249 / –2135051 0.9993 0.065 0.215 2.24 3.05 85.65
6-Phospho-gluconate 526980 / –1258050

87569 / –284587
0.9987 0.9989 0.527 1.758 3.21 3.98 89.35

α-Ketoglutarate 128155 / 14577 0.9997 0.029 0.098 1.14 2.08 94.99
Acetyl-coenzyme A 10158 / 1785 0.9972 0.610 2.030 1.98 3.01 84.12
Aconitate 749201 / –788502 0.9990 0.010 0.032 2.98 3.65 88.68
Alanine 1987694 / –229517 0.9994 0.288 0.959 1.25 2.34 97.48
Aspartic acid 1715209/ –28378 0.9996 0.835 2.783 0.84 1.25 98.02
(Iso)citrate 1469611 / –271860 0.9996 0.039 0.130 2.54 2.96 93.58
Fructose-1,6-bisphosphate 140842 / –428131 0.9981 0.117 0.389 1.65 2.15 83.26
Fructose-6-phosphate 824733 / –956090 0.9987 0.146 0.487 1.29 1.99 88.69
Fumarate 1119413 / –117375 0.9997 0.040 0.132 0.99 1.34 91.68
Glucose 113676 / –74297 0.9997 0.009 0.029 1.54 2.03 97.35
Glucose-6-phosphate 1040659 / –2961082 0.9990 0.039 0.129 2.14 2.97 96.67
Glutamate 1371976 / –306806

284354 / –76489
0.9989
0.9990

0.334 1.114 3.05 4.01 94.31

Glutamine 477954 / –224408
957845 / –79154

0.9988
0.9987

0.114 0.380 2.87 3.56 93.11

Glyceraldehyde-3-phosphate 85106 / –44424 0.9979 0.029 0.096 1.32 1.68 87.64
Isoleucine 1652773 / 219943 0.9996 0.108 0.360 0.96 1.42 98.39
Lactate 23667 / 77898 0.9998 0.021 0.070 0.86 1.74 98.96
Leucine 1735828 / 422255 0.9993 0.102 0.340 1.33 1.89 96.84
Malate 336640 / –57888 0.9992 0.113 0.377 0.92 1.12 91.64
Malonyl-coenzyme A 16769 / –359 0.9989 0.039 0.130 2.73 3.06 85.23
Oxaloacetate 70439 / –43811 0.9991 0.590 1.966 3.68 4.15 89.34
Phosphoenolpyruvate 285046 / –222284 0.9981 0.313 1.044 2.38 3.18 92.48
Pyruvate 379309 / 156902 0.9991 0.060 0.200 1.01 1.69 94.67
Ribose-5-phosphate 553740 / –344047 0.9976 0.202 0.675 1.79 2.06 94.58
Serine 1461082 / 11922 0.9999 0.304 1.012 1.14 1.79 97.46
Succinate 176185 / 7109 0.9997 0.077 0.258 0.91 1.35 98.74
Succinyl-coenzyme A 34216 / 5480 0.9998 0.020 0.086 2.06 2.67 87.56
Valine 1836799 / 46946 0.9994 0.098 0.326 1.05 1.68 98.12
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significantly less intense, results were expressed as
(iso)citrate to denote the lack of chromatographic sepa-
ration. The quantifier ion for glucose, which is
derivatized with five TMS and one MA group
(Figure 2f) is [M-CH2-CH-NOCH3-2OTMS]+ (attribut-
able to the loss of the methoxyamine group and the
CH where it is linked, an OTMS group and a CH2-
OTMS group), and the subsequent loss of an additional
CH-OTMS group results in the qualifier ion [M-CH2-
2CH-NOCH3-3OTMS]+ [31].

In contrast, the interpretation for alanine, valine, leu-
cine, isoleucine, serine, aspartic acid, glutamic acid, ma-
late, and glutamine is simpler because [M-CH3]+ is con-
stant (qualifier ion) and [M-COOTMS]+ is identified as
the quantifier ion. [M-CH3]

+, however, was the qualifier
ion and [M-COOTMS]+ the quantifier ion for 2-

hydroxyglutarate. Aconitate also shows [M-CH3]
+ as

qualifier ion after derivatization with three TMS groups.
The loss of two TMS groups and a methyl from the third
TMS group yields the quantifier ion [M-2TMS-CH3]

+.
Finally, [M-OCH3]

+ (loss of the OCH3 from the
methoxiamine group) is the qualifier ion for α-
ketoglutarate, and the additional loss of an OTMS results
in the quantifier ion [M-OCH3-OTMS]+.

