Skip to main content
Log in

Role of Cationization and Multimers Formation for Diastereomers Differentiation by Ion Mobility-Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Stereochemistry plays an important role in biochemistry, particularly in therapeutic applications. Indeed, enantiomers have different biological activities, which can have important consequences. Many analytical techniques have been developed in order to allow the identification and the separation of stereoisomers. Here, we focused our work on the study of small diastereomers using the coupling of traveling wave ion mobility and mass spectrometry (TWIMS-MS) as a new alternative for stereochemistry study. In order to optimize the separation, the formation of adducts between diastereomers (M) and different alkali cations (X) was carried out. Thus, monomers [M + X]+ and multimers [2M + X]+ and [3M + X]+ ions have been studied from both experimental and theoretical viewpoints. Moreover, it has been shown that the study of the multimer [2Y + M + Li]+ ion, in which Y is an auxiliary diastereomeric ligand, allows the diastereomers separation. The combination of cationization, multimers ions formation, and IM-MS is a novel and powerful approach for the diastereomers identification. Thus, by this technique, diastereomers can be identified although they present very close conformations in gaseous phase. This work presents the first TWIMS-MS separation of diastereomers, which present very close collision cross section thanks to the formation of multimers and the use of an auxiliary diastereomeric ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5

Similar content being viewed by others

References

  1. Hely, M., Morris, J., Traficante, R., Reid, W.: The Sydney multicentre study of Parkinson’s disease: progression and mortality at 10 years. J. Neurol. Neurosurg. Psychiatry 67, 300–307 (1999)

    Article  CAS  Google Scholar 

  2. Fabro, S., Smith, R.L., Williams, R.T.: Toxicity and teratogenicity of optical isomers of thalidomide. Nature 215, 296 (1967)

    Article  CAS  Google Scholar 

  3. Dale, J.A., Mosher, H.S.: Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 95, 512–519 (1973)

    Article  CAS  Google Scholar 

  4. Pirkle, W.H., Rinaldi, P.L.: Nuclear magnetic resonance determination of absolute configuration and enantiomeric compositions of chiral oxaziridines using chiral solvating agents. J. Org. Chem. 43, 4475–4480 (1978)

    Article  CAS  Google Scholar 

  5. Rinaldi, P.L.: The determination of absolute configuration using nuclear magnetic resonance techniques. Prog. Nucl. Magn. Reson. Spectrosc. 15, 291–352 (1982)

    Article  CAS  Google Scholar 

  6. Roussel, C., Rio, A.D., Pierrot-Sanders, J., Piras, P., Vanthuyne, N.: Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers. J. Chromatogr. A 1037, 311–328 (2004)

    Article  CAS  Google Scholar 

  7. Scriba, G.: Chiral electromigration techniques in pharmaceutical and biomedical analysis. Bioanal. Rev. 3, 95–114 (2011)

    Article  Google Scholar 

  8. Chu, I.H., Dearden, D.V., Bradshaw, J.S., Huszthy, P., Izatt, R.M.: Chiral host–guest recognition in an ion-molecule reaction. J. Am. Chem. Soc. 115, 4318–4320 (1993)

    Article  CAS  Google Scholar 

  9. Pocsfalvi, G., Liptak, M., Huszthy, P., Bradshaw, J.S., Izatt, R.M., Vekey, K.R.: Characterization of chiral host–guest complexation in fast atom bombardment mass spectrometry. Anal. Chem. 68, 792–795 (1996)

    Article  CAS  Google Scholar 

  10. Schäfer, M.: Supramolecular crown ether adducts in the gas phase: from molecular recognition of amines to the covalent coupling of host–guest molecules. Angew. Chem. Int. Ed. 42, 1896–1899 (2003)

    Article  Google Scholar 

  11. Mancel, V., Sellier, N., Lesage, D., Fournier, F., Tabet, J.-C.: Gas phase enantiomeric distinction of (R)- and (S)-aromatic hydroxy esters by negative ion chemical ionization mass spectrometry using a chiral reagent gas. Int. J. Mass Spectrom. 237, 185–195 (2004)

    Article  CAS  Google Scholar 

  12. Filippi, A., Gasparrini, F., Pierini, M., Speranza, M., Villani, C.: Exceptional gas-phase enantioselectivity of chiral tetramide macrocycles. J. Am. Chem. Soc. 127, 11912–11913 (2005)

    Article  CAS  Google Scholar 

  13. Afonso, C., Lesage, D., Fournier, F., Mancel, V., Tabet, J.-C.: Origin of enantioselective reduction of quaternary copper D,L-amino acid complexes under vibrational activation conditions. Int. J. Mass Spectrom. 312, 185–194 (2012)

    Article  CAS  Google Scholar 

  14. Tao, W.A., Zhang, D., Nikolaev, E.N., Cooks, R.G.: Copper(II)-assisted enantiomeric analysis of D,L-amino acids using the kinetic method: chiral recognition and quantification in the gas phase. J. Am. Chem. Soc. 122, 10598–10609 (2000)

    Article  CAS  Google Scholar 

  15. Wu, L., Tao, W.A., Cooks, R.G.: Kinetic method for the simultaneous chiral analysis of different amino acids in mixtures. J. Mass Spectrom. 38, 386–393 (2003)

    Article  CAS  Google Scholar 

  16. Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Separation of leucine and isoleucine by electrospray ionization high field asymmetric waveform ion mobility spectrometry mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1279–1284 (1999)

    Article  CAS  Google Scholar 

  17. Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill Jr., H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)

    Article  CAS  Google Scholar 

  18. McCooeye, M., Ding, L., Gardner, G.J., Fraser, C.A., Lam, J., Sturgeon, R.E., Mester, Z.: Separation and quantitation of the stereoisomers of ephedra alkaloids in natural health products using flow injection-electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 75, 2538–2542 (2003)

