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Abstract
Normalization of spectral counts (SpCs) in label-free shotgun proteomic approaches is important to
achieve reliable relative quantification. Three different SpC normalization methods, total spectral
count (TSpC) normalization, normalized spectral abundance factor (NSAF) normalization, and
normalization to selected proteins (NSP) were evaluated based on their ability to correct for day-to-
day variation between gel-based sample preparation and chromatographic performance. Three
spectral counting data sets obtained from the same biological conidia sample of the rice blast fungus
Magnaporthe oryzae were analyzed by 1D gel and liquid chromatography-tandem mass spectrometry
(GeLC-MS/MS). Equine myoglobin and chicken ovalbumin were spiked into the protein extracts prior
to 1D-SDS- PAGE as internal protein standards for NSP. The correlation between SpCs of the same
proteins across the different data sets was investigated. We report that TSpC normalization and
NSAF normalization yielded almost ideal slopes of unity for normalized SpC versus average
normalized SpC plots, while NSP did not afford effective corrections of the unnormalized data.
Furthermore, when utilizing TSpC normalization prior to relative protein quantification, t-testing and
fold-change revealed the cutoff limits for determining real biological change to be a function of the
absolute number of SpCs. For instance, we observed the variance decreased as the number of SpCs
increased, which resulted in a higher propensity for detecting statistically significant, yet artificial,
change for highly abundant proteins. Thus, we suggest applying higher confidence level and lower
fold-change cutoffs for proteinswith higher SpCs, rather than using a single criterion for the entire data
set. By choosing appropriate cutoff values to maintain a constant false positive rate across different
protein levels (i.e., SpC levels), it is expected this will reduce the overall false negative rate,
particularly for proteins with higher SpCs.
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Introduction

Label-free quantification for proteomic analyses has
gained popularity throughout the last decade. Advan-

tages of label-free approaches compared to label incorpo-
rated methods (e.g., SILAC [1, 2]) include simplicity of sample
preparation and applicability to any organism. Additionally,
reduced sample complexity allows for an increase in the
number of peptides sequenced, which results in a greater
dynamic range and more comprehensive proteome coverage
[3, 4]. Spectral counting [5] and ion abundance [6–10] have
been used for label-free quantification and are known to
correlate with protein abundance [11]. Furthermore, an
algorithm combining spectral counting and ion abundance
measurements was developed by Feener and co-workers [12],
enabling quantification for an increased number of proteins.

The number of spectral counts (SpCs) for a protein is
simply the number of MS/MS spectra that result in
identification of its proteolytic peptides. In bottom-up
proteomic strategies, data-dependent MS/MS acquisition
software selects peptide ions based upon their abundance
and charge state, which typically favors identification of
more abundant peptides/proteins. Applying dynamic exclu-
sion for previously selected peptides limits the number of
SpCs for those abundant peptides and enables the selection
of peptides of lower abundance, resulting in higher protein
sequence coverage, more confident protein identifications,
and increased depth of proteome coverage [13].

Normalization of SpCs is performed to reduce the variance
observed between samples and replicates. The variability in
SpCs can be caused by numerous factors including sample
preparation, gel-to-gel variance (if a gel-based approach is part
of the proteomic workflow), and changes in chromatography.
Carvalho et al. [14] pointed out the importance of normalizing
spectral counting data in order to quantify proteins; however,
the most effective normalization method for label-free spectral
counting has yet to be elucidated.

For total spectral count (TSpC) normalization [15], the
technical replicate with the highest number of TSpC is
chosen and the remaining technical replicates for that sample
are normalized to it. Subsequently, the values across differ-
ent samples are normalized to the sample with the highest
technical replicate TSpC. The normalization is done for each
protein individually and comparisons of average normalized
SpCs of the same proteins are made between samples.
Comparison of absolute or normalized SpCs between
proteins to determine their relative abundance is generally
precluded by that fact that longer proteins yield a higher
number of spectral counts on average than shorter proteins.
To account for this, Washburn and co-workers [16–18]
developed a method, termed normalized spectral abundance
factor (NSAF), in which the SpC for a given protein are
divided by its length (L) to give a spectral abundance factor
(SAF). To account for variations between runs, the SAF for
a given protein (e.g., SpC/L) is subsequently normalized to
the sum of all SAFs for proteins identified within that run to

