
Non-viral systemic delivery of siRNA or antisense
oligonucleotides targeted to Jun N-terminal kinase 1
prevents cellular hypoxic damage

Seema Betigeri & Min Zhang & Olga Garbuzenko &

Tamara Minko

Published online: 14 December 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Many pathological conditions and environmental
impacts lead to the development of severe tissue hypoxia
that aggravates the primary disorder, provokes cell death,
and limits the patient’s recovery. We hypothesized that
suppression of Jun N-terminal kinase 1 (JNK1) will limit
tissue damage induced by severe hypoxia. To test the
hypothesis, antisense oligonucleotides (ASO) or small inter-
fering RNA (siRNA) targeted to JNK1 mRNA were
incorporated or complexed with neutral or cationic lipo-
somes, respectively, and administered systemically to mice
prior to hypoxia exposure. The animals were placed in a
special chamber ventilated with room air (normoxia) or a gas
mixture containing 6%O2 and 94% N2 (hypoxia). Liposomes,
ASO, and siRNA were found to accumulate in the lungs,
kidney, spleen, and heart. Only trace amounts of liposomes
and their payloads (ASO and siRNA) were found in the
brain. The down regulation of JNK1 protein limited
activation of cell death signal, apoptotic, and necrotic tissue
damage under hypoxic conditions. Consequently, we were
able to verify our hypothesis and provide proof of concept of
a unique approach to the prevention of cellular hypoxic
damage by the suppression of JNK1 signaling pathways after
the efficient delivery of ASO or siRNA.
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Introduction

Many environmental factors as well as endogenous dis-
turbances in blood oxygenation and circulation are often
associated with limitations in the oxygen delivery to tissues
and cells. Severe deprivation in adequate oxygen supply
may cause marked tissue damage and finally lead to
hypoxic cell death (Busl and Greer 2010; Goni-de-Cerio
et al. 2007; Hossain 2008; Minko et al. 2002; Minko et al.
2005; Soleymanlou et al. 2007; Vacotto et al. 2008).
Moreover, reoxygenation—a restoration of oxygen supply
to the formerly hypoxic tissues as a result of the treatment,
compensatory reactions of an organism, or ending of exoge-
nous hypoxic conditions may lead even to more pronounced
tissue damage (Dhar-Mascareno et al. 2005; Freiberg et al.
2006; Hung and Burton 2006; Kim et al. 2007; Ricci et al.
2009; Yajima et al. 2009). Despite substantial differences in
the physiological conditions during hypoxia and reoxygena-
tion, the main mechanisms of tissue damage under both
settings are quite similar. The major mechanisms include
disturbances in cellular metabolism, mitochondrial dysfunc-
tions, disturbances in acid–base homeostasis, oxidative stress
damage by active oxygen and nitrogen species, and
apoptotic and necrotic cell death (Blokhina and Fagerstedt
2010; Boning et al. 2008; Cho et al. 2007b; Gonchar and
Mankovskaya 2009; Kim et al. 2004; Kim and Park 2003;
Kothari et al. 2003; Minko et al. 2002; Minko et al. 2005;
Murray et al. 2003; Portugal-Cohen and Kohen 2009;
Surova et al. 2009; Vacotto et al. 2008; Yajima et al. 2009).
Consequently, the suppression of the above-mentioned
mechanisms of hypoxic cellular damage can potentially be
used in effective therapy of many diseases associated with
hypoxia and/or reoxygenation and to increase the resistance
to damaging environmental factors. Several approaches have
been recently proposed including preliminary adaptation to

S. Betigeri :M. Zhang :O. Garbuzenko : T. Minko (*)
Department of Pharmaceutics, Ernest Mario School of Pharmacy,
Rutgers, The State University of New Jersey,
160 Frelinghuysen Road,
Piscataway, NJ 08854-8020, USA
e-mail: minko@rci.rutgers.edu

Drug Deliv. and Transl. Res. (2011) 1:13–24
DOI 10.1007/s13346-010-0003-1



hypoxia, stress, and other environmental factors (Boning et
al. 2008; Corbucci et al. 2005; Gonchar and Mankovskaya
2009; Meerson et al. 1994; Millet et al. 2010; Ostadal and
Kolar 2007; Zhao et al. 2009) as well as many pharmaco-
logical methods (Betigeri et al. 2006; Carlsson et al. 2009;
Cho et al. 2007a; Danielyan et al. 2006; Lecour et al. 2006;
Minciu Macrea et al. 2010; Minko et al. 2002; Minko et al.
2005; Myllyharju 2008; Nagel et al. 2010; Surova et al.
2009; Wenger et al. 2009; Zhu et al. 2008).

