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Abstract
We study the distribution of eigenvalues of almost-Hermitian random matrices
associated with the classical Gaussian and Laguerre unitary ensembles. In the almost-
Hermitian setting, which was pioneered by Fyodorov, Khoruzhenko and Sommers in
the case of GUE, the eigenvalues are not confined to the real axis, but instead have
imaginary parts which vary within a narrow “band” about the real line, of height
proportional to 1

N , where N denotes the size of the matrices. We study vertical cross-
sections of the 1-point density as well as microscopic scaling limits, and we compare
with other results which have appeared in the literature in recent years. Our approach
usesWard’s equation and a propertywhichwe call “cross-section convergence”, which
relates the large-N limit of the cross-sections of the density of eigenvalues with the
equilibrium density for the corresponding Hermitian ensemble: the semi-circle law
for GUE and the Marchenko–Pastur law for LUE. As an application of our approach,
we prove the bulk universality of the almost-circular ensembles.

Keywords Almost-Hermitian GUE/LUE · Bandlimited Coulomb gas · Cross-section
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1 Introduction

This note is the result of investigations of eigenvalue ensembles in the almost-
Hermitian regime. In particular we study almost-Hermitian counterparts of the
Gaussian Unitary Ensemble and of the Laguerre Unitary Ensemble (in the singu-
lar case), which we call Almost-Hermitian GUE (AGUE) and Almost-Hermitian LUE
(ALUE), respectively.

Almost-Hermitian (or “weakly non-Hermitian”) random matrices were introduced
by Fyodorov, Khoruzhenko, and Sommers in the papers [31–33]. Their work concerns
eigenvalues of elliptic Ginibre matrices where the droplets collapse to the interval
[−2, 2] at a suitable rate. We take this as our model for almost-Hermitian GUE. The
emergent structure is physically interesting, and has been subject of several investiga-
tions in recent years, see in particular [6] and the references there.

As is to be expected, the AGUE tends to follow Wigner’s semi-circle law, and the
ALUE tends to follow the Marchenko–Pastur law. However, in the almost-Hermitian
regime, the particles are not confined to the real axis, but instead vary randomly
within a thin band about R of height proportional to 1

N , where N denotes the size of
the matrices, see Fig. 1.

In both cases, the droplets are similar, highly eccentric elliptic discs. Yet, the particle
distributions are quite different, with heavy clustering going on near the left edge
for ALUE, in contrast with the much more evenly spread configurations for AGUE
(compare Fig. 5). This reflects the singular behaviour of the criticalMarchenko–Pastur
density.

On the other hand, we shall prove that there is a universal microscopic behaviour in
the bulk, given by a kernel found in [31, 33],which interpolates between the sine-kernel
and the Ginibre kernel.

We shall introduce a class of bandlimited ensembles in the interface between dimen-
sions 1 and 2, which we use to formulate and prove certain theorems of a general
character. However, ultimately, we shall resort to asymptotic properties of the respec-
tive orthogonal polynomials (Hermite andLaguerre) in order to deduce full universality
results.

Our microscopic analysis uses the theory for Ward’s equation from the paper [14].
In particular, we shall find a close connection between the scaling limits in [6, 31, 33]
and the translation invariant solutions to Ward’s equation, which are characterized in
[14]. (We also refer to a recent work [5] for an implementation of Ward’s equation in
the study of translation invariant scaling limits of planar symplectic ensembles.)

Notational conventions A typical point in the complex planeC is denoted ζ = ξ + iη.
We write ∂ = 1

2 (
∂
∂ξ

− i ∂
∂η

) and ∂̄ = 1
2 (

∂
∂ξ

+ i ∂
∂η

) for the complex derivatives and

� = ∂∂̄ = 1
4 (

∂2

∂ξ2
+ ∂2

∂η2
) for 1

4 times the usual Laplacian.
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Fig. 1 A sample from the almost-Hermitian GUE

We write d A(ζ ) = 1
π
d 2 ζ = 1

π
dξ dη for 1

π
times Lebesgue measure on C and

d AN = (d A)⊗N for the corresponding volume measure in CN . When μ is a measure
and f is a function, we write μ( f ) for

∫
f dμ.

1.1 Purpose and aims

The theory of almost-Hermitian ensembles consists at this point largely of a number
of important model cases, which are typically studied using properties of specific
orthogonal polynomials. One could say that the present work grew out of a desire to
classify and provide a “unifying structure” to this theory.

The first question is how to suitably define a general class of “almost-Hermitian
ensembles” which has desired potential theoretic properties. This question does not
depend on a determinantal structure, and thus is more natural to study in a context
of β-ensembles. We shall isolate a suitable class of potentials and establish several
new results concerning convergence to the equilibrium. This convergence forms the
starting point for our further analysis of almost-Hermitian ensembles. (This approach
is analogous with established practices in dimensions 1 and 2, and could in that context
be viewed as a first step towards a Gaussian field theory in the almost-Hermitian case).

We also study (and survey) various types of microscopic limits in the almost-
Hermitian regime, which typically interpolate between well-known limits in dimen-
sions 1 and 2. In our approach using the loop equation and compactness, questions
about particular scaling limits are reduced to easier questions, such as establishing
their apriori translation invariance.

That being said, with the exception of the so-called “almost-circular ensembles”
below, establishing translation invariance is in general a subtlematter.While onemight
expect that translation invariance should hold quite generally in the bulk, we will not
resolve that issue here. (The problem that arises concerns uniqueness of solution to
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Ward’s equation given certain apriori conditions, and is closely related with the one
discussed in [14].)

Instead of striving for largest possible generality, we take a detailed look at the
model cases, where the analysis is already non-trivial and offers new angles. Apart
from leading to new proofs of results which were rigorously established only fairly
recently, our analysis has somenew ingredients that have led to spin-offs in for example
[5].

For comparison, the universality problem in the normal matrix setting was settled
only recently in a fairly general setting in [36]; the techniques used there break down in
the almost-Hermitian setting. (For example, the conformal mappings of the exterior of
a thin droplet to the exterior disc have large derivatives at the end-points: the derivatives
tend to infinity as the droplets collapse to an interval.)

1.2 General setup

Given an N -point configuration {ζ j }N1 ⊂ C and a suitable function (external potential)
QN : C → R ∪ {+∞}, we associate the total energy

HN =
∑

j �=k

log
1

|ζ j − ζk | + N
N∑

j=1

QN (ζ j ). (1.1)

We next fix a positive parameter β and form the canonical Gibbs measure

dPβ
N = 1

Zβ
N

e−βHN d AN ,

(

Zβ
N =

∫

CN
e−β·HN d AN

)

. (1.2)

We assume that the potentials QN increase monotonically, as N → ∞, to an
external potential V which obeys V (ζ ) = +∞ when ζ /∈ R.

Here and throughout, “external potential” means a lower semicontinuous function
W : C → R ∪ {+∞} which is finite on some set of positive capacity and satisfies

lim inf
ζ→∞

W (ζ )
2 log |ζ | ≥ k (1.3)

where k > 1 is a fixed constant. We shall assume that this holds, with the same k,
for all W = QN and for W = V . Then, to a compactly supported Borel probability
measure μ on C, we associate the logarithmic W -energy

IW [μ] =
∫∫

C2

(
log 1

|ζ−η|
)
dμ(ζ ) dμ(η) + μ(W ). (1.4)

In addition to (1.3), we shall sometimes assume the extra growth condition

W (ζ ) ≥ (1 + δ) log(1 + |ζ |2) − C ζ ∈ C (1.5)

for some small δ > 0 and C ∈ R.
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By [51, Theorem I.1.3], there exists a unique equilibrium measure σW , i.e., a com-
pactly supported Borel probability measure which minimizes the energy (1.4). The
support SW = supp σW is called the droplet in external potential W .