create a normalized SAF (i.e., NSAF) that can be used to
compare the relative abundance of proteins both between
and within samples. In the latter method, the authors are
using the assumption that the sum of all SAF should be
conserved between replicates to correct for differences in
sampling rates. In TSpC normalization, the assumption is the
sum of all SpC (i.e., the TSpC) should be conserved between
runs/samples. In comparison, normalization to selected
proteins (NSP) does not assume the sampling rate should
be conserved between replicates/samples; rather, it relies on
the premise that the total SpC for a standard protein should
be conserved between replicates/samples if it is present at
the same concentration. In practice, the standard protein(s)
can be an endogenous house-keeping protein or an exoge-
nous protein; the latter has the advantage of knowing
precisely the amount of protein added to each sample. Any
change observed in the SpC for the standard protein is
assumed to reflect the variation between replicates and
samples for the entire identified proteome. Consequently, the
relative changes in SpC for the standard protein between
replicates/samples are used as correction factors to normalize
the SpC of all proteins.

Significant biological change in protein abundance is
determined either by fold-change[19, 20], by significance
testing [21–23], or by using a combination of both [14]. Even
though SpC datasets do not necessarily meet the criteria for a
normal distribution, Student’st-tests are often applied in such
experiments to determine statistical significance. Zhang et al.
[21] performed a control experiment with yeast samples and six
spike-in proteins at three different concentrations to calculate
the false positive rates (FPR) for different significance tests.
When only one replicate was utilized and thus the assumption
of a normal distribution was obviously false, the G-test
provided the lowest FPRs. However, when three replicates
were utilized, t-testing performed similarly.

We are utilizing label-free quantification to gain proteo-
mic insights related to pathogenicity of the fungus Magna-
porthe oryzae (M. oryzae). M. oryzae causes rice blast
disease destroying millions of hectares of rice each year,
resulting in losses valued at billions of dollars [24]. Since
half of the world’s human population relies on rice as a
nutrition source [25], understanding fungal development as
it relates to disease progression is important for development
of control strategies. Dean and coworkers sequenced the
whole genome of M. oryzae in 2005 [26] providing a
reliable database for proteomic approaches. Using 1D gel
and liquid chromatography-mass spectrometry (GeLC-MS),
we would like to study the development of the fungus M.
oryzae, wild type and mutants, at different time points in its
life cycle. Since the production of biological samples over a
wide range of conditions (e.g., time, treatments, mutants) is
difficult and downstream proteomic workflow is very time
consuming, establishing a confident normalization method is
critical. Thus, we have used M. oryzae conidia spectral
counting data to compare the normalization methods TSpC,
NSAF and NSP in their ability to account for variance
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between samples due to differences in sample preparation
and chromatographic performance.

Experimental
Sample Preparation

M. oryzae conidia were harvested from 8 d old minimal
medium plates. Three biological replicates, each containing 2
million conidia, were pooled to account for biological variance.
Conidia were lysed by bead beating in a 1X PBS (Fisher
Scientific, Pittsburgh, PA, USA), 2 M urea (Sigma Aldrich, St.
Louis, MO, USA), and 0.1 % SDS buffer (Bio-Rad, Hercules,
CA, USA) to create the biological sample from which all
experiments were derived. Protein concentration was deter-
mined via a BCA assay (Thermo Fisher Scientific, Rockford,
IL, USA). Samples 1 and 2, derived from the same biological
sample, were prepared and processed on different days.
Chicken myoglobin (Sigma Aldrich) and equine ovalbumin
(Sigma Aldrich) were chosen as spike-in proteins and 25 ng of
each was added to 50 μg of total protein for each sample. The
samples were loaded onto 10%–20% gradient 1D-SDS PAGE
gels (Bio-Rad). It is necessary to start out with more material in
regards to the number of fractions, the recovery, and the
number of injections of a complex protein/peptide mixture.
Fifty μg is the amount of material loaded for the size gels
utilized and it allows for adequate amounts of peptide material
to be recovered (post-digestion). After Coomassie staining
(Bio-Rad), 10 fractions of gel bands were excised and in-gel
digestion [27] was performed on each fraction. Briefly, each
gel-fraction was destained with 100 μL of 50:50 ammonium
bicarbonate (Sigma Aldrich)/acetonitrile (ACN) (Burdick and
Jackson, Muskegon, USA). Reduction was performed with
100 μL of 10 mM dithiothreitol (Sigma Aldrich) at 56 °C for
30 min, alkylation with 100 μL of 90 mM iodoacetamide
(Sigma Aldrich) in the dark for 30 min and digestion overnight
at 37 °C with trypsin (protein: protease ratio of 5:1).
Acetonitrile was added and discarded between each step to
dehydrate the gel pieces. To extract the peptides, 200 μL of 5%
formic acid (Sigma Aldrich) in ACN was added to each
fraction and incubated for 15 min at 37 °C. The supernatants
were transferred into new tubes. ACN (100 μL) was added to
the gel pieces and supernatants were combined; this was
repeated once more for each fraction. Sample 2' was produced
by pooling one-third of the volume of adjacent in-gel digested
fractions of sample 2 together to give a sample with only 5 gel
fractions, yet having undergone the same sample processing as
the 10 gel fraction sample. All samples were dried down and
stored at −20 °C until nanoLC-MS/MS analysis.