Hypoxia inducible factor one alpha (HIF1A) protein is a
key initiator of cell death signal under hypoxic conditions
(Hellwig-Burgel et al. 2005). We investigated the role of
this protein as a possible target for the remediation of
hypoxic cellular damage and found that HIF1A plays a
bimodal role during hypoxia (Wang and Minko 2004;
Wang et al. 2004; Wang et al. 2008). On the one hand,
activation of HIF1A during hypoxia initiates cell death
signal inducing apoptosis (programmed cell death or cellular
suicide) and necrosis (pathological cell death). On the other
hand, overexpression of HIF1A boosts the power of anti-
hypoxic systems that increase cellular resistance to hypoxia.

Recently, we identified Jun N-terminal kinase 1 (JNK1),
another major player in the activation of apoptosis signaling
pathways and hypoxic damage from the mitogen-activated
protein kinas (MAPK) family of proteins, as a prospective
target for pharmacological prevention of cellular damage
during severe hypoxia (Betigeri et al. 2006). It has been
shown that JNK1 as a stress-activated protein kinase can be
induced by inflammatory cytokines, bacterial endotoxin,
osmotic shock, UV radiation, and hypoxia (Bennett et al.
2001; Chihab et al. 1998; Zhou et al. 2004). Analysis of
literature data (Bennett et al. 2001; Derijard et al. 1994;
Karin 1995) showed that cellular hypoxic damage can be
induced by the pathway presented in Fig. 1. Induction of
JNK by hypoxia mediates phosphorylation of activating
transcriptional factor-2 (ATF2) and c-Jun bound to the c-
Jun promoter and stimulates their transcriptional activities
leading to c-Jun activation. The newly synthesized c-Jun
protein combines with c-Fos protein to form stable transcrip-
tional factor activator protein-1 (AP1) heterodimers. The
formation of AP1 is a key step following the induction of
central cell death signal leading to the activation of caspase-
dependent apoptosis signal pathways and finally causing cell
death. It was found that c-Jun N-terminal kinase 1 (JNK1,
SAPK1 and MAPK8) plays a central role in the development
of cellular damage under hypoxia, hypoxia/reoxygenation,
and ischemia/reperfusion conditions (Crenesse et al. 2003;
Garay et al. 2000; Hreniuk et al. 2001). The in vitro data
previously obtained in our laboratory showed that the
suppression of JNK1 by antisense oligonucleotides (ASO)
or small interfering RNA (siRNA) targeted to JNK1 mRNA
substantially limited cellular mortality after severe hypoxia
(Betigeri et al. 2006). The present study is a logical

continuation of our previous work and is aimed at in vivo
testing of this approach.

Material and methods

Liposomal compositions of siRNA and ASO

Negatively charged siRNA was delivered by cationic lipo-
somes (N-[1-(2,3-Dioleoyloxy) propyl]-N,N,N-trimethylam-
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Fig. 1 Schema of apoptosis induction by hypoxia. Activation of Jun N-
terminal kinase (JNK) by hypoxia mediates phosphorylation of
activating transcriptional factor-2 (ATF2) and c-Jun and stimulates
their transcriptional activities. The newly synthesized c-Jun protein
combines with c-Fos protein to form stable transcriptional factor
activator protein-1 (AP1) heterodimers. The formation of AP1 activates
caspase-dependent apoptosis signal and finally induces cell death