We shall always assume that each QN is smooth in a neighbourhood of the droplet
SQN , except possibly for some singular points atwhich�QN = +∞. The singularities
are assumed to be benign in the sense that the basic structure theorem for equilibrium
measures in [51, Theorem II.1.3] applies. Namely, the equilibrium measure σQN is
absolutely continuous with respect to d A and dσQN = �QN · 1SQN

d A.

Finally, we assume that the equilibrium measure σV , which is supported in R (and
equals to the weak limit of the measures σQN , see Sect. 2.1), is absolutely continuous
with respect to Lebesgue measure on R. By slight of abuse of notation, we denote its
linear density by σV (ξ) (so dσV (ξ) = σV (ξ) dξ ). The probability density σV (ξ) is
assumed to be continuous on R, again with the possible exception of finitely many
singular points.

1.3 Limiting droplet and cross-sections

Denote by {ζ j }N1 a random sample with respect to the Boltzmann-Gibbsmeasure (1.2),
and write the 1-point function as

R β
N (ζ ) = lim

ε→0

E β
N (#({ζ j }N1 ∩ D(ζ, ε)))

ε2
.

(D(ζ, ε) is the open disc with center ζ and radius ε.)
Now fix an arbitrary zooming-point p ∈ R and define the blow-up map

�N ,p : ζ �→ z, z = �N ,p(ζ ) = √
N�QN (p) · (ζ − p). (1.6)

Let {z j }N1 be the rescaled sample, z j = �N ,p(ζ j ).
The potentials QN used in this note have the property that the Laplacian �QN (p)

is proportional to N . More precisely, we shall assume throughout that the limit

ρ(p) = lim
N→∞

√
N

�QN (p) (1.7)

is well-defined and finite for each p ∈ SV . We next form the function

a(p) = π
2 · ρ(p) · σV (p), p ∈ R (1.8)

with the understanding that a(p) = 0 if p /∈ SV . The function (1.8) has the following
geometric interpretation: let

γN (p) = �N ,p(SQN ) ∩ (iR) (1.9)

be the cross-section of the rescaled droplet with the imaginary axis. If we impose
the symmetry QN (ζ̄ ) = QN (ζ ), and some other natural conditions (Sect. 2.1), the
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number a(p) represents the limiting height of the rescaled cross-section, i.e.,

a(p) = 1
2 lim
N→∞ |γN (p)|, p ∈ R. (1.10)

We shall also use the statistical cross-sections cβ
N of the ensemble,

cβ
N (p) = 1

N

∫

R

Rβ
N (p + iη) dη, p ∈ R. (1.11)

A fairly general convergence result, asserting that (under some additional assumptions)
cβ
N → πσV in the sense of measures on R, is given in Theorem 2.2 below.
The 1-point function of the rescaled system {z j }N1 is denoted by

R β
N (z) = 1

N�QN (p)R
β
N (ζ ), z = �N (ζ ). (1.12)

We are interested in describing all possible limits R β = limN→∞ R β
N , and we shall

here restrict to the determinantal case when β = 1. We shall therefore in the sequel
drop the superscript, writing RN in place of R 1

N , etc.
We recall the following fact from the theoryof determinantalCoulombgasprocesses

(see e.g., [15, Lemma 1] and the references there).

Lemma 1.1 If RN → R in L1
loc (along some subsequence) then {z j }N1 converges (along

the same subsequence) in the sense of point fields to a unique infinite determinantal
point-field {z j }∞1 with 1-point function R.

With these preliminaries out of the way, we turn to our main objects of study.

1.4 Almost-Hermitian GUE

Fix a positive parameter c and consider the sequence of potentials

QN (ζ ) = 1
2ξ

2 + 1
2
N
c2

η 2, (ζ = ξ + iη). (1.13)

The droplet in potential (1.13) can be found bymeans of the following useful lemma
from [35, 53]. (The lemma has an alternative proof by solving an obstacle problem,
which may be left for the interested reader.)

Lemma 1.2 The droplet SQ in potential Q = aξ2 + bη2 is the elliptic disc with

equation a2+ab
2b ξ 2 + ab+b2

2a η2 ≤ 1.

Using the lemma, we find that the droplet in potential (1.13) is given by

SQN =
{

ξ + iη;
(
1 + c2

N

)
ξ2 + N

c2

(
1 + N

c2

)
η2 ≤ 4

}
. (1.14)
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Note that QN ↗ V where V is the Gaussian potential

V (ξ) = 1
2ξ

2, (ξ ∈ R), (1.15)

with the understanding that V = +∞ on C \R. The equilibrium measure in potential
V is Wigner’s semi-circle law [27, Section 1.4],

σsc(ξ) = 1
2π

√
4 − ξ 2 · 1[−2,2](ξ). (1.16)

Let cN (ξ) = 1
N

∫
R
RN (ξ + iη) dη be the N :th cross-section (with β = 1). The

following global result can be found in [6, Theorem 3 (a)] (cf. [32, 44]) and will here
be reproved by different methods.

Theorem 1.3 (“Pointwise cross-section convergence for AGUE”) cN (ξ) → π ·σsc(ξ)

as N → ∞ for each ξ with −2 < ξ < 2.

Remark We shall use Theorem 1.3 as a basic tool for our microscopic investigations.
In fact the pointwise convergence 1

π
cN (ξ) → σsc(ξ) for −2 < ξ < 2 is precisely

what we need to uniquely fix a translation invariant bulk scaling limit using ourmethod
below. This contrasts with the strategy in [6], where convergence of cross-sections is
obtained as a consequence of microscopic investigations.

Following the terminology in [14], we put γ (z) = 1√
2π

e− 1
2 z

2
. Given a Borel subset

(or “window”) E ⊂ R we then consider the entire function

γ ∗ 1E (z) = 1√
2π

∫

E
e− 1

2 (z−t)2 dt . (1.17)

Now fix a point p∗ ∈ SV in the bulk, i.e., −2 < p∗ < 2, and let RN be the 1-point
function of the rescaled process about p∗.

Note that for the potential (1.13), the numbers ρ(p∗) and a(p∗) in (1.7), (1.10)
reduce to

ρ(p∗) =
√

N
�QN

= 2c, a(p∗) = π · c · σsc(p∗). (1.18)

The following theorem is equivalent with the bulk scaling limits found in [6, 31,
44].

Theorem 1.4 (“Bulk scaling limit for AGUE”)Under the above assumptions, RN con-
verges locally uniformly to the limit R(z) = F(2 Im z) where F(z) = γ ∗1(−2a,2a)(z)
and a = a(p∗) is given by (1.18).

We now discuss how the scaling limits in Theorem 1.4 interpolate between the
sine-kernel and the Ginibre kernel.

We recall (e.g., [14]) that the Ginibre kernel is the function

G(z, w) = ezw̄− 1
2 |z|2− 1

2 |w|2 , (1.19)
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Fig. 2 The limiting rescaled 1-point density R(z) about p∗ = 0

and that its associated 1-point function R(z) = G(z, z) = 1 is characteristic for the
infinite Ginibre ensemble.

Now let F = γ ∗1(−2a,2a) be the entire function appearing in Theorem 1.4 and put

K (z, w) = G(z, w) · F( z−w̄
i ) = G(z, w) · 1√

2π

∫ 2a

−2a
e
1
2 (z−w̄−i t)2 dt . (1.20)

The 1-point function R appearing in Theorem 1.4 is then R(z) = F(2 Im z) =
K (z, z), and K is a correlation kernel for the limiting point field {z j }∞1 .

If in (1.20) we pass to the limit c → ∞, we find that the kernel K converges to the
Ginibre kernel. Similarly, the limit c → 0 gives the well-known sine-kernel process
on R, but to see this we need a further rescaling. Given the limiting point-field {z j }∞1
we form a new one {z̃ j }∞1 by z̃ j = α · z j , where α = 2

π
a(p∗). The correlation kernel

of {z̃ j }∞1 is

K̃ (z̃, w̃) = 1
α2 K (z, w),

[
z̃ = α · z, w̃ = α · w

]

= 1√
2πα

e
− (Im z̃)2+(Im w̃)2

α2

∫ π

−π

e− α2u2
2 +iu(z̃− ¯̃w) du.