NanoLC-MS/MS

A 75 μm i.d. IntegraFrit capillary (New Objective, Woburn,
MA, USA) trap was packed to 5 cm with Magic C18AQ
packing material (Michrom BioReasources, Auburn, CA,
USA). A 75 μm i.d. PicoFrit capillary column (New

Objective, Woburn, MA, USA) was packed 15 cm with
the same packing material. Separation was carried out
using a nanoLC-1D+ system from Eksigent (Dublin, CA,
USA) with a continuous, vented column configuration as
previously reported by our group [28]. A 2 μL (200 ng)
sample was aspirated into a 10 μL loop and loaded onto
the trap. Only 200 ng were analyzed per injection so as
not to overload the nanoLC column. The flow rate was
set to 350 nL/min for separation on the analytical
column. Mobile phase A was composed of 98% H2O
(Burdick and Jackson), 2% ACN and 0.2% formic acid
(Sigma) and mobile phase B was composed of 98%
ACN, 2% H2O, and 0.2% formic acid. A 1 h linear
gradient from 5% to 50% B was performed. All
measurements were performed at room temperature and
three technical replicates of each sample were run to
allow for statistical comparisons between samples, which
are necessary for label-free quantification.

A hybrid LTQ-Orbitrap XL MS (Thermo Fisher Scientific,
Bremen, Germany) was used to performMS analysis. For data-
dependent acquisition, the parameters recently published by
our group to be optimal for achieving maximum proteome
coverage were used verbatim [29]. External calibration was
performed following manufacturer’s instructions and using the
manufacturer’s calibration mix and lock mass internal calibra-
tion using polydimethylcyclosiloxane (m/z 445.120025) was
enabled [30].

Data Analysis

Data analysis was performed by searching each .RAW file,
independently, against a concatenated target-reverse M.
oryzae database (MG8_GeneCall10.fasta) from the Broad
Institute using MASCOT Distiller version 2.3.01 (Matrix
Science Inc., Boston, MA, USA). MASCOT parameters
were ±5 ppm peptide ion tolerance, ±0.6 Da MS/MS
fragment ion tolerance, and two allowed missed cleavages.
Carbamidomethylation of cysteine was set as a fixed
modification and oxidation of methionine and deamidation
of glutamine and asparagine were variable modifications.
Peptide lists (.dat files) were created for each .RAW file by
MASCOT. ProteoIQ version 2.1.01_SILAC_beta08 (Bio-
Inquire, Athens, GA, USA) was used to create five different
label-free spectral counting projects: (a) Sample 1, (b)
Sample 2, (c) Sample 2', (d) combination of samples 1 and
2, and (e) combination of samples 2 and 2'. A 1% protein
FDR was applied to each project, independently (i.e., the
FDR was calculated based on the cumulative results of the
sample files included in that particular project) [31]. Log2 SpC
ratios were calculated and a pairwise t-test was performed on
the proteins identified in sample 1 and sample 2.

Results and Discussion
The experimental workflow is shown in Figure 1. Sample 1
and sample 2 are derived from the same biological sample

E. Gokce et al.: Normalization of Label-Free Proteomics Data 2201



but were prepared and processed after protein extraction on
different days. M. oryzae conidial protein spiked with equine
myoglobin and chicken ovalbumin was loaded onto 1D-
SDS-PAGE gels and in-gel digestion was performed. The 10
fractions of each sample were analyzed by nanoLC-MS/MS
using different traps and analytical columns for each sample.
Additionally, one-third of the final volume of adjacent in-gel
digested fractions of sample 2 was combined to produce
sample 2' (five fractions) and were also analyzed by
nanoLC-MS.