14 Drug Deliv. and Transl. Res. (2011) 1:13–24



monium methylsulfate, DOTAP, Avanti Polar Lipids,
Alabaster, AL). ASO targeted to JNK1 mRNA (5′-CTC
TCT GTA GGC CCG CTT GG-3′) (Garay et al. 2000) and
ASO labeled with fluorescein isothiocyanate (FITC) were
synthesized by Oligos Etc. (Wilsonville, OR). The DNA
backbone of all bases in oligonucleotides was P-ethoxy
modified in order to eliminate electrical charge and
increase incorporation efficacy into “neutral” PEGylated
liposomes. Liposomes were prepared as described previ-
ously (Garbuzenko et al. 2009; Garbuzenko et al. 2010;
Pakunlu et al. 2006). Briefly, to prepare PEGylated lipo-
somes, egg phosphotidyl choline, cholesterol, and DSPE-
PEG (1,2-distearoyl-sn-glycero-3-phosphoetanolamine-N-
aminopolyethylene glycol-Mw∼2,000 ammonium salt) were
dissolved in 4.0 ml of chloroform at 1.85:1:0.15 molar ratio,
respectively (all compounds were obtained from Avanti Polar
Lipids, Alabaster, AL). The clear lipid solution was evapo-
rated at 25°C under reduced pressure. A thin layer was
formed and rehydrated using 2.0 ml of 0.3 M sodium citrate
buffer (pH=4.0). ASO was loaded into liposomes by
dissolving in rehydration buffer at concentration 0.5 mM.
The lipid mixture was sonicated continuously for 3.0 h to
obtain stealth liposomes. Liposomes were extruded gradually
through 100 and 200 nm polycarbonate membranes at room
temperature using an extruder device from Northern Lipids,
Inc. (Vancuver, BC, Canada). Liposomes were separated
from non-encapsulated ASO by dialysis against 100 volumes
of 0.9% NaCl. The encapsulation efficacy of ASO was ∼50–
60%, respectively. The final phospholipids concentration was
10 mg/ml. Mean diameter of “neutral” liposomes was 100–
140 nm. siRNA targeted to exon 1 JNK1 mRNA (sense
sequence—3′-GGA GCU CAA GGA AUA GUA UTT-5′)
was selected based on the results of our previous studies
(Betigeri et al. 2006) and synthesized according to our
design by Ambion (Austin, TX). A siGLO Green 6-FAM
transfection indicator was purchased from Dharmacon, Inc.
(Chicago, IL). siRNA possess negative charges requiring
positively charged (cationic) liposomes to form stable
complexes. Cationic liposomes were prepared from posi-
tively charged DOTAP at concentration 5 mg/mL using thin
layer procedure as previously described (Betigeri et al.
2006; Garbuzenko et al. 2009), followed by extrusion
through 100 nm polycarbonate membrane. The siRNA was
dissolved in RNase free water at a concentration of 400 μM.
To this solution, appropriate volume of DOTAP (5 mg/mL)
was added, mixed by pipette and incubated for 30 min at
room temperature. The molar ratio of siRNA/DOTAP was
∼1:100. Resulting siRNA-cationic liposome complex was
used in the studies. siGLO Green was dissolved in RNAse
free solution to the final concentration of 200 μM. DOTAP
liposomes were mixed with siGLO in the ration 6:1v/v and
incubated at room temperature for 15 min before use. Mean
DOTAP/siGLO complex size was around 500 nm. Aliquots

of each liposomal formulation were labeled with near infrared
fluorescent dye Cy5.5 Mono NHS Ester (GE Healthcare,
Amersham, UK). A fluorescent dye was dissolved together
with lipids in chloroform. Approximate excitation/emission
maxima of all fluorescent substances used in the study are:
675/694 nm (Cy5.5); 520/594 nm (siGLO Green, siRNA
labeled with 6-FAM dye); 494/518 nm (FITC).

Liposome size and zeta potential

Particle size was measured by dynamic light scattering using
90 Plus Particle Sizer Analyzer (Brookhaven Instruments
Corp., New York, NY). Aliquot of 40 μL of each sample was
diluted in 2 mL of saline. Zeta potential was measured on
PALS Zeta Potential Analyzer (Brookhaven Instruments
Corp, New York, NY). Samples were taken as is and their
volume was 1.5 mL. All measurements were carried out at
room temperature. Each parameter was measured in tripli-
cate, and average values were calculated.

Cell line

The human embryonic kidney 293 cells were obtained from
American Type of Tissue Culture (Manassas, VA). Cells were
cultured in Dulbecco's modified Eagle's medium (GIBCO
Inc., Cincinnati, OH) supplemented with 10% fetal bovine
serum (Fisher Chemicals, Fairlawn, NJ). All experiments
were performed on cells in the exponential growth phase.

Cellular uptake and localization of liposomes, ASO
and siRNA

Cellular internalization of liposomes, ASO and siRNAwere
monitored by fluorescence microscopy. Four series of the
experiments were carried out: (1) “neutral” liposomes labeled
with Cy5.5 (red fluorescence); (2) cationic liposomes labeled
with Cy5.5 (red fluorescence); (3) ASO labeled with FITC
(green fluorescence) delivered by “neutral” liposomes; and
(4) siRNA labeled with 6-FAM (siGLO Green, green
fluorescence) delivered by cationic liposomes. Cells were
separately incubated for 24 h at 37°C with each liposomal
formulation.