Sending c → 0 (i.e.α → 0)we see readily that K̃ converges toπ times the sine-kernel

K sin(x, y) = 1
π

sin(πx−π y)
x−y , (x, y ∈ R).

This well-known convergence follows from the Gaussian approximation of the Dirac
delta:

1

|a|√π
e−(x/a)2 → δ(x), as a → 0,

See e.g., [6, Remark 4.(c)] and [9, Section 2.3].
It could be said that the form of the kernel K̃ is more natural from a one-dimensional

perspective, whereas the form of K in (1.20) is more natural from a two-dimensional
one. The kernel K̃ is of the form appearing in [6], whereas K appears in the context
of planar ensembles in the papers [14, 15].
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Fig. 3 A sample from modified AGUE rescaled about the right endpoint pN

We now turn to edge scaling limits for the almost-Hermitian GUE. A limiting point
field was found by Bender [19] and was further investigated in the paper [3]. For our
purposes, it is advantageous to modify the ellipse potential QN in (1.13) so that the

droplet becomes thicker, of height roughly N− 1
3 rather than N−1. The advantage is

that the form of rescaling in (1.6) remains correct, which facilitates when applying
our method with Ward’s equation.

We are thus led to introduce the modified Almost-Hermitian GUE by redefining
QN as

QN (ζ ) = 1
2ξ

2 + 1
2c2

N
1
3 η 2. (1.21)

Using Lemma 1.2, we see that the right end-point of the droplet SQN is located at

pN = 2(1 + c2N− 1
3 )− 1

2 . We rescale about this point using the magnification map in
(1.6) with the modified potential (1.21), i.e., we put

ζ �→ z, �N (ζ ) = √
N�QN · (ζ − pN ) = N

2
3

2c

(
1 + c2N− 1

3

) 1
2 · (ζ − pN ),

and we write {z j }N1 for the rescaled ensemble, z j = �N (ζ j ), see Fig. 3. As usual we
denote by RN the 1-point function of {z j }N1 .

We can now restate the main result from [19] in the following way.

Theorem 1.5 (“Boundary scaling limit for modified AGUE”) RN converges locally
uniformly to the limit

R(z) = R(c)(z) = √
2π 4c2 e

4
3 c

6−2(Im z)2
∫ ∞

0
e4c

3(u+Re z)|Ai(2c(z + u) + c4)|2 du.

(1.22)
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We now discuss how (1.22) interpolates between the linear Airy process and the
planar erfc-process.We start with the planar case, which corresponds to letting c → ∞
in (1.22). For this, we fix a point z inC\(−∞, 0] and apply thewell-known asymptotic
formula

Ai z = 1
2
√

π z1/4
e− 2

3 z
3/2 ·

(
1 + O

(
1
z

))
, (z → ∞). (1.23)

Inserting (1.23) in (1.22) and letting c → ∞, one finds

R(c)(z) =
√

2
π
c2e

4
3 c

6−2(Im z)2

×
∫ ∞

0
|2c(z + u) + c4|− 1

2 e4c
3(u+Re z)e− 4

3 Re((2c(z+u)+c4)
3
2 ) du · (1 + O(c−1))

→
√

2
π

∫ ∞

0
e−2(u+Re z)2 du · (1 + O(c−1)

) =
∫ 0

−∞
γ (z + z̄ − t) dt .

here, we have used

4
3c

6 − 2(Im z)2 + 4c3(u + Re z) − 4
3

Re((2c(z + u) + c4)
3
2 ) = −2(u + Re z)2 + O(c−1).

Hence as c → ∞, R(c) converges to the limit

R(c=∞)(z) = γ ∗ 1(−∞,0)(z + z̄) = 1
2 erfc

(
z+z̄√
2

)
.

This is the 1-point function which appears in random normal matrix theory after
the process of rescaling about a regular boundary point of the droplet (see [14] and
references).

We next consider the limit of (1.22) as c → 0. A standard polarization argument
shows that the 1-point function R(c) in (1.22) corresponds to the correlation kernel

K (z, w) = √
2π 4c2 e

4
3 c

6−(Im z)2−(Imw)2

×
∫ ∞

0
e2c

3(2u+z+w̄) Ai(2c (z + u) + c4)Ai(2c (w̄ + u) + c4) du.

Now put z̃ = α · z, w̃ = α · w, and z̃ j = α · z j , where α = c
√
2. The rescaled

point-field {z̃ j }∞1 , then has correlation kernel

K̃ (z̃, w̃) = α2K (αz, αw)

=
√

π

α
e

α6
6 − (� z̃)2+(� w̃)2

2α2

∫ ∞

0
e

α2
2 (2u+z̃+ ¯̃w) Ai

(
z̃ + u + α4

4

)
Ai
( ¯̃w + u + α4

4

)
du.

This kernel is found in the paper [3], and is in turn equivalent with a double integral
formula found in [19]. We shall write R̃(c)(z) = K̃ (z, z).
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Fig. 4 Graphs of the limiting one-point functions R̃(0)(x) for x ∈ R and of R(1)(z) and R(∞)(z) for z ∈ C

Letting c → 0 (i.e., α → 0), it is now straightforward to check (cf. [3]) that K̃
converges to πKAi where KAi is the Airy kernel

KAi(x, y) = Ai x Ai′ y − Ai′ x Ai y

x − y
=
∫ ∞

0
Ai(x + u)Ai(y + u) du, (x, y ∈ R).

Non-translation invariant solutions toWard’s equation are discussed in [14, Section
8.3], but no example is given there. It is interesting to note that the 1-point functions
in (1.22) give rise to such solutions. See the case c = 1 of Fig. 4.

1.5 Almost-Hermitian LUE

We now fix two parameters c > 0 and ν > −1.We shall denote by Kν(z) the modified
Bessel function of the second kind (see [58, p. 78]).

By definition, the ALUE with parameters c and ν (and β = 1) is a random sample
{ζ j }N1 picked from the Gibbs measure (1.2) associated with the potential

QN (ζ ) = − 1
N log

[
Kν(

N2|ζ |
c2

) · |ζ |ν
]

−
(
N
c2

− 1
)

· Re ζ. (1.24)

We remark that QN is continuous, but �QN has a singularity at the origin.
When ν is an integer, a random sample {ζ j }N1 with respect to (1.24) can be iden-

tified with eigenvalues of products of two rectangular random matrices with suitable
Gaussian entries, see Sect. 8.1. Moreover (for general ν > −1) we obtain a LUE-type
analogue of a chiral ensemble studied by Akemann [1] and Osborn [49] in the context
of quantum chromodynamics. More about this will be said in Sect. 7.

It follows from computations in [4, Theorem 1] that the droplet in potential QN is
the elliptic disc (containing the origin)

SQN =
{

ξ + iη ; (ξ−tN )2

a2N
+ η2

b2N
≤ 1

}

, (1.25)

(aN=2−c2N−1+··· , bN=2c2N−1+··· , tN=2−c2N−1+··· ).



52 Page 12 of 57 Y. Ameur, S.-S. Byun

We now recall the following asymptotic formula for the Bessel function Kν (found
in [58, Section 7·3])

Kν(x) =
√

π
2x e

−x (1 + O(x−1)), (x → +∞), (1.26)

and deduce that for each fixed ζ �= 0, as N → ∞,

QN (ζ ) = N
c2

· |ζ | −
(
N
c2

− 1
)

· Re ζ + 1
N log N + O

( 1
N

)
, (N → ∞). (1.27)

Thus QN converges pointwise to the limit

V (ζ ) =
⎧
⎨

⎩

ζ if ζ ∈ R and ζ ≥ 0,

+∞ otherwise.
(1.28)

It is well-known that the equilibrium density in potential (1.28) is the Marchenko–
Pastur law ( [27, Section 7.2]),

σMP(ξ) = 1
2πξ

√
(4 − ξ)ξ · 1[0,4](ξ). (1.29)

As usual, we write RN for the 1-point function with respect to (1.24) and cN for
the corresponding cross-sections in (1.11).