Applications in Biological Samples

In our previous efforts with untargeted metabolomics
using LC/MS and GC/MS platforms, we found that com-
parisons between groups were limited by the lack of
accurate quantification [32–34]. Conversely, the use of
a nuclear magnetic resonance platform [25, 26] provided

Figure 2. Fragmentation pattern of (a) acetyl-CoA, (b)malonyl-CoA, (c) succinyl-CoA, (d) phosphate group, (e) (iso)citrate, and (f)
glucose
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excellent reproducibility to quantify certain metabolites
but low sensitivity to quantitatively measure the selected
metabolites as indirect markers of energy metabolism and
mitochondrial function, which included intermediates of
glycolysis, the pentose phosphate pathway, branched
chain amino acids, and the organic acids of the CAC.
We therefore developed the present GC-EI-QTOF-MS
analytical platform to measure, after derivatization, these
selected compounds, and we found it reliable for use in
different biological systems (Tables 2, 3 and 4).

In the first analysis, we compared plasma from
healthy controls and patients with stage II peripheral
artery disease. Samples injected in triplicate produce
RSD values that were similar to those obtained in the
precision study. The concentrations of these metabolites
have not been previously examined in this condition but
metabolites involved in the CAC have been previously
suggested as biomarkers of myocardial infarction [35].
Blood was drawn from our patients when they were free
of clinical signs of ischemia (i.e., after 1 h of inactivity).
Controls with uncompromised circulation in the limb
arteries (i.e., ABI > 0.9) had similar cardiovascular risk
factors including age, hyperlipidemia, body weight, and
current (not past) smoking habit (data not shown). This
comparison was designed exclusively for testing

analytical performance in plasma and no clinical impli-
cations were intended. Nevertheless, the high concentra-
tions of aconitate, isocitrate, malate, α-ketoglutarate, and
succinyl-coenzyme A in patients indicate that mitochon-
drial function is stimulated rather than inhibited (i.e.,
contrary to that expected in ischemic conditions)
(Table 2). In addition, we found elevated levels of
branched chain amino acids, which may also indicate
an increased mitochondrial function via their conversion
to β-hydroxybutyrate and succinyl-coenzyme A. This
may seem paradoxical because elevated levels of
branched chain amino acids are usually associated with
poor health and cardiovascular disease. One explanation
might be the increased endothelial proliferation and ac-
cumulation of immune cells resulting in a higher diffu-
sion of these metabolites into the circulation, but may
also indirectly point to increased breakdown in the leg
muscles [36, 37].

The lack of circulating phosphate compounds was
expected considering the hydrophobic nature of the cel-
lular membrane, and it may similarly indicate an absence
of significant cellular destruction. Under these conditions,
only lactate, which is significantly decreased, may indi-
rectly indicate normal to low glycolytic flux. Also, sig-
nificant increases of glutamate and glutamine were

Table 2. Metabolite concentrations in plasma (in μM) from selected participants and expressed as mean ± SD. Fold change and significance (P value) are also
reported and decimals were set according to the first significant digit of the measured SD