Sample 1 yielded 76,638 TSpC (the sum of three
technical replicates) and 1185 proteins identified (see
Figure 2). The TSpC number for sample 2 was 95,025 and
1477 proteins were identified. The number of shared
proteins between samples 1 and 2 was 1121. Sample 1 and
sample 2 contained 64 and 356 unique proteins, respec-
tively. The differences in protein identifications (24%) and
number of TSpCs (19%) between samples 1 and 2 were
caused by sample processing on different days, reagent
quality, gel-to-gel variance, and use of a different trap and
column. A slightly higher percentage of difference in the
number of proteins identified was observed in a study by
Cooper et al. [22]. They reported differences up to 30% in
the number of proteins identified between nine replicate

soybean peptide samples spiked with different amounts
(0.005 to 2.5 pmol) of tryptic peptides from bovine
apotransferrin tryptic digest, separated by MudPIT and
analyzed on a LTQ-Orbitrap XL mass spectrometer.

In order to determine if normalization methods can
recover from variables such as large differences in sample
complexity, we mimicked such a situation by doubling the
sample complexity of sample 2 by pooling adjacent gel
fractions to create sample 2'. The number of TSpC for
sample 2' was 49,067, about half of the TSpC of sample 2,
which was expected due to the decrease in the number of
fractions (10 fractions for sample 2 and only five fractions
for sample 2'). Moreover only 1087 proteins were identified
from sample 2' and were a subset of the total population of
protein identifications from sample 2.

SpC scatter plots for proteins from combined analysis of
sample 1 and 2 are shown in Figure 3. The first plot shows
the unnormalized SpCs for each protein (sum of the three
technical replicates) versus the average SpCs of the two
samples. A regression line slope of 1 is anticipated in the
absence of biological variation as is the case here. The
unnormalized scatter plots show slopes of 0.901 and 1.099
for samples 1 and 2 respectively, indicating that sample
handling on different days, gel to gel variance, difference in

Day 2 / Sample 2 and Sample2’Day 1 / Sample 1

25 ng Ovalbumin and 25 ng Myoglobin spiked into 
50 µg Spore Protein for each gel

1D SDS PAGE  

nanoLC-MS/MS 
of all 15 fractions

Red., Alk., Dig.

Excise 10 bands

1 D SDS PAGE

Excise 10 bands

nanoLC-MS/MS 
of 10 fractions 

Red., Alk., Dig.

Same column for both sample 
sets

Different trap/column than day 2 
samples

1  2   3   4   5   6  7   8   9  10
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Figure 1. Experimental workflow. The samples were prepared and processed on two different days. Myoglobin (25 ng) and
ovalbumin (25 ng) were added to 50 μg of M. oryzae conidial protein. One-dimensional SDS-PAGE separation and in-gel
digestion were performed. Ten fractions from d 1 and 10 fractions from d 2 were analyzed in triplicate by nanoLC-MS using
different traps and columns for each sample set. Additionally, adjacent fractions from d 2 sample were pooled and also
analyzed in triplicate by nanoLC-MS
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reagent quality, and slightly different chromatography have
some effect on SpC reproducibility. Normalizing the data with
TSpC normalization corrected the slopes to 1.0093 for sample
1 and 0.9907 for sample 2, while normalization with NSAF
corrected the slopes to 1.001 and 0.9878, respectively. NSP
yielded some improvements by normalization to the spike-in
proteins myoglobin and/or ovalbumin. NSP to myoglobin and
ovalbumin yielded slopes of 1.0262 for sample 1 and 0.9738
for sample 2. Slopes of 0.968 for sample 1 and 1.032 for
sample 2 were observed by normalizing to myoglobin and

normalizing to ovalbumin resulted in slopes of 1.0696 for
sample 1 and 0.9304 for sample 2. Normalization factors
can be found in the Online Resource 1–Supplementary
Tables S1 and S2.