Theorem 1.6 (“Pointwise cross-section convergence forALUE”) cN (ξ) → π ·σMP(ξ)

as N → ∞ for each ξ with 0 < ξ < 4.

We shall now consider scaling limits; the following remark will come in handy.

Remark For fixed ζ �= 0 we have the following approximation for the Laplacian
�QN (ζ ),

�QN (ζ ) = N
4c2|ζ | + o( 1

N ). (1.30)

The formula (1.30) is easily deduced using well-known asymptotics for the Bessel
function Kν , see e.g., [4] (or [58]) for details.

Now fix a zooming-point p∗ ∈ SV in the bulk, i.e., 0 < p∗ < 4. Using (1.30), the
quantities ρ(p∗) and a(p∗) in (1.7) and (1.8) are readily computed as

ρ(p∗) = lim
N→∞

√
N

�QN (p∗) = 2c
√
p∗, a(p∗) = πc

√
p∗ · σMP(p∗). (1.31)

We rescale a random sample {ζ j }N1 about p∗ using the map (1.6) and let RN denote
the 1-point function of the rescaled system {z j }N1 .
Theorem 1.7 (“Bulk scaling limit for ALUE) If ν > −1 is an integer then RN → R
locally uniformly where R(z) = F(2 Im z) and F(z) = γ ∗ 1(−2a,2a)(z), where
a = a(p∗) is given by (1.31).
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Fig. 5 A sample from ALUE rescaled about the singular point 0. Here N = 1000 and c is approximately
equal to 7

(The assumption that ν be an integer is made mainly for technical convenience; we
do not think that it should be necessary.)

While Theorem 1.7 looks similar to Theorem 1.4, the result is new; the shape
of the droplet was calculated only recently in [4], and the singular behaviour of the
equilibrium measure renders our discussion more delicate in the present case.

The similarity with AGUE breaks down when we consider edge scaling limits, and
more precisely when we zoom appropriately about the singularity at the origin. We
now turn to this interesting scaling limit.

In keeping with a two-dimensional perspective, we rescale {ζ j }N1 about the origin
by blowing up with the factor ( Nc )2, i.e., we put

z j = ( Nc
)2

ζ j , z = ( Nc
)2

ζ, RN (z) = ( cN
)4 RN (ζ ).

Using a slight modification of computations due to Osborn in [49], we will prove
the following result.

Theorem 1.8 (“Edge scaling limit for ALUE”)We have RN → R uniformly on com-
pact subsets of C\(−∞, 0], where

R(z) = R(c)(z) = 1
2 Kν(|z|) eRe z

∫ 2c

0
s e− 1

2 s
2 |Jν(s z 1

2 )|2 ds. (1.32)

(The square-root z
1
2 is defined as the principal branch, with a branch-cut along the

negative real axis.)
Again the density (1.32) has an interesting interpolating property, this time between

a linear Bessel process and a relatively lesser known planar Bessel-process (see e.g.,
[11]).
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Fig. 6 Graphs of R̃(0)(x) and R(1)(z), R(∞)(z) for ν = 1
2

We start by passing to the planar limit as c → ∞ in (1.32), which is

R(c=∞)(z) = 1
2 Kν(|z|) eRe z

∫ ∞

0
s e− 1

2 s
2 |Jν(s z 1

2 )|2 ds. (1.33)

The integral here can be evaluated by means of a formula in [50, (10.22.67)], giving

R(c=∞)(z) = 1
2Kν(|z|) Iν(|z|), z ∈ C, (1.34)

where Iν is the modified Bessel function of the first kind. There is a unique determi-
nantal point-field {z j }∞1 having the one-point function (1.34), which we call a “planar
Bessel-process”.

We rescale oncemore in order to obtain a 1-dimensional perspective: given a random
sample {z j }∞1 associated with (1.32), we form {z̃ j }∞1 where z̃ j = c2z j . The point field
{z̃ j }∞1 has 1-point function R̃(c)(z) = c−4R(c)(c−2z). Writing R̃(0) for the limit of
R̃(c) as c → 0, we readily see that R̃(0) = 0 outside of the ray [0,∞) while for x > 0,

R̃(0)(x) = π
2

∫ 1

0
t |Jν(t√x)|2 dt = π

4 (Jν(
√
x)2 − Jν+1(

√
x)Jν−1(

√
x)).

We recognize the last expression as π times the restriction to the diagonal of the
well-known Bessel kernel, given for x, y > 0 by

KBes,ν(x, y) = 1
2

∫ 1

0
t Jν(t

√
x)Jν(t

√
y) dt = Jν (

√
x)

√
y J ′

ν (
√
y)−√

x J ′
ν (

√
x)Jν (

√
y)

2(x−y) .

(1.35)

We conclude that the rescaled ensemble interpolates between the linear Bessel-
process with kernel (1.35) (when c = 0) and the planar Bessel process with 1-point
function (1.32) (when c = ∞). See Fig. 6.
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1.6 Almost-circular ensembles

We now discuss the almost-circular ensembles, a family of random normal matrices
whose eigenvalues tend to be distributed within a narrow band around the unit circle
of width proportional to 1

N . The terminology “almost-circular” comes from the fact
that in the one-dimensional limit, this ensemble tends to the circular unitary ensemble
distributed on the unit circle, cf. [27, Chapter 2] (See also [25] for a recent work on
circular β-ensemble.).

The almost-circular ensemble we consider is associated with a radially symmetric
potential

QN (ζ ) = gN (r), r = |ζ |, gN : R+ → R, (1.36)

where gN is differentiable on R+ with absolutely continuous derivative. Without loss
of generality, we shall assume that gN (1) = 0 and g′

N (1) = 2. We also assume that
QN is subharmonic inC and strictly subharmonic in a neighborhood of the unit circle.
Then the associated droplet SQN is given by an annulus

SQN := {ζ ∈ C | rN ≤ |ζ | ≤ 1}, (1.37)

where rN is a unique constant satisfying rN g′
N (rN ) = 0, see e.g., [51]. A typical

example of such a model is the induced Ginibre ensemble [26], an extension of the
Ginibre ensemble to include zero eigenvalues.

As in previous subsections, we shall assume that the limit

ρ := lim
N→∞

√
N

�QN (1) > 0. (1.38)

exists. This condition plays an important role in defining the almost-circular ensemble
since

rN = 1 − ρ2

2N + o
( 1
N

)
, N → ∞. (1.39)

Let pN := (rN + 1)/2. For an arbitrary zooming-point pN ,θ := pN · eiθ (θ ∈
[0, 2π ]), we define the rescaled sample

z j := −ieiθ
√
N�QN (pN ,θ ) · (ζ − pN ,θ ), (1.40)

See Fig. 7.
As an immediate application of Theorem 3.8 we obtain the following result, which

establishes the bulk universality for the almost-circular ensembles.

Theorem 1.9 (“Bulk scaling limit for Almost-Circular ensembles”) Under the above
assumptions, RN converges locally uniformly to the limit R(z) = F(2 Im z) where
F(z) = γ ∗ 1(−2a,2a)(z) and a = ρ/4.
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Fig. 7 A sample from the almost-circular induced Ginibre ensemble

We remark that the value a again is of the form (1.18) and (1.31) as it can reads
as a = π

2 · ρ · 1
2π = 1

4 · ρ, where 1
2π corresponds to the uniform density on the unit

circle. We also refer to [20] for extensions of Theorem 1.9 under several boundary
conditions.

1.7 Plan of this paper and further results

In Sect. 2 we study a fairly general class of bandlimited Coulomb gas ensembles in
the interface between dimensions 1 and 2.