Animal model of hypoxia exposure

Experiments were performed on healthy 6–8 weeks old
SKH1-hr hairless mice (25–35 g) obtained from Charles
River Laboratories (Wilmington, MA). Veterinary care
followed the guidelines described in the guide for the care
and use of laboratory animals as well as the requirements
established by the animal protocol approved by the Rutgers
Institutional Animal Care and Use Committee. All mice
were contained in micro-isolated cages under pathogen free
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conditions at room temperature with humidity of 40±15%
and light/dark cycle on 12 h per day in the animal
maintenance facility. Normobaric hypoxia was created in
a 300×350×600 mm Plexiglas chamber specifically
designed for this project by Billups-Rothenberg, Inc. (Del
Mar, CA). Hypoxia was induced by subjecting the chamber
to a constant flow (15–20 l/min) of hypoxic gas mixture
containing 6% oxygen and 94% nitrogen. The oxygen
concentration in the chamber was continuously monitored
using an oxygen analyzer (Vascular Technology, Inc.,
Nashua, NH). A heating pad was placed inside the
Plexiglass chamber to maintain the body temperature of
the mice. All animals were placed in the chamber for 2 h.
Prior to exposure, mice were pretreated with 100 μL of
different formulations by intravenous injection. Mice were
randomized into six experimental groups: (1) normoxia
(room air, 21%O2) following injection of saline; (2) hypoxia
(6% O2) following injection of saline; (3) hypoxia (6% O2)
following injection of neutral liposomes; (4) hypoxia (6%
O2) following injection of cationic liposomes; (5) hypoxia
(6% O2) following injection of neutral liposomes with ASO
targeted to JNK1 mRNA; (6) hypoxia (6% O2) following
injection of cationic liposomes with siRNA targeted to
JNK1 mRNA. The doses of ASO and siRNA were
13 nmoles per mouse (80 and 173 μg ASO and siRNA,
respectively). After the treatment, all mice were anesthetized
with isoflurane and euthanized. The organs (lungs, heart,
liver, kidney, spleen, and brain) were excised and used for
the evaluation of body distribution of liposomes and their
payloads (siRNA and ASO), study of lactic acid, apoptosis,
gene and protein expression and histopathological analysis.

Content of liposomes in different organs

The distribution of fluorescent-labeled “neutral” and cationic
liposomes and their payloads (ASO and siRNA) was
examined in mouse lungs, heart, liver, spleen, and kidneys.
The organs were excised, rinsed in saline, and fluorescence
was registered by IVIS imaging system (Xenogen Corpora-
tion, Alameda, CA). Visible light and fluorescence images
were taken and overlaid. The intensity of fluorescence was
represented on composite light/fluorescent images by different
colors with blue color reflecting the lowest fluorescence
intensity and red color—the highest intensity. Images of each
organ were then scanned and total fluorescence intensity was
calculated by a special computer program originally devel-
oped for our laboratory by Dr. V. P. Pozharov as previously
described (Garbuzenko et al. 2009; Garbuzenko et al. 2010).
Preliminary experiments showed a strong linear correlation
between the total amount of labeled substance accumulated
in the organ and calculated total fluorescence intensity. The
fluorescence was expressed in arbitrary units with 1 unit
represented approximately 2×1010 photons/s/sr/cm2. The

method allows a quantitative comparison of the concentra-
tion of the same fluorescent dye between different series of
the experiments. The mass of all organs was measured. No
statistical differences were found in the mass of the same
organ between all experimental groups of animals. The
fluorescence intensity was normalized for organ weight.

Lactic acid and protein concentration

Approximately 30–40 mg of tissues was weighed, lysed in
Ripa buffer (Santa Cruz Biotechnologies, Inc., Santa Cruz,
CA) and homogenized using Ultra Turrax T-25 basic
homogenizer (IKA Works, Wilmington, NC). To confirm
the existence of cellular hypoxia, the concentration of lactic
acid in tissue homogenates was measured by an enzymatic
assay kit (Sigma, St. Louis, MO) and was expressed per g
of protein determined using the BCA protein assay kit
(Pierce, Rockford, IL).

Gene expression

Quantitative reverse transcriptase-polymerase chain reac-
tion (RT-PCR) was used for the analysis of genes encoding
JNK1, caspase 9, and β-actin as previously described
(Betigeri et al. 2006; Dharap et al. 2005; Minko et al. 1999;
Pakunlu et al. 2003; Pakunlu et al. 2004; Wang et al. 2004)
RNA was isolated using an RNeasy kit (Qiagen, Valencia,
CA). The following pair of primers were used: JNK1, 5′-
TTGGAACACCATGTCCTGAA-3′ (sense) and 5′-ATG
TAC GGG TGT TGG AGA GC-3′ (antisense); caspase 9,
5′-TGA CTG CCA AGA AAA TGG TG-3′ (sense) and 5′-
CAG CTG GTC CCATTG AAG AT-3′ (antisense); and β-
actin, 5′-GAC AAC GGC TCC GGC ATG TGC A 3′
(sense) and 5′-TGA GGA TGC CTC TCT TGC TCT G-3′
(antisense). Gene expression was calculated as the ratio of
analyzed RT-PCR product to the internal standard (β-actin).