Metabolite Plasma control (n = 50) Plasma PAD (n = 50) Fold change P value

2-Hydroxyglutarate 9.2 ± 0.4 9.0 ± 0.3 –1.02 N.S.
3-Hydroxybutirate 0.13 ± 0.01 0.31 ± 0.07 2.38 <0.0001
3-Phosphoglycerate - - - -
6-Phosphogluconate - - - -
α-Ketoglutarate 3.3 ± 0.2 4.6 ± 0.4 1.39 0.0091
Aconitate 0.52 ± 0.01 4.4 ± 0.9 8.46 <0.0001
Alanine 211 ± 11 203 ± 27 –1.04 N.S.
Aspartic acid 133 ± 3 199 ± 11 1.50 <0.0001
(Iso)citrate 279 ± 13 706 ± 22 2.53 <0.0001
Fructose-1,6-bisphosphate - - - -
Fructose-6-phosphate - - - -
Fumarate 0.33 ± 0.02 0.26 ± 0.03 –1.27 <0.0001
Glucose 4856 ± 305 5044 ± 346 1.04 N.S.
Glucose-6-phosphate N.Q. N.Q. - -
Glutamate 462 ± 366 5197 ± 317 11.25 <0.0001
Glutamine 1115 ± 206 3691 ± 237 3.31 <0.0001
Glyceraldehyde-3-phosphate - - - -
Isoleucine 49 ± 1 63 ± 2 1.29 <0.0001
Lactate 395 ± 8 359 ± 13 –1.10 0.0323
Leucine 73 ± 2 90 ± 3 1.23 0.0032
Malate 1.57 ± 0.08 3.0 ± 0.3 1.91 <0.0001
Malonyl-coenzyme A N.Q. N.Q. - -
Oxaloacetate 54 ± 5 N.Q. - -
Phosphoenolpyruvate - - - -
Pyruvate 11 ± 1 10 ± 1 –1.1 0.0270
Ribose-5-phosphate - - - -
Serine 104 ± 2 145 ± 4 1.39 <0.0001
Succinate 10.7 ± 0.1 12.2 ± 0.4 1.14 N.S.
Succinyl-coenzyme A 6.6 ± 0.9 11.9 ± 0.9 1.80 0.0014
Valine 88 ± 2 105 ± 3 1.19 N.S.

PAD: Peripheral Artery Disease
N.Q.: detected metabolite, but under limit of quantification
N.S.: not significant p-value
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observed in patients with active atherosclerosis in the
limbs, indicating a distinct use of these metabolites in
this setting. Our results confirm the validity of our hy-
pothesis with respect to the usefulness of the method to
explore the energy metabolism in vivo. These findings
may have implications in the search for possible bio-
markers and to assess the effectiveness of therapeutic
strategies.

We found that the metabolic activity of MCF10A
cells engineered to overexpress oncogenic KRAS was
significantly higher than MCF10A parental cells under
the same culture conditions, strongly suggesting that
metabolic reprogramming occurs in breast epithelial cells
carrying the constitutively active KRASV12 gene
(Table 3). Of note, we were able to detect 2-
hydroxyglutarate in MCF10A-KRASV12 cells, which is
a product of the mutated isocitrate dehydrogenase and
is considered to be an oncometabolite [38]. Further, the
increased concentration in some amino acids and indirect
markers (ribose-5-phosphate) of metabolic activity in the
pentose phosphate pathway were considered as an indi-
cation of a higher generation of biomass and endogenous
antioxidants in MCF10A-KRASV12 cells to eradicate the
reactive oxygen species generated by the accelerated
metabolism [39] (Table 3). The increased concentration
of glucose-6-phosphate suggests both increased glucose

transport and glycolysis, and indeed lactate production
was significantly increased in mutated cells with respect
to their isogenic controls. The overall results suggest the
dependence on glycolysis for growth, indicative of the
Warburg effect. Consequently, our analytical method
may be used to perform experiments under different
glucose environments and to explore the effect of drugs
acting on either glucose uptake or mitochondrial
functioning.

We next wished to determine whether this method
could be used to explore energy metabolism in a relevant
disease model. The simplest approach to test the func-
tionality of the technique was to isolate tissues from
mice with different mitochondrial load and importance
in energy production. Thus, we compared the concentra-
tion of metabolites in adipose tissue and hepatic tissue
and found significant differences in the concentration of
measured metabolites (Table 4). Some were immediately
expected (e.g., amino acids and CAC intermediates). We
also found that oxaloacetate and phosphoenolpyruvate
were barely detectable in adipose tissue, and the concen-
tration of malonyl-CoA was similar in both tissues. No
attempt was made to explore the putative metabolic
pathways involved (e.g., lipogenesis), but results show
that this method can be used to interrogate metabolic
alterations related to excessive energy intake, obesity,

Table 3. Metabolite concentration in MCF10A and MCF10A-KRASV12 cells (in μM/mg of protein) expressed as mean ± SD, fold change, and significance (P
value). Decimals are reported according to the first significant digit of the measured SD