In Sect. 3 we specialize to the determinantal case β = 1. We adapt to the almost-
Hermitian setting the basic results from [14] concerning structure of limiting kernels,
zero-one law, Ward’s equation, and so on. As an application, we prove Theorem 1.9.

In Sect. 4 we prove Theorem 1.3 and Theorem 1.6 about cross-section convergence
for almost-Hermitian GUE and LUE, respectively.

In Sect. 5 we prove Theorem 1.4 and Theorem 1.7 about bulk scaling limits for
AGUE and ALUE, respectively.

In Sect. 6 we consider edge scaling limits for AGUE and ALUE. We include a new
proof for Theorem 1.5, as well as a proof of Theorem 1.8.

In Sect. 7 we compare our results for ALUE with earlier results about a chiral
ensemble in [1, 49]. We also relate our results with some other point fields appearing
in [17, 27, 41, 47], for example.

In Sect. 8, we provide concluding remarks and relate to other works. In particular,
we state and prove generalizations of the cross-section convergence and bulk scaling
limits for the general ALUE with a rectangular parameter α ≥ 0. We also discuss
results about a generalization of AGUE, which is obtained by inserting a point charge
at the origin, and we discuss almost-Hermitian ensembles with a hard edge.

In the appendices, we collect some asymptotic estimates for Hermite and Laguerre
polynomials which were adapted from the papers [45, 56, 57], respectively.
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2 Generalities about the bandlimited Coulomb gas

In this section, we introduce and study a fairly general setup for dealing with almost-
Hermitian structures. We begin by studying limiting droplets in the bandlimited
regime. After that we study statistical cross-sections by using some basic large devi-
ation estimates. This prompts us to impose yet more restrictive conditions on the
potentials QN .

2.1 The limiting droplet

Let QN and V be potentials satisfying the conditions in Sect. 1.2. We now impose
some standing assumptions.

First of all, wewill assume that each QN is continuous in somefixed neighbourhood
of SV .We assume also that QN is real-analytic in this neighbourhoodwith the possible
exception of one (or several) singular points at which�QN = +∞ for each N (so that
we include the ALUE in our setting, for example).With another veryminor restriction,
we assume that each droplet SQN equals to the corresponding coincidence set S∗

QN
for

the obstacle problem (cf. [51] or Sect. 3.1 below).
In addition, we will assume that QN (ζ ) = QN (ζ̄ ) and QN (ζ ) ≥ QN (Re ζ ) for all

ζ ∈ C, and that �QN ≥ mN on SQN for some constant m > 0.
Under these assumptions, Sakai’s regularity theorem (see [15] and references)

implies that the boundaries ∂SQN consist of finitely many Jordan curves, which
are real analytic with the possible exception of finitely many singular points. We
shall assume that there are no singular points and that there are continuous functions
hN : R → [0,∞) such that

SQN = {ξ + iη; −hN (ξ) ≤ η ≤ hN (ξ)}.

Since the QN increase monotonically to V , we can apply a general convergence
result in [51, Theorem I.6.2] to conclude theweak convergence in the sense ofmeasures
σQN → σV as N → ∞. Moreover, since σQN = �QN · 1SQN

d A we have, for each
bounded continuous function f , that

1
π

lim
N→∞

∫

R

dξ

∫ hN (ξ)

−hN (ξ)

f (ξ + iη)�QN (ξ + iη) dη =
∫

R

f (ξ)σV (ξ) dξ.

We next impose the condition that the limit

ρ(ξ) = lim
N→∞

√
N

�QN (ξ)
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exists as a finite and strictly positive number whenever σV (ξ) > 0. Using this assump-
tion and the mean-value theorem, we obtain for all ξ with σV (ξ) > 0 that

π · σV (ξ) = lim
N→∞

∫ hN (ξ)

−hN (ξ)

�QN (ξ + iη) dη = 2
ρ(ξ)

lim
N→∞ hN (ξ)

√
N�QN (ξ).

(2.1)

Let us particularly mention that hN (ξ) → 0 as N → ∞.
Let �N ,p(ζ ) = √

N�QN (p) · (ζ − p) be the magnification map about a point p ∈ R,
and consider the vertical segment γN (p) = �N ,p(SQN ) ∩ (iR). Writing γN (p) =
[−aN (p)i, aN (p)i] we then have aN (p) = √

N�QN (p) · hN (p).
In view of (2.1), we have shown the following theorem.

Theorem 2.1 (“Asymptotic shape of the droplet”) If QN satisfies the above conditions,
and if γN (p) = [−aN (p)i, aN (p)i] then aN (p) → a(p) as N → ∞ where a(p) =
π
2 · ρ(p) · σV (p).

In particular, the droplets SQN are bandlimited in the sense that there is a constant
A such that | Im ζ | ≤ A

N for each ζ ∈ SQN .

2.2 Statistical cross-sections

Recall from potential theory that the Robin’s constant γ (V ) in external potential V
is defined by γ (V ) = IV [σV ] where IV is the energy-functional (1.4). We say that
a sequence QN of potentials obeying the conditions in Sect. 2.1 is an admissible
sequence if the following lower bound for the partition function holds:

lim inf
N→∞

1
N2 log Z

β
N ≥ −β · γ (V ). (2.2)

Theorem 2.2 (“Weak cross-section convergence”) Suppose that (QN ) is an admissible
sequence and that the restriction V |R is continuous in a R-neighbourhood of the V -
droplet SV . Then

1
π
cβ
N → σV in the weak sense of measures on R.

Note that the continuity assumption on V |R is satisfied forAGUEbut not forALUE.
Our proof of Theorem 2.2 in the following section uses a modification of arguments

from [37] (as well as the planar version in [12, Appendix A]).

2.3 Proof of Theorem 2.2

Given an external potential W we write LW for the kernel

LW (ζ, η) = log 1
|ζ−η| + 1

2 (W (ζ ) + W (η)).
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To a randomconfiguration {ζ j }N1 we associate the corresponding empiricalmeasure

μN = 1
N

N∑

1

δζ j .

The discrete W -energy of this measure is defined to be

I �
W [μN ] = 1

N (N−1)

∑

j �=k

LW (ζ j , ζk) = 1
N (N−1)

∑

j �=k

log 1
|ζ j−ζk | + μN (W ). (2.3)

This energy is closely related to the Hamiltonian HN in external potential W , since

HN =
∑

j �=k

log 1
|ζ j−ζk | + N

N∑

j=1

W (ζ j ) = N (N − 1)I �
W [μN ] +

N∑

j=1

W (ζ j ).

We now come to a simple but useful observation. Write Q∗
N (ζ ) = QN (Re ζ ).

Recalling that Q∗
N ≤ QN on C we obtain

I �

Q∗
N
[μN ] ≤ I �

QN
[μN ]. (2.4)

Following [12, 37] we next fix a small ε > 0 and potentials QN and V obeying the
conditions in Sect. 2.1. We then consider the event

A(N , ε) = {I �
QN

(μN ) ≤ γ (V ) + ε}.

Lemma 2.3 Fix a ≥ 0 and suppose that the lower bound condition (2.2) is satisfied.
Then there is a positive integer N0 depending on ε but not on a such that if N ≥ N0,

Pβ
N ({μN /∈ A(N , ε + a)}) ≤ e− 1

2βaN2
.

Proof If μN /∈ A(N , ε + a), then

I �
QN

[μN ] ≥ γ (V ) + ε + a. (2.5)

By (1.5) and the elementary inequality |ζ − η|2 ≤ (1+ |ζ |2)(1+ |η|2) we find that
LQN (ζ, η) ≥ c1

2 (QN (ζ ) + QN (η)) − c2, where c1 = 1 − 1/k > 0 and c2 = C/k.
This gives

I �
QN

[μN ] ≥ c1
N

N∑

j=1

QN (ζ j ) − c2. (2.6)
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Now fix a small number θ > 0 and take a convex combination of the inequalities
(2.5) and (2.6). We obtain that if μN /∈ A(N , ε + a),

I �
QN

[μN ] ≥ (1 − θ)(γ (V ) + ε + a) + θ

⎛

⎝ c1
N

N∑

j=1

QN (ζ j ) − c2

⎞

⎠ , (2.7)

which implies that the Hamiltonian (1.1) satisfies

HN ≥ N (N − 1)(1 − θ)(γ (V ) + ε + a)

+ k((N − 1)θc1 + 1)
N∑

j=1

log(1 + |ζ j |2) − N (θc3N + c4).