Protein expression

To confirm RT-PCR data the expression of JNK1 protein
and caspase 9 were measured by two methods: Western
immunoblotting analysis and immunohistochemistry. The
identification of the above proteins was conducted by
Western immunoblotting analysis and processed using
scanning densitometry to quantify the expressed proteins.
To this end, approximately 30–40 mg of the tissue from
each organ was weighed, lysed in Ripa buffer (Santa Cruz
Biotechnologies, Inc., Santa Cruz, CA), and homogenized
using Ultra Turrax T-25 basic homogenizer (IKA Works,
Wilmington, NC). Following incubation on ice for 45 min,
the tissues were centrifuged at 10,000×g for 10 min. Protein
content in the supernatant was determined using the BCA
Protein Assay Kit (Pierce, Rockford, IL) and 40 μg of
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protein was run on a 15% sodium dodecyl sulphate (SDS)
polyacrylamide gel immersed in Tris/Glycine/SDS buffer
(BioRad, Hercules, CA) for 90 min at 70 V. Proteins were
transferred to an Immobilon-P nitrocellulose membrane
(Millipore, Bedford, MA) in a Tris/Glycine buffer (BioRad,
Hercules, CA) for 90 min at 100 V. The membrane was
blocked in non-fat milk for 2 h at room temperature on a
rotating shaker to prevent non-specific binding, washed and
incubated overnight with anti-JNK1 mouse primary antibody
(1:2,000 dilution, Cell Signaling Technology, Inc., Beverly,
MA), anti-caspase 9 rabbit primary antibody (1:2,000
dilution, Stress Gen Biotechnologies, Victoria State, BC
Canada) and anti-b-actin mice primary antibody (1:2,000
dilution, Oncogene Research, San Diego, CA) at 4°C.
Following further washing, the membrane was immersed in
goat anti-rabbit and goat anti-mouse IgG biotinylated anti-
bodies (1:3,000 and 1:1,000 dilution, respectively, BioRad,
Hercules, CA) at room temperature for 1.5 h on a rotating
shaker. Bands were visualized using an alkaline phosphatase
color development reagent (BioRad, Hercules, CA). The
bands were digitally photographed and scanned using Gel
Documentation System 920 (NucleoTech, San Mateo, CA).
β-actin was used as an internal standard to normalize protein
expression. Protein expression was calculated as the ratio of

mean band density of the analyzed protein to that of the
internal standard (β-actin). The identification of the JNK1
protein was also made by immunohistochemical staining of
paraffin embedded tissue sections. After deparaffinization and
rehydration, the slides were stained using Vector® M.O.M.
Immunodetection Kit (Vector Laboratories, Inc., Burlingame,
CA). Mouse monoclonal antibody to JNK1 (Cell Signaling
Technology, Inc., Beverly, MA, 1:40 dilution) was used as
the primary antibody for detection. Biotinylated anti-mouse
IgG Reagent (1:250 dilution, Vector Laboratories, Inc.,
Burlingame, CA) and HSP-Streptavidine Detection System
(1:500 dilution, Vector Laboratories, Inc., Burlingame, CA)
in combination with DAB substrate kit for peroxidase were
used for visualization. After staining, the slides were
analyzed by light microscopy and photographed.

Apoptosis

Apoptosis was analyzed by measuring the enrichment of
histone-associated DNA fragments (mono- and oligo-
nucleosomes) in the cell cytoplasm using anti-histone and
anti-DNA antibodies by a cell death detection ELISA Plus
kit (Roche, Nutley, NJ) as previously described (Dharap et
al. 2005; Pakunlu et al. 2004; Wang et al. 2004).
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Fig. 2 Accumulation of lactic acid in different organs under hypoxia.
a Absolute values. b Lactic acid growth under hypoxia relative to
normoxia values. Hypoxia was induced in mice by the inhalation of
gas mixture containing 6% O2 for 2 h. Means±SD are shown. *P<
0.05 when compared with normoxia
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Fig. 3 Intracellular localization of neutral and cationic liposomes,
antisense oligonucleotides (ASO) and siRNA delivered by neutral and
cationic liposomes, respectively. Representative fluorescence images
of cells incubated 120 min with substances indicated. Neutral and
cationic liposomes were labeled by Cy5.5 (red), ASO were labeled by
FITC (green), siRNA were labeled by FAM (siGLO Green)
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Histopathological examination

After sacrificing animals, the organs were excised and
immediately fixed in 10% phosphate-buffered formalin.
Samples were subsequently dehydrated and embedded in
Paraplast®. Five-micrometer slides were cut and stained
with hematoxylin-eosin and analyzed.