The sample complexity was doubled in the case of
sample 2' to simulate a drastic change in sample complexity
and to evaluate the ability of normalization methods to
compensate for that. In the unnormalized scatter plots,
shown in Figure 4, the slope of sample 2' (0.6968) was
almost half of the slope of sample 2 (1.3032). The

Figure 2. Venn diagrams showing the TSpCs and the total protein numbers identified at 1% protein FDR in each sample.
Sample 2 yielded the highest number of identified proteins with 1477. While a difference of 19% in the number of TSpCs
between sample 1 and 2 was observed, a reduction in TSpCs by 50% was noticed when adjacent fractions were combined and
only half the number of fractions were analyzed
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Figure 3. SpC scatter plots from combined analysis of sample 1 and 2. Unnormalized SpCs and normalized SpC (NSpC) data
for each protein are plotted versus the average SpCs for the protein derived from both samples. NSAF normalization with
slopes of 1.001 and 0.999 for samples 1 and 2 corrects best in comparison to NSP and TSpC normalization
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normalized plots show that normalization can correct even for
such drastic differences in sample complexity. The slope for
sample 2' gets corrected to 1.0188 with TSpC normalization
and to 1.0122 with NSAF. In spite of good sequence coverage
(see Online Resource 1–Supplementary Figure S1), and the use
of two spike-in proteins with different attributes, NSP did not
perform as well as TSpC and NSAF normalization; however,
better performance was observed for ovalbumin compared to
myoglobin. Slopes of 0.9791 for sample 2 and 1.0209 for
sample 2' were observed for normalization to ovalbumin,
whereas normalization to myoglobin yielded slopes of 1.2636
for sample 2 and 0.7364 for sample 2'. Myoglobin was
identified with 21 SpCs (8.98 NSpCs) in sample 1, 21 SpCs
(7.18 NSpCs) sample 2, and 20 SpCs (13.24 NSpCs) sample 2'
across all three replicates. In comparison, ovalbumin was
identified with 63 SpCs (26.66 NSpCs) in sample 1, 88 SpCs
(30.1 NSpCs) in sample 2, and 45 SpCs (29.81 NSpCs) in
sample 2' correlating with the pattern of TSpCs in each sample
(76,638, 95,025, 49,067) (see also Online Resource 1–
Supplementary Figure S2 and Supplementary Table S3). This
observation suggests that as a larger protein ovalbumin had a
greater number of SpC and, thus, was more sensitive to the
variations between samples.

As an additional metric, we evaluated which normal-
ization method gives rise to the lowest variance across the
technical replicates. TSpC normalization and NSAF resulted
in lower median coefficient of variations (CV) for the
samples, while the median CVs using NSP were signifi-
cantly higher when normalized to both spike-in proteins (see
Online Resource 1–Supplementary Figure S3). These data
indicate that TSpC and NSAF are the superior normalization
techniques compared with NSP. This observation is most
likely due to the fact that former methods utilize the entire
identified proteome for normalization, which allows for
better correction of variability within the similar biological
samples. NSP may be better suited to instances in which
global protein expression differences exist between two
biological samples [20].

After identifying the optimal normalization method(s) we
wanted to determine the best means for detecting true
biological change between two samples. In previous con-
cepts, one specific threshold has been applied to an entire
data set in order to define what proteins are changing
significantly. However, results from this study and others
have shown higher SpC proteins may require separate
criteria for detecting significant change due to their lower

Sample2:

y = 1.2636x + 0.0006

Sample2’:

y = 0.7364x - 0.0006 
0

100

200

300

400

0 100 200 300 400

N
S

p
C

Average NSpC

Normalization to Myoglobin 

Sample2:

y = 1.3032x + 0.0132 

Sample2’:

y = 0.6968x - 0.0132 
0

200

400

600

800

1000

0 200 400 600 800 1000

S
p

C

Average SpC 

Unnormalized SpC Scatter

Sample2:

y = 0.9812x + 0.0269 

Sample2’: 

y = 1.0188x - 0.0269 
0

100

200

300

400

0 100 200 300 400

N
S

p
C

Average NSpC

TSpC Normalization

Sample2:

y = 0.9791x + 0.0237 

Sample2’:

y = 1.0209x - 0.0237 
0

100

200

300

400

0 100 200 300 400

N
S

p
C

Average NSpC

Normalization to Ovalbumin 

Sample2:

y = 1.0949x + 0.0125 

Sample2’:

y = 0.9051x - 0.0125 
0

100

200

300

400

0 100 200 300 400

N
S

p
C

Average NSpC

Normalization to Ovalbumin
and Myoglobin 

Sample2:

y = 0.9911x + 6E-06 

Sample2’:

y = 1.0089x - 6E-06 
0

0.005

0.01

0.015

0 0.005 0.01 0.015

N
S

p
C

Average NSpC 

NSAF

Figure 4. Unnormalized SpC data and NSpCs from combined analysis of sample 2 and sample 2' are plotted versus the
average SpCs for each protein. The gross error, mimicked by doubling the complexity of the samples, was adjusted best by
NSAF normalization. The unnormalized slope of sample 2' was corrected to 1.0122. Normalizing to myoglobin showed almost
no effect, based on the large variation in SpCs smaller proteins experience and therefore lose their reliability

2204 E. Gokce et al.: Normalization of Label-Free Proteomics Data



variance; conversely, that the high variance of low SpC
proteins should preclude them from quantification. More-
over, various methods such as significance testing or
applying fold-change thresholds have been utilized with
various criteria that are often selected arbitrarily and with
disregard to their true predictive value.