Consequently,

∫

CN \A(N ,ε+a)

e−βHN d AN ≤ e−βN (N−1)(1−θ)(γ (V )+ε+a)+βN (θc3N+c4)

×
[∫

C

(1 + |ζ |2)−kβ((N−1)θc1+1) d A(ζ )

]N
.

Since
∫
C
(1 + |ζ |2)−α d A(ζ ) = 1

α−1 for α > 1, the integral in brackets is no larger
than 1, so we obtain that for all large enough N ,

Pβ
N ({μN /∈ A(N , ε + a)}) ≤ 1

ZN
e−βN (N−1)(1−θ)(γ (V )+ε+a)+βN (θc3N+c4).

Next we use the lower bound ZN ≥ exp(−N 2(βγ (V ) + o(1))) from assumption
(2.2). This implies that

Pβ
N ({μN /∈ A(N , ε + a)}) ≤ eN (N−1)[β(θ(γ (V )+c3+ε)−(1−θ)a)+o(1)].

Finally we fix θ with 0 < θ < 1
8 and N0 such that for all N ≥ N0, θ(γ (V ) + c3 +

ε) + o(1) < a
8 . Then for large enough N ,

Pβ
N ({μN /∈ A(N , ε + a)}) ≤ eN (N−1)[β( a8−(1−θ)a)] ≤ e− 1

2βaN2
,

which completes the proof. ��

Now fix a constant C > 0 and write S+
QN

=
{
ζ ∈ C ; dist(ζ, SQN ) ≤ C log N

N

}
.

Lemma 2.4 Suppose that for each N we have μN ∈ A(N , ε) and suppμN ⊂ S+
QN

.
Suppose also that V |R is continuous in an R-neighbourhood of SV . Then each sub-
sequence of the measures μN has a further subsequence converging weak* to a
probability measure μ supported on R such that IV [μ] ≤ γ (V ) + ε.
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Proof By hypothesis, the measures μN are all supported in some large compact set.
Pick a subsequence μNk converging weak* to a probability measure μ which is nec-
essarily supported on R. Also pick ε > 0 and write Q∗

N (ζ ) = QN (Re ζ ). We also

write V ∗(ζ ) = V (Re ζ ). By (2.4) we know that I �

Q∗
N
[μN ] ≤ γ (V ) + ε.

Now recall that the Q∗
N increase monotonically to V ∗ and that V ∗ is continuous

on some compact set K which contains the sets S+
QN

for all large N . Hence the
convergence is uniform on K , by Dini’s theorem. In particular we can find an integer
n such that sup{|Q∗

N (ζ ) − V ∗(ζ )|; ζ ∈ K } < ε when N ≥ n. Then for Nk ≥ n,
|μNk (Q

∗
Nk

−V ∗)| < ε. Choosing n larger if necessary, we can arrange that |μNk (V
∗)−

μ(V )| < ε, since V ∗ is continuous on K and μ(V ) = μ(V ∗). Hence |μNk (Q
∗
Nk

) −
μ(V )| < 2ε when Nk ≥ n. We have shown that μNk (Q

∗
Nk

) → μ(V ) as k → ∞.
From here on, we follow a routine argument which can be found in [51, p. 146] for

example. For a large real number M , we put LM (ζ, η) = min{M, log 1
|ζ−η| }.

Since LM is continuous while μNk → μ weak*,

∫∫
log

1

|ζ − η| dμ(ζ ) dμ(η) = lim
M→∞ lim

k→∞

∫∫
LM (ζ, η) dμNk (ζ ) dμNk (η)

≤ lim
M→∞ lim sup

k→∞

⎧
⎨

⎩
1
N2
k

∑

j �=l

log 1
|ζ j−ζl | + M

Nk

⎫
⎬

⎭

= lim sup
k→∞

1
Nk (Nk−1)

∑

j �=l

log 1
|ζ j−ζl | .

Since I �

Q∗
Nk

[μNk ] ≤ γ (V ) + ε it follows that

IV [μ] = lim
M→∞ lim

k→∞

(∫∫
LM (ζ, η) dμNk (ζ ) dμNk (η) + μNk (Q

∗
Nk

)

)

≤ lim sup
k→∞

I �

Q∗
Nk

[μNk ] ≤ γ (V ) + ε.

The proof is complete. ��
Lemma 2.5 Let dN (ζ ) = dist(ζ, SQN ) and put DN = max1≤ j≤N {dN (ζ j )}. Then for
each q > 0 there exists C > 0 and N0 so that for N ≥ N0 we have

Pβ
N

({
DN > C log N

N

})
≤ 1

Nq .

Proof This follows from [12, Theorem 2]. More precisely, in the estimate [12, (1.11)]
(with Q = QN ), we take c = c1N where c1 > 0 is independent of N . Then taking
t = A log N with a large enough A and defining C accordingly, we finish the proof. ��

We are now ready to finish our proof of Theorem 2.2.
For afixed small ε > 0,wepick N0(ε) so that if N ≥ N0 then,with large probability,

suppμN ⊂ S+
QN

and μN ∈ A(N , 2ε). Indeed, by lemmas 2.3 and 2.5, we can arrange
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that the probability of the complementary event is at most N−q + e− 1
2 εβN2

where
q > 0 may be chosen as large as we please (by adjusting the value of C).

Now let ε = εn → 0 through a suitable sequence, and for each n, use Lemma 2.4 to
pick a weak* subsequential limitμεn of the measuresμN , with IV [μεn ] ≤ γ (V )+2εn
and μεn supported in some fixed compact subset of R.

Letting n → ∞, the corresponding measures μεn will converge weak* along a
subsequence to a measure μ with IV [μ] ≤ γ (V ). This implies that μ = σV by
unicity of the equilibrium measure (cf. [51, Theorem I.1.3]). We have shown that with
probability 1−o(1), every subsequence of the measuresμN has a further subsequence
converging weakly to σV , which implies that the full sequence μN → σV weakly as
measures.

Now let f be a bounded continuous function on R and define f ∗ on C by
f ∗(ζ ) = f (Re ζ ). Then the uniformly bounded random variables μN ( f ∗) con-
verge to σV ( f ∗) = σV ( f ) in probability as N → ∞. Taking expectations we obtain
Eβ
N [μN ( f ∗)] → σV ( f ) as N → ∞. However, by Fubini’s theorem,

Eβ
N [μN ( f ∗)] = 1

N E
β
N [ f (Re ζ1) + . . . + f (Re ζN )]

= 1
π

1
N

∫

R

f (ξ) dξ

∫

R

Rβ
N (ξ + iη) dη

= 1
π

∫

R

f (ξ) cβ
N (ξ) dξ,

so we obtain the desired convergence cβ
N → πσV in the sense of measures on R. ��

2.4 An entropy estimate

The lower bound on the partition function in (2.2) can be checked directly for our
model cases of AGUE and ALUE. However, the stronger conditions in the following
lemma are usually easier to check (e.g., in the case of AGUE).

Lemma 2.6 Suppose that the equilibrium measures σQN obey the following energy
and entropy limits:

lim
N→∞

1
N σQN (QN ) = 0, lim

N→∞
1
N σQN ( log�QN ) = 0. (2.8)

Then the lower bound (2.2) holds, i.e., lim infN→∞ 1
N2 log Z

β
N ≥ −βγ (V ).