Statistical analysis

Data obtained were analyzed using descriptive statistics,
single-factor analysis of variance, and presented as mean
values±the standard deviation (SD) from four to eight
independent measurements in separate experiments. The
comparison among groups was performed by the indepen-
dent sample Student’s t tests. The difference between
variants is considered significant if P<0.05.

Results

Particle size and zeta potential

Our data showed that the size of all formulations of “neutral”
liposomes (empty and with ASO) was 100–140 nm. The
average size of empty cationic liposomes andDOTAP/siRNA
complexes was 120 and 500 nm, respectively. “Neutral”
liposomes had a slight negative charge (−10±2 mV). DOTAP
liposomes had a positive charge (+25±4 mV). The formation
of DOTAP/siRNA complexes decreased the surface charge
to +4±2 mV likely due to the electrostatic interactions
between positively charged lipid and negatively charged
siRNA.

Development of tissue hypoxia

The accumulation of lactic acid in tissues was used as a
hallmark of the development of severe tissue hypoxia in
different organs of mice during exogenous hypoxia. Data
obtained show that the exposure of mice to 6% O2 in the
inspired gas mixture led to a significant increase of the
absolute concentration of lactic acid in all studied organs
within 2 h (Fig. 2a). The most dramatic relative increase in
the lactic acid concentration in tissues was registered in the
brain, heart, spleen, and lungs (Fig. 2b). These data clearly
show that the experimental conditions used led to the
development of a severe tissue hypoxia in many organs of
mice exposed to the hypoxic gas mixture.

Delivery of ASO and siRNA

Our previous findings showed that naked ASO and siRNA
poorly penetrate cellular plasma membrane and therefore

require special delivery systems for efficient intracellular
uptake (Patil et al. 2008; Wang et al. 2008). Consequently,
neutral and cationic phospholipid liposomes were used to
deliver neutral P-ethoxy ASO and negatively charged siRNA,
respectively. In vitro data obtained in the present study
demonstrate that liposomes provide for an effective intracel-
lular delivery of both ASO and siRNA (Fig. 3). Delivered by
liposomes ASO were distributed homogenously in the
cytoplasm and nucleus of exposed cells, while siRNA was
accumulated predominately in the cytoplasm. These data
allowed us to use both types of liposomes for systemic
delivery of ASO and siRNA in vivo. The analysis of body
distribution of liposomes and delivered payload showed that
the content of liposomes, ASO and siRNA per gram of wet
tissue was highest in the lungs. In contrast, only trace amounts
of liposomes and payload were found in the brain. A
substantial amount of ASO or siRNA was found in the heart
(Fig. 4). Based on the organ content of active components as
well as on the degree of tissue hypoxia, we selected the lungs
(the highest ASO or siRNA accumulation and moderate
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Fig. 4 Relative tissue content of empty neutral and cationic liposomes,
antisense oligonucleotides (ASO) and small interfering RNA (siRNA)
in different organs. Neutral P-ethoxy ASO and negatively charged
siRNA were delivered by neutral and cationic liposomes, respectively.
Liposomes, ASO and siRNA were labeled with fluorescent dyes and
intravenously injected to heirless mice. Two hours after treatment
mice were euthanized, organs were excised, fluorescence was
registered by IVIS imaging system and normalized per gram of tissue
weight in each organ
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hypoxia), heart (moderate hypoxia and moderate ASO or
siRNA accumulation) and brain (the highest hypoxia and the
lowest ASO or siRNA accumulation) for further detailed study.

Suppression of JNK1 protein

Suppression of the targeted JNK1 mRNA and protein by
ASO or siRNA delivered by liposomes was studied by RT-
PCR and immunohistochemical protein staining. The
results showed that hypoxia led to the significant over-
expression of the JNK1 gene and protein (Fig. 5a (bar 2), b
for the gene and protein, respectively). Empty neutral or
cationic liposomes did not have a significant influence on
this overexpression (Fig. 5a (bars 3 and 4), b). Treatment of
mice with liposomes containing ASO or siRNA targeted to

JNK1 mRNA led to a substantial decrease in the expression
of this gene and protein in the lungs and heart under
hypoxic conditions (Fig. 5a (bars 5 and 6), b). In contrast,
treatment of mice with liposomes contained JNK1 ASO or
siRNA did not influence the expression of either the mRNA
or protein in the brain under hypoxic exposure. In general,
one can conclude that the efficiency of the suppression of
targeted JNK1 mRNA and protein correlated with the organ
content of delivered ASO or siRNA.