To demonstrate this, we produced the volcano plots,
shown in Figure 5, with the data obtained here between
samples 1 and 2. Volcano plots have long been utilized in
the genomic microarray analysis to quickly identify species
that have both large and highly significant changes and were
more recently applied to proteomic spectral counting data
sets by Yates and co-workers [14]. In these plots, the

expression change for a given protein is plotted on the x-axis
while the corresponding statistical significance is plotted on
the y-axis. In Figure 5a, the plot shows when applying a
standard P value cutoff of 0.05, 276 of 1511 proteins
identified (~18%) between samples 1 and 2 would be falsely
discovered to have changed in abundance. Similarly, 290
such proteins (~19%) would be falsely discovered to have
changed if the traditional 2-fold threshold for expression
change had been utilized. Interestingly, we also found that
these two methods lead to false discovery of different
proteins, in particular, different level proteins. As indicated
by the Venn diagram in Figure 5a, only 100 of the same
proteins were falsely discovered between the 0.05 P value
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Figure 5. Volcano plots for comparing the normalized SpC between sample 1 and sample 2. The log2 expression ratio is
plotted versus the –log10 of the P value obtained from significance testing (pairwise t-test). (a) Plot comparing all proteins
identified between samples 1 and 2. Proteins outside the given fold-change limits or above the P value cutoffs are considered
to have significantly changed. The absolute number of proteins meeting each criterion are given in parenthesis. The Venn
diagram shows the overlap in the number of proteins deemed to have changed when applying either a 2-fold change cutoff or P
value cutoff or 0.05. (b) Plots comparing proteins at different SpC levels. The proteins in each plot are defined by S, the SpC
obtained per replicate injection
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cutoff and 2-fold expression change threshold. Upon closer
inspection, nearly all of proteins falsely discovered by the 2-
fold cutoff were low abundance (i.e., low SpC) proteins, while
those discovered by the 0.05P value cutoff were slightly biased
towards higher abundance proteins. This phenomenon can be
seen in Figure 5b, which depicts volcano plots for different
SpC levels: S≤3, 3GS≤10, and S910, where S indicates the
SpC per replicate (six in this case, three per sample). These
plots show the fold-change distribution narrows as S increases,
indicating more abundant proteins have lower variance data
than less abundant proteins.

In Tables 1 and 2, narrower SpC per replicate (S) bins
were utilized to calculate the false positive rates (FPR)
achieved at different SpC levels for different stringency
criteria. Given we could be certain no biological change had
occurred between samples 1 and 2, we were able to define
the FPR for a given criterion as the number of proteins
discovered (falsely) in that SpC bin by the total number of
proteins (N) falling within that same bin. When comparing
different fold-change cutoffs (Table 1), there again appears
to be a strong propensity for low SpC proteins to be falsely
discovered. Across all fold-change cutoffs, the proteins with
lower SpC have the higher FPR. Although a higher fold-
change cutoff could be applied to reduce the overall FPR for
all proteins, these data suggest little confidence could be
placed in results for low abundance even when higher
stringency cutoffs are applied. For example, if a 2.5-fold cut-
off were utilized, the FPR higher abundance proteins (S95)
would be acceptable, but the FPR for lower proteins (S≤5)
would be no better than 10% and would be particularly poor,
39%, for very low abundance proteins (SG1.67).

In Table 2, which shows the FPR for different stringency
P values, the opposite trend is observed. Excluding proteins
with a low number of SpC (SG1.67), the FPR increases
slightly as S proceeds from low values to higher values,
indicating that more abundant proteins are more apt to yield
a false positive at a given P value. If a single P value were
selected, such as 0.01, this data shows both high abundance
proteins (S920) and very low abundance proteins (SG1.67)
would yield the majority of false positives. The importance
of these observations is 2-fold: first, the large variance of
low SpC proteins increases their probability to have
erroneously large fold-changes and, secondly, high SpC
proteins have a greater propensity to yield low P values
simply as a result of their lower variance.