Proof We start by fixing a continuous compactly supported function ϕ with
∫
C

ϕ d A =
1 and noting that

ZN =
∫

CN
exp

⎧
⎨

⎩
−β
∑

j �=k

LQN (ζ j , ζk) −
N∑

j=1

(βQN (ζ j ) + logϕ(ζ j ))

⎫
⎬

⎭

N∏

j=1

ϕ(ζ j ) d A(ζ j ).
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By Jensen’s inequality,

log ZN ≥
∫

CN

⎧
⎨

⎩
−β
∑

j �=k

LQN (ζ j , ζk) −
N∑

j=1

(βQN + logϕ)(ζ j )

⎫
⎬

⎭

N∏

j=1

ϕ(ζ j ) d A(ζ j )

= −βN (N − 1)IQN [ϕ] − N
∫

C

(β QN + logϕ) ϕ d A,

with the understanding that 0 log 0 = 0, and where we write IQN [ϕ] in place of
IQN [ϕ d A]. This leads to

1
N2 log ZN ≥ −β

(
1 − 1

N

)
IQN [ϕ] − β

N

∫
QNϕ d A − 1

N

∫
ϕ logϕ d A. (2.9)

For small δ > 0 we let χ(ζ ) = δ−21D(0,δ)(ζ ) and define

ϕδ,N (ζ ) = χ ∗ σQN (ζ ) = σQN (D(ζ,δ))

δ2
.

As δ → 0 we have that IQN [ϕδ,N ] → IQN [σQN ] = γ (QN ) (see remark in [12,
Appendix A]).

Thus letting δ → 0 the right hand side in (2.9) converges to

−β(1 − 1
N )γ (QN ) − 1

N

∫

SQN

QN�QN dA − 1
N

∫

SQN

�QN log�QN dA. (2.10)

Since γ (QN ) ↑ γ (V ) as N → ∞ (cf. [51, Theorem I.6.2]), we see that (2.10) can be
estimated from below by −βγ (V ) + o(1), due to the assumptions (2.8). ��

3 Generalities about the determinantal case

Let (QN ) be any sequence of potentials satisfying the conditions in Sect. 2.1, and set
β = 1.

We shall adapt to the present setting some basic techniques from the paper [14]
pertaining to weighted polynomials, Ward’s equation, and so forth. The adaptations
are straightforward, and we shall be correspondingly brief.

Recall that the β = 1 process is determinantal, i.e., the intensity k-point functions
of {ζ j }N1 can be represented as determinantsRN ,k(η1, . . . , ηk) = det(KN (ηi , η j ))k×k ,
where KN is a correlation kernel.

Indeed, as is well-known, we can take KN to be the reproducing kernel of the
subspace WN of L2 = L2(C, d A) consisting of all weighted polynomials f = q ·
e−NQN /2, where q is a holomorphic polynomial of degree at most N −1 (see e.g., [51,
Section IV.7].). This canonical correlation kernel is used without exception below;
note in particular that RN (ζ ) = KN (ζ, ζ ).
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3.1 Auxiliary estimates

Wenow record a fewbasic estimates forweighted polynomials,which are proved using
standard techniques, e.g., in [14, Section 3].We begin with the following pointwise-L2

estimate.

Lemma 3.1 Let f = q · e−NQN /2 ∈ WN and fix a point ζ0 at which �QN (ζ0) > 0.
Suppose that there exists a constant C0 = C0(ζ0) such that

�QN (ζ ) ≤ C0�QN (ζ0) when |ζ − ζ0| ≤ 1√
N�QN (ζ0)

. (3.1)

Then there exists a constant C = C(C0) such that

| f (ζ0)|2 ≤ CN�QN (ζ0)

∫

D(ζ0,
1√

N�QN (ζ0)
)

| f |2 d A. (3.2)

Moreover (with the same C) RN (ζ0) ≤ CN�QN (ζ0).

Proof Consider the function F(ζ ) = | f (ζ )|2eNC0�QN (ζ0)|ζ−ζ0|2 . By hypothesis, F is
logarithmically subharmonic in the disc D(ζ0,

1√
N�QN (ζ0)

) since

� log F(ζ ) = �| f (ζ )|2 + NC0�QN (ζ0) = −N (�QN (ζ ) − C0�QN (ζ0)) ≥ 0.

An application of the sub-mean inequality gives

| f (ζ0)|2 ≤ N�QN (ζ0)

∫

D

(

ζ0,
1√

N�QN (ζ0)

) F dA

≤ eC0N�QN (ζ0)

∫

D

(

ζ0,
1√

N�QN (ζ0)

) | f |2 d A,

which proves (3.2) with C = eC0 .
To verify the last statement, we consider the weighted polynomial f (ζ ) =

KN (ζ,ζ0)√
KN (ζ0,ζ0)

, which satisfies | f (ζ0)|2 = RN (ζ0). Applying (3.2) to this f , observ-

ing that
∫
C

| f |2 = 1, we immediately obtain the inequality RN (ζ0) ≤ CN�QN (ζ0).
��

It is convenient to prove a stronger form of Lemma 3.1, which incorporates the
decay of RN outside of the droplet SQN . For this, we recall some standard potential
theoretic notions.

Given an external potential W , we define the obstacle function W̌ (ζ ) as the supre-
mum of s(ζ ) where s runs through the set of subharmonic functions on C which
satisfy s ≤ W everywhere and s(ζ ) ≤ log |ζ |2 + O(1) as ζ → ∞. The coincidence
set S∗

W = {W = W̌ } contains the droplet SW , but may in general be slightly larger (see

[51, p.144]). The obstacle function W̌ is harmonic in the complement of the droplet
SW and is C1,1-smooth on C, see [51].
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Lemma 3.2 If f ∈ WN and | f | ≤ C on SQN , then | f | ≤ Ce−N (QN−Q̌N )/2 on C.

Proof This is a standard fact (e.g., [51]) but it is easy enough to recall a proof. We can
assume that C = 1. Writing f = q · e−NQN /2 where q has degree at most N − 1, we
consider the subharmonic function s = 1

N log |q(ζ )|2 which satisfies s(ζ ) ≤ log |ζ |2+
O(1) as ζ → ∞. Since | f | ≤ 1 on C we see that s(ζ ) = 1

N log | f (ζ )|2 + QN (ζ ) ≤
QN (ζ ) on C. A suitable version of the maximum principle shows that s ≤ Q̌N on C,
finishing the proof of the lemma. ��
Lemma 3.3 Suppose in addition to (3.1) that there is a constant C1 such that �QN ≤
C1N on SQN . Then there is a constant C such that, for all ζ in a neighbourhood of

the droplet, RN (ζ ) ≤ CN 2e−N (QN−Q̌N )(ζ ).

Proof Fix a point ζ1 in a neighbourhood of the droplet, and take f (ζ ) = KN (ζ,ζ1)√
KN (ζ1,ζ1)

.

Next fix ζ0 ∈ SQN and use (3.2) to conclude that | f (ζ0)|2 ≤ CC1N 2
∫
C

| f |2 d A =
CC1N 2. Since ζ0 ∈ SQN was arbitrary, Lemma 3.2 shows that | f (ζ )|2 ≤
CC1N 2e−N (QN−Q̌N )(ζ ).

Taking ζ = ζ1 we find that RN (ζ ) = KN (ζ, ζ ) ≤ CC1N 2e−N (QN−Q̌N )(ζ ), as
desired. ��
Remark We stress that the conditions of Lemma 3.3 holds for AGUE (since �QN is
then essentially a constant multiple of N ), but not for ALUE.

Lemma 3.4 Suppose that the conditions of Lemma 3.3 are satisfied. Then the cross-
sections cN (p) = 1

N

∫
R
RN (p + iη) dη are uniformly bounded on R.