    Article  CAS  Google Scholar 

  19. Li, H., Giles, K., Bendiak, B., Kaplan, K., Siems, W.F., Hill Jr., H.H.: Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 84, 3231–3239 (2012)

    Article  CAS  Google Scholar 

  20. Santos, J.J., Toma, S.H., Lalli, P.M., Riccio, M.F., Eberlin, M.N., Toma, H.E., Araki, K.: Exploring the coordination chemistry of isomerizable terpyridine derivatives for successful analyses of cis and trans isomers by travelling wave ion mobility mass spectrometry. Analyst 137, 4045–4051 (2012)

    Article  CAS  Google Scholar 

  21. Dwivedi, P., Wu, C., Matz, L.M., Clowers, B.H., Siems, W.F., Hill Jr., H.H.: Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 78, 8200–8206 (2006)

    Article  CAS  Google Scholar 

  22. Campuzano, I., Bush, M.F., Robinson, C.V., Beaumont, C., Richardson, K., Kim, H., Kim, H.I.: Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoritical and experimentally derived nitrogen collision cross sections. Anal. Chem. 84, 1026–1033 (2012)

    Article  CAS  Google Scholar 

  23. Revesz, A., Schroder, D., Rokob, T.A., Havlik, M., Dolensky, B.: In-flight epimerization of a bis-troger base. Angew. Chem. Int. Ed. 50, 2401–2404 (2011)

    CAS  Google Scholar 

  24. Revesz, A., Schroder, D., Rokob, T.A., Havlik, M., Dolensky, B.: Identification and interconversion of diastereomeric oligo-Troeger bases probed by ion mobility mass spectrometry. Phys. Chem. Chem. Phys. 14, 6987–6995 (2012)

    Article  CAS  Google Scholar 

  25. Pines, S.H., Kozlowski, M.A., Karady, S.: Mechanism and stereochemical considerations in the reaction of some arylserine derivatives with thionyl chloride. J. Org. Chem. 34, 1621–1627 (1969)

    Article  CAS  Google Scholar 

  26. Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004)

    Article  CAS  Google Scholar 

  27. Giles, K., Williams, J.P., Campuzano, I.: Enhancements in traveling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)

    Article  CAS  Google Scholar 

  28. Available at: http://depts.washington.edu/bushlab/ccsdatabase/. Accessed 3 July 2013

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. Gaussian09 (2009)

  30. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  Google Scholar 

  31. Leininger, T., Nicklass, A., Küchle, W., Stoll, H., Dolg, M., Bergner, A.: The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs). Chem. Phys. Lett. 255, 274–280 (1996)

    Article  CAS  Google Scholar 

  32. Scalmani, G., Frisch, M.J.: Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010)

    Article  Google Scholar 

  33. Available at: http://www.indiana.edu/nano/software.html. Accessed 3 July 2013

  34. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)

    Article  CAS  Google Scholar 

  35. Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)

    Article  CAS  Google Scholar 

  36. Bondi, A.: van der Waals Volumes and Radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  37. Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protocols 3, 1139–1152 (2008)

    Article  CAS  Google Scholar 

  38. Beegle, L.W., Kanik, I., Matz, L., Hill Jr., H.H.: Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. Int. J. Mass Spectrom. 216, 257–268 (2002)

    Article  CAS  Google Scholar 

  39. Lalli, P.M., Iglesias, B.A., Toma, H.E., De Sa, G.F., Daroda, R.J., Silva Filho, J.C., Szulejko, J.E., Araki, K., Eberlin, M.N.: Protomers: formation, separation, and characterization via traveling wave ion mobility mass spectrometry. J. Mass Spectrom. 47, 712–719 (2012)

    Article  CAS  Google Scholar 

  40. Asbury, G.R., Hill Jr., H.H.: Using Different drift gases to change separation factors (α) in ion mobility spectrometry. Anal. Chem. 72, 580–584 (2000)

    Article  CAS  Google Scholar 

  41. Matz, L.M., Hill Jr., H.H., Beegle, L.W., Kanik, I.: Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection. J. Am. Soc. Mass Spectrom. 13, 300–307 (2002)

    Article  CAS  Google Scholar 

  42. Bush, M.F., Campuzano, I.D.G., Robinson, C.V.: Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal. Chem. 84, 7124–7130 (2012)

    Article  CAS  Google Scholar 

  43. Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)

    Article  CAS  Google Scholar 

  44. Tureček, F.: Copper-biomolecule complexes in the gas phase. The ternary way. Mass Spectrom. Rev. 26, 563–582 (2007)

    Article  Google Scholar 

  45. Clowers, B.H., Hill, H.H.: Influence of cation adduction on the separation characteristics of flavonoid diglycoside isomers using dual gate-ion mobility-quadrupole ion trap mass spectrometry. J. Mass Spectrom. 41, 339–351 (2006)

    Article  CAS  Google Scholar 

  46. Huang, Y., Liu, L., Liu, S.: Towards understanding proton affinity and gas-phase basicity with density functional reactivity theory. Chem. Phys. Lett. 527, 73–78 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Region Haute-Normandie, the Labex SynOrg (ANR-11-LABX-0029) and the European Regional Development Fund (ERDF 31708) for financial support. L.J. and V.T. thank the Centre National de la Recherche Scientifique (CNRS) for a “chaire d’excellence” at the University of Rouen, and the Centre de Ressources Informatiques de Haute-Normandie (CRIHAN) for computational time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Afonso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 32537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domalain, V., Tognetti, V., Hubert-Roux, M. et al. Role of Cationization and Multimers Formation for Diastereomers Differentiation by Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1437–1445 (2013). https://doi.org/10.1007/s13361-013-0690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0690-1

Key words

Navigation