Given the different protein levels are uniquely affected by
the two testing methods, we sought to apply dual constraints
in order to better control the FPR for all protein levels. In
Table 3 are shown different combinations of P value and
fold-change cutoffs applied to the entire dataset as well as to
different SpC levels. In general, researchers seek to maintain
a low FPR; however, using constraints that yield too low of
an FPR will result in a high false negative rate (FNR). Thus,
we think it reasonable that a FPR of 10% be sought, so as
not to exclude too many true positives that would occur
during future experiments. The combination that best
accomplishes this for the entire dataset, regardless of SpC,
is a P value and fold-change cutoff of 0.1 and 2.5,
respectively. Notice, this combination utilizes stringent
fold-change cutoffs and lax P value cutoffs. This is because
the majority of proteins in the dataset have a relatively low
SpC (median S=5.3) and are more strongly affected by fold-
change cutoffs. Consequently, this combination results in
undesirably low FPR higher SpC proteins (S95) and
undesirably high FPR for lower SpC proteins (S≤2). Even
when excluding very low abundant proteins from the data
set (i.e., when considering only proteins having S≥1.67),
similar outcomes are reach. It is apparent, when looking at
the other combinations, there is no single combination that
will satisfy the 10% target FPR across all SpC levels. As a
result, we suggest applying different constraints to the
different SpC levels.

Since large fold-change cutoffs likely result in a large
FNR for higher abundance proteins, we suggest applying
more stringent P value cutoffs and less stringent fold-change
cutoffs for this set of proteins. For instance, we would not
set the fold-change cutoff any higher than 1.5-fold for
proteins having S910 as the chances of observing a larger
fold-change, particularly a fold increase, for high abundance
proteins is reduced due to the low linear dynamic range of
spectral counting. Conversely, we would suggest utilizing
more stringent fold-change cutoffs and less stringent P value
cutoffs for low SpC proteins (i.e., S≤10). For very low SpC
proteins (SG1.67) we would consider excluding these from
consideration or applying both stringent P value and fold-
change cutoffs due to their disposition to yield false positives.
Here we defined very low SpC proteins as those with less than
1.67 SpC per replicate injection, or an average of five total
spectral counts between two samples. Earlier studies by Old et
al. [11] and Collier et al. [3] also proposed a cutoff of 5 or more

Table 1. False Positive Rates for SpC Bin Widths at Different Fold-Change Cutoffs

Fold-change 
Cutoff 

SpC/Rep (S) 

S<1.67 1.67≤S≤2 2<S≤5 5<S≤10 10<S≤15 15<S≤20 20<S 

1.25 80.9 73.7 68.1 53.5 51.8 34.7 24.8 

1.5 77.3 59.6 45.0 27.1 21.3 8.3 6.1 

2 59.4 28.9 19.6 8.0 2.1 0.0 0.9 

2.5 44.2 14.9 10.1 4.0 0.7 0.0 0.4 

3 39.4 13.2 6.7 2.3 0.0 0.0 0.0 

N 251 114 404 299 141 72 230 
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total spectral counts across 2 samples, both having triplicate
injections, to ensure accurate quantification. Gammulla et al.
[32] utilized even more stringent criteria, allowing for
quantification of proteins having six or more spectral counts
in each sample when triplicate injections were performed. We
chose to define our constraints and bin widths using SpC per
replicate (S), such that they would be independent of the
number injections and samples. Consequently, comparisons
will be able to be drawn in future experiments regardless of the
number of samples or replicates.

It should be emphasized that these results were obtained
in the context of a Gel-based proteomics experiments, which
may have led to higher false positive rates than other sample
preparation techniques (e.g., MudPIT) due to inherent
differences in their reproducibility. Additionally, the use of
technical replicates rather than biological replicates here may
have contributed to the low variation observed for higher
SpC proteins. As such, we would caution readers when
applying these same criteria to their data. Instead, we would
recommend performing similar control experiments in order

to define the variability specific to their lab, protocol, and
sample type.