Inhibition of hypoxic cell damage and death

To examine the hypoxic cellular damage and influence of
the suppression of JNK1 on this process, we carried out a
histopathological analysis (hematoxylin-eosin stain) and
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Fig. 5 Expression of JNK1 gene and protein in mouse organs under
normoxia and hypoxia. Hypoxia was induced in mice by the inhalation
of gas mixture containing 6% O2 for 2 h. Control mice (normoxia, 1)
breathed room air (21% O2) in the same chamber as animals with
hypoxia. Mice were treated with saline (normoxia–control, 1;
hypoxia, 2) and indicated substances (3–6) immediately before the

exposure. a Typical gel electrophoresis images of RT-PCR products
and average expression of the JNK1 gene. Gene expression was
calculated as a ratio of band intensity of JNK1 gene to that of internal
standard (b-actin). Means±SD are shown. *P<0.05 when compared
with control. b Typical images of tissue sections stained with antibody
against JNK1 protein. Dark color indicates high protein expression
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studied the expression of the main cell death signaling
protein—caspase 9 and apoptosis induction in the selected
tissues. The data show that hypoxia led to the overexpression
of both procaspase and active caspase 9 (compare Fig. 6a
(lanes 1 and 2) and b (bars 1 and 2)) in all studied organs.
Empty liposomes (neutral and cationic) did not lead to
substantial changes in the expression of procaspase and
active caspase 9 (Fig. 6a (lanes 3 and 4), b (bars 3 and 4)).
Systemic delivery of ASO and siRNA prior to hypoxia
limited the activation of this pathway of apoptosis leading to
the decrease in the expression of both procaspase and active
caspase 9 in the lungs and heart (Fig. 6a (lanes 5 and 6), b
(bars 5 and 6)). In contrast, treatment of mice with liposomal
ASO and siRNA did not influence the expression of these
proteins in the brain under hypoxia. The direct measure-

ments of apoptosis induction in the tissues showed that
hypoxia induced cell death in all studied organs (Fig. 7). In
fact, enrichment of histone-associated DNA fragments
(mono- and oligo-nucleosomes) in homogenates of the lungs
was increased 22–27 times in the lungs and 12–15 times in
the heart and brain (compare bars 1 and 2, hypoxia, in
Fig. 7). Similar to the expression of pro-apoptotic caspase 9
protein, empty liposomes did not influence significantly on
the level of apoptosis in all organs in normoxia and hypoxia
(Fig. 7 (bars 2 and 3)). In contrast, ASO or siRNA delivered
by liposomes into the cells after their systemic administration
significantly limited hypoxic activation of cell death in the
lungs and brain (Fig. 7 (bars 4 and 5, hypoxia)).

As an example of tissue histological changes, lung
tissues of mice exposed to 6% oxygen for 2 h were used.
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Fig. 6 Expression of caspase 9 in mouse organs under normoxia and
hypoxia. Hypoxia was induced in mice by the inhalation of gas
mixture containing 6% O2 for 2 h. Control mice (normoxia, 1)
breathed room air (21% O2) in the same chamber as animals with
hypoxia. Mice were treated with saline (normoxia–control, 1;
hypoxia, 2) and indicated substances (3–6) immediately before the

exposure. a Representative images of Western blots of procaspase and
active caspase 9 and β-actin (internal standard) proteins and b
densitometric analysis of bands. Band intensities of pro- and active
caspase 9 are expressed as the percentage of the β-actin band
intensity, which was set at 100%. Means±SD are shown. *P<0.05
when compared with control
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Hematoxylin-eosin stain of lung tissue under normoxia and
hypoxia showed that hypoxia led to the serious lung injury.
In addition to apoptosis, hypoxia caused necrotic cell death.
As shown in the bottom panel of Fig. 8, lung tissue edema

is observed under hypoxia (no treatment). In mice treated
with liposomal ASO and siRNA targeted to JNK1 mRNA,
necrotic damage and edema produced by hypoxia were
significantly less pronounced. In correlation with the organ
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liposomes with JNK1 ASO

Normoxia + cationic liposomes 
with JNK1 siRNA

Hypoxia + saline Hypoxia + neutral liposomes Hypoxia + cationic liposomes
with JNK1 ASO with JNK1 siRNA