Metabolite MCF10A (n = 12) MCF10A-KRASV12 (n = 12) Fold change P value

2-Hydroxyglutarate - 0.22 ± 0.04 - -
3-Hydroxybutirate 5.0 ± 0.4 1.78 ± 0.09 –2.81 0.0079
3-Phosphoglycerate 0.28 ± 0.09 36.73 ± 5.13 131.18 <0.0001
6-Phosphogluconate 8.8 ± 1 19.34 ± 2.32 2.20 0.0167
α-Ketoglutarate 0.23 ± 0.08 2.18 ± 0.23 9.48 <0.0001
Aconitate 0.21 ± 0.07 0.14 ± 0.01 –1.50 0.0387
Alanine 65 ± 6 156 ± 21 2.40 0.0067
Aspartic acid 48 ± 6 408 ± 32 8.50 <0.0001
(Iso)citrate 6.3 ± 0.9 5.3 ± 0.6 –1.19 N.S.
Fructose-1,6-bisphosphate N.Q. 6.4 ± 0.9 - -
Fructose-6-phosphate - N.Q. - -
Fumarate 2.4 ± 0.4 10.6 ± 0.6 4.42 <0.0001
Glucose 2.7 ± 0.2 0.22 ± 0.01 –12.27 <0.0001
Glucose-6-phosphate 0.16 ± 0.03 0.64 ± 0.07 4.00 0.0268
Glutamate 10.9 ± 0.6 289 ± 52 26.51 <0.0001
Glutamine 5.8 ± 0.7 5.9 ± 0.7 1.02 N.S.
Glyceraldehyde-3-phosphate 1.6 ± 0.4 1.3 ± 0.4 –1.23 N.S.
Isoleucine 14 ± 2 35 ± 6 2.50 0.0341
Lactate 288 ± 34 812 ± 12 2.82 <0.0001
Leucine 41 ± 8 34 ± 4 –1.21 N.S.
Malate 0.7 ± 0.2 5.0 ± 0.3 7.14 <0.0001
Malonyl-coenzyme A 88 ± 1 40.7 ± 0.6 –2.16 0.0048
Oxaloacetate - 14 ± 2 - -
Phosphoenolpyruvate N.Q. 13 ± 4 - -
Pyruvate 7 ± 1 94 ± 14 13.43 <0.0001
Ribose-5-phosphate - 4.9 ± 0.8 - -
Serine 47 ± 9 48 ± 3 1.02 N.S.
Succinate 12 ± 2 11 ± 2 –1.09 N.S.
Succinyl-coenzyme A 17.3 ± 0.5 31 ± 6 1.79 0.031
Valine 25 ± 2 24 ± 1 –1.04 N.S.

N.Q.: detected metabolite, but under limit of quantification
N.S.: not significant p-value
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and the development of associated metabolic dysfunction
in the liver (e.g., fatty liver disease).

Method Limitations

This method requires a derivatization procedure, which in-
creases the time used for sample preparation. It should also
be considered that the stability of derivatized compounds is
limited to a relatively short period of time (not more than 24 h).
Although most authors consider citric acid as the only com-
pound found at its time of retention, our efforts to distinguish
between isomers were unsuccessful. Finally, because of the
low ionization of acetyl-CoA, the concentration in biological
samples is not readily detected using GC-MS. To detect this
and other possibly useful important metabolites, other analyt-
ical platforms are required. Methods using liquid
chromatography-mass spectrometry [40–42] are available and
provide an accurate approach.

Conclusion
We have developed a simple analytical method using GC-EI-
QTOF-MS to separate, detect, and quantify numerous metab-
olites involved in energy metabolism, including glycolysis, the
CAC, and pathways involved in metabolism of lipids, amino

acids, and pentose phosphate. This method delivers an overall
assessment of metabolism in biological samples used in pre-
clinical and clinical investigation: namely, cell-culture lysates,
mouse models of disease, and patient plasma. We have found
that GC-EI-QTOF-MS provides better resolution and repro-
ducibility than other available analytical platforms [43] to
accurately quantify multiple metabolites. In particular, the
measurement of intermediates involved in mitochondrial me-
tabolism, in all likelihood, represents a major advance in the
assessment, in vitro, of mitochondrial dysfunction in cells and
tissues. The indirect measurement of these intermediates in
plasma should be considered as an alternative to assess the
mitochondrial dysfunction in vivo for the clinical management
of common metabolic diseases.
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