Conclusions
TSpC normalization, NSAF, and NSP for label-free spectral
counting data were investigated on the in-gel tryptic digest
of M. oryzae. Normalization to TSpC and NSAF normal-
ization revealed very good correlations and low variance for
all data sets. With normalization, correcting for variance
caused by sample preparation, gel to gel variance, chromato-
graphic performances, and even drastic changes in sample
complexity was possible. We evaluated further that accurate
quantification is dependent on the number of SpCs. When
applying different constraints for significance tests and/or
fold-change cutoffs, we observed biases in the FPR across
different SpC levels. In particular, we observed higher SpC
proteins to have lower variance data and, as a result, required
less stringent fold-change cutoffs to achieve accurate
quantification. Conversely, lower SpC proteins showed less

Table 2. False Positive Rates for SpC Bin Widths at Different P value Cutoffs

P value 
Cutoff 

SpC/Rep (S) 

S<1.67 1.67≤S≤2 2<S≤5 5<S≤10 10<S≤15 15<S≤20 20<S 

0.1 30.5 25.4 27.7 31.1 36.9 30.6 36.5 

0.05 19.8 14.0 14.9 18.1 21.3 16.7 24.3 

0.01 10.7 2.6 3.7 4.3 5.7 6.9 9.6 

0.005 10.7 0.9 1.7 2.7 3.5 5.6 3.9 

0.001 7.8 0.0 0.2 0.7 1.4 0.0 0.4 

N 251 114 404 299 141 72 230 

Table 3. False Positive Rates for Combined P value and Fold-Change Cutoffs Applied on Different SpC Bin Width

P value 
Cutoff 

Fold-change 
Cutoff 

SpC/Rep (S) 
ALL S≥1.67 S<1.67 1.67≤S≤2 2<S≤5 5<S≤10 10<S≤15 15<S≤20 20<S 

0.1 1.25 25.7 25.7 25.5 23.7 26.7 28.4 29.1 25.0 19.6 
0.1 1.5 18.8 17.5 25.5 22.8 22.3 20.4 17.0 8.3 5.7 
0.1 2 10.5 7.7 24.7 16.7 12.6 7.4 2.1 0.0 0.9 
0.1 2.5 7.4 4.4 22.3 11.4 7.2 4.0 0.7 0.0 0.4 
0.1 3 6.4 3.4 21.1 10.5 5.9 2.3 0.0 0.0 0.0 
0.05 1.25 15.0 15.0 15.1 12.3 13.9 17.4 17.0 13.9 14.3 
0.05 1.5 11.3 10.5 15.1 11.4 13.1 12.4 9.9 6.9 4.3 
0.05 2 6.6 5.1 14.3 9.6 8.7 5.4 0.7 0.0 0.4 
0.05 2.5 5.0 3.3 13.5 7.9 5.2 3.7 0.0 0.0 0.0 
0.05 3 4.4 2.6 13.5 7.9 4.2 2.3 0.0 0.0 0.0 
0.01 1.25 5.2 4.1 10.4 1.8 3.7 4.0 5.0 4.2 5.7 
0.01 1.5 3.8 2.5 10.4 1.8 3.5 2.7 2.1 1.4 1.7 
0.01 2 2.7 1.3 9.6 1.8 2.7 1.0 0.0 0.0 0.4 
0.01 2.5 2.3 1.0 8.8 1.8 2.0 0.7 0.0 0.0 0.0 
0.01 3 2.3 1.0 8.8 1.8 2.0 0.7 0.0 0.0 0.0 

0.005 1.25 3.4 2.1 10.4 0.9 1.7 2.3 2.8 4.2 1.7 
0.005 1.5 2.9 1.4 10.4 0.9 1.5 2.0 1.4 1.4 0.9 
0.005 2 2.0 0.5 9.6 0.9 1.0 0.3 0.0 0.0 0.0 
0.005 2.5 1.7 0.3 8.8 0.9 0.5 0.3 0.0 0.0 0.0 
0.005 3 1.7 0.3 8.8 0.9 0.5 0.3 0.0 0.0 0.0 
0.001 1.25 1.5 0.3 7.6 0.0 0.2 0.3 1.4 0.0 0.0 
0.001 1.5 1.5 0.2 7.6 0.0 0.2 0.3 0.7 0.0 0.0 
0.001 2 1.3 0.1 7.6 0.0 0.2 0.0 0.0 0.0 0.0 
0.001 2.5 1.3 0.1 7.6 0.0 0.2 0.0 0.0 0.0 0.0 
0.001 3 1.3 0.1 7.6 0.0 0.2 0.0 0.0 0.0 0.0 

 N 1511 1260 251 114 404 299 141 72 230 
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reproducibility and required higher fold-change cutoffs in
combination with significance testing to ensure accurate
quantification. Consequently, we suggest applying different
constraints to different SpC levels in order to circumvent
these biases and maintain a constant FPR for all proteins.
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