Fig. 8 Typical light microscopy images of lung tissue sections stained
with hematoxylin-eosin. Hypoxia was induced in mice by the
inhalation of gas mixture containing 6% O2 for 2 h. Control mice

(normoxia) breathed room air (21% O2) in the same chamber as
animals with hypoxia. Mice were treated with saline and indicated
substances immediately before the exposure
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Fig. 7 Apoptosis intensity in different organs of mice during
normoxia and hypoxia. Hypoxia was induced in mice by the
inhalation of gas mixture containing 6% O2 for 2 h. Control mice
(normoxia) breathed room air (21% O2) in the same chamber as

animals with hypoxia. Mice were treated with indicated substances
immediately before the exposure. Means±SD are shown. *P<0.05
when compared with normoxia. +P<0.05 when compared with
hypoxic mice treated with saline
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distribution of liposomal ASO and siRNA, treatment of mice
breathing hypoxic gas mixture with liposomes containing
ASO or complexated with siRNA did not influence the
hypoxic tissue and cellular damage in the brain (Figs. 4, 5, 6,
and 7).

Discussion

Based on the analysis of literature data (Bennett et al. 2001;
Zhou et al. 2004) and our previously reported in vitro results
(Betigeri et al. 2006), we hypothesized that suppression of
JNK1 protein will limit cell death and tissue damage
induced by severe hypoxia. To verify our hypothesis, we
carried out experiments on mice exposed to exogenous
hypoxia caused by inhalation of gas mixture containing 6%
oxygen. In order to suppress JNK1 protein, we used neutral
liposomes containing P-ethoxy-modified electrically neutral
ASO and cationic liposomes complexed with siRNA.
ASO and siRNA were designed to suppress JNK protein
expression. The liposomes containing active payload were
intravenously injected into the tail vein of the mice before
hypoxic exposure. Control mice received saline or empty
liposomes of both types. As expected, breathing a gas
mixture containing 6% O2 within 2 h induced severe
hypoxia associated with lactic acid accumulation in all
studied organs. This tissue hypoxia induced caspase-
dependent cell death signaling pathway and led to substan-
tial apoptosis induction and tissue damage. After systemic
administration, ASO or siRNA delivered by liposomes
accumulated in all studied organs excluding the brain. This
led to the suppression of targeted JNK1 protein, break down
of the cell death signal, limited apoptosis, necrosis and
tissue damage under hypoxic exposure. The observed
suppression of cell death was evident only in organs with
substantial accumulation of liposomal ASO or siRNA,
which confirmed that the inhibition of targeted protein
following hypoxic cellular damage was caused by ASO or
siRNA targeted to JNK1 mRNA delivered by liposomes.
Consequently, the defensive action of the treatment was
associated with the direct local suppression of targeted
JNK1 protein but not with other systemic effects. Therefore,
we were able to verify the hypothesis and provide proof of
concept of a unique approach to the prevention of cellular
damage under severe hypoxia by the suppression of JNK1
hypoxic pathways.

Other approaches can be potentially used separately or in
combination with the suppression of JNK1 to limit or prevent
tissue damage during hypoxia (Minko et al. 2005). Previously
we have shown that antioxidant α-tocopherol delivered by
liposomes significantly limited hypoxic damage under lung
edema (Minko et al. 2002). Liposomal antioxidant agents
were also successfully used to protect organs from ischemic

damage (Rivera et al. 2008; Sinha et al. 2001). In addition,
gene delivery into ischemic myocardium by double-targeted
lipoplexes with anti-myosin antibody and TAT peptide was
tested (Ko et al. 2009). Therefore, the combination of gene
and antioxidant therapy has high potential in treatment of
hypoxic tissue damage.

The experimental data clearly showed the correlation
between the accumulation of delivered ASO or siRNA in
organs and anti-hypoxic effect of the treatment. In fact,
relatively high accumulation of liposomes and their payload
in the lungs and heart substantially limited cell death
induction in these organs. In contrast, a trace amount of
liposomes, ASO and siRNA accumulated in the brain after
systemic administration and was not able to prevent
hypoxic brain tissue damage. Therefore, a different strategy
and thus a special approach to the delivery through the
blood–brain barrier should be used in order to prevent the
damage to the brain during severe hypoxia. Conjugation of
liposomes with TAT peptide (Gupta et al. 2007; MacKay et
al. 2008; Rapoport and Lorberboum-Galski 2009) or
transferrin (Soni et al. 2008) potentially can be used in
order to accomplish the penetration of liposomes via the
blood–brain barrier and delivery of drugs and other active
components to the brain.
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