Proof Write dN (ζ ) = dist(ζ, SQN ). By Taylor’s formula,

QN (ζ ) − Q̌N (ζ ) ≥ MN · dN (ζ )2, MN = min{�QN (ζ ); ζ ∈ SQN } (3.3)

for all ζ close enough to the droplet, see e.g., [12, Section 2]. By assumption we have
MN ≥ mN for some m > 0, so there is a constant C such that

cN (p) ≤ CN
∫ +∞

−∞
e−mN2dN (p+iη)2 dη. (3.4)

By Theorem 2.1, the droplet SQN is contained in a strip |η| ≤ A
N , so the right hand

side in (3.4) can be estimated by C(2A + 2
∫∞
0 e−my2 dy) < ∞. ��

3.2 Rescaling in the bulk

Now fix a point p∗ ∈ R with σV (p∗) > 0, where as always V = lim QN .
We admit potentials such that �QN has singularities (such as for ALUE), but we

assume that each �QN is finite at the point p∗ and that there are positive constants c1
and c2 (with c2 possibly depending on p∗) such that c1N ≤ �QN (ζ ) ≤ c2N for all
ζ ∈ D(p∗, 1√

N�QN (p∗)
) and all large N .
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We then rescale by the blow-up map �N in (1.6), i.e., we rescale the system {ζ j }N1
by magnifying distances by the factor

√
N�QN (p∗), about the origin p∗. The resulting

process is denoted {z j }N1 and we write RN for its 1-point intensity.
It is easy to see that the rescaled process {z j }N1 is determinantal as well, with

(canonical) correlation kernel

KN (z, w) = 1
N�QN (p∗)KN (ζ, η), z = �N (ζ ), w = �N (η).

The following lemma is a slight modification of [14, Theorem 1.1]. A proof can
be accomplished by arguments from [14, Section 3] (with “QN ” in lieu of “Q”). We
omit repeating those details here, but merely point out that the local boundedness in
Lemma 3.1 is sufficient for the normal families argument in [14, Section 3] to carry
through.

Lemma 3.5 (“Structure of limiting kernels”) Under the above conditions, there exists
a sequence cN of cocycles such that each subsequence of the kernels cN KN has a
further subsequence which converges locally uniformly to a Hermitian kernel K of
the form K (z, w) = G(z, w) · L(z, w), where L is a Hermitian-entire function and
G is the Ginibre kernel (1.19).

Here we have used the following notation (cf. [14]). A continuous function f (z, w)

is called Hermitian if f (z, w) = f (w, z). If f is also analytic (or entire) in z and w̄,
then f is called Hermitian-analytic (or Hermitian-entire). A Hermitian function of
the form f (z, w) = g(z)g(w), where g is continuous and unimodular, is said to be a
cocycle.

By the convergence in Lemma 3.5 it follows that each limiting kernel K appearing
in Lemma 3.5 is the correlation kernel of a unique determinantal point field {z j }∞1 .
In order to determine K it clearly suffices to determine the limiting 1-point function
R(z) = L(z, z), for then L is determined by R via polarization, and so K = LG is
also determined.

In what follows the subsequential limits R = lim RNk play a fundamental role. We
refer to such limits as limiting 1-point functions about p∗.

Now recall our assumption that the limit ρ(p∗) in (1.7) exists, i.e., we assume that
1√

N�QN (p∗)
=
√

N
�QN (p∗) · 1

N = ρ(p∗)
N · (1 + o(1)) as N → ∞.

We immediately obtain the following rescaled version of the pointwise cross-section
convergence.

Lemma 3.6 If the cross-section cN (p∗) converges to π ·σV (p∗), then for each limiting
1-point function R at p∗ and each x ∈ R,

∫

R

R(x + iy) dy = π · ρ(p∗) · σV (p∗).

Given a limiting kernel K , we define the Berezin kernel B via B(z, w) = |K (z,w)|2
R(z)

and we put C(z) = ∫
C

B(z,w)
z−w

d A(w).
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Theorem 3.7 Suppose that (QN ) is an admissible sequence satisfying the cross-
section convergence. Fix p∗ ∈ R where σV (p∗) > 0 and ρ(p∗) > 0 and rescale
as above. Then each limiting 1-point function R = lim RNk is nontrivial, i.e.,
R > 0 everywhere on C. Furthermore, R gives rise to a solution to Ward’s equa-
tion ∂̄C(z) = R(z) − 1 − � log R(z).

Proof The proof again follows by appealing to general results from [14]. Indeed, it
follows from Lemma 3.6 that a limiting 1-point function R cannot vanish identically.
Then in fact R > 0 everywhere and Ward’s equation holds in view of the zero-one
law in [14, Theorem 1.3]. ��

3.3 Characterization of translation invariant scaling limit

We now come to the important realization that the cross-section convergence uniquely
determines a limiting 1-point function R, provided that the latter can be shown to be
translation invariant. Indeed, this now follows in a straightforward way by appealing
to the theory for Ward’s equation in [14].

Similar as in [14], we shall say a limiting 1-point function R in Lemma 3.5 is
(horizontal) translation invariant if R(z + t) = R(z) for all t ∈ R.

Theorem 3.8 Keep the assumptions of Theorem 3.7. Then each translation invariant
limiting 1-point function R at p∗ is of the form

R(z) = γ ∗ 1(−2a,2a)(2 Im z) = 1√
2π

∫ 2a

−2a
e− 1

2 (2 Im z−t)2 dt, a = π
2 · ρ(p∗) · σV (p∗). (3.5)

Proof The formula (3.5) (for some a > 0) follows immediately from the charac-
terization of translation invariant solutions to Ward’s equation in [14, Theorem 1.6].
Moreover, Lemma 3.6 fixes the value of a in (3.5). ��

3.4 Universality of almost-circular ensembles

The theorymainly described in the almost-Hermitian setup so far applies to the almost-
circular setup as well.

Proof of Theorem 1.9 Since QN is radially symmetric, the limiting empirical distribu-
tion is uniform on the unit circle. Furthermore, by (1.38) and (1.39), we have

1
π
cN = 1

π
(1 − rN )�QN (1) · (1 + o(1)) = 1

2π · (1 + o(1)), (N → ∞). (3.6)

This in particular gives rises to the rescaled version of the pointwise cross-section
convergence

∫

R

R(x + iy) dy = ρ
2 . (3.7)

Moreover, since QN is radially symmetric, it is easy to show the translation invariance,
see e.g., [14, Subsection 6.4]. Now Theorem 3.8 completes the proof. ��
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4 Pointwise convergence of cross-sections

In this section we prove Theorem 1.3 and Theorem 1.6 about pointwise convergence
of cross-sections to π times the equilibrium measure σV (p).

4.1 Cross-sections for AGUE

Let

QN (ζ ) = 1
2ξ

2 + 1
2 · N

c2
η2

and fix numbers δ, α with 0 < δ < α < 2. Put Iα,δ = {ξ ∈ R; δ ≤ |ξ | ≤ α}.
We shall prove in detail that 1

π
cN (p) → σsc(p) uniformly for p ∈ Iα,δ . The

pointwise convergence for p = 0 may be handled in a similar way, see a remark
below.

We first recall that the 1-point function can be written RN (ζ ) = ∑N−1
j=0 |w j (ζ )|2,

wherew j = q j ·e−NQN /2 ∈ WN is an orthonormal basis of the weighted polynomials
subspace WN of L2 (see Sect. 3).

Consider now an arbitrary potential Q of the form Q(ξ + iη) = aξ2 + bη2 where
a and b are positive constants.

The following orthonormal polynomials in weight e−NQN /2 are found in [23],

q j (ζ ) = (ab)
1
4

√
N
j ! (

τ
2 )

j
2 Hj

(√
Nab
b−a ζ

)

, τ = b−a
b+a ,

where Hj is the j th Hermite polynomial, Hj (z) = (−1) j ez
2 d j

dz j
e−z2 .

In other words, the 1-point function in potential Q = aξ2 + bη2 is given by

⎧
⎨

⎩

RN (ζ ) = e−NQ(ζ )N
√
ab · FN

(√
Nab
b−a ζ

)
,

FN (z) =∑N−1
j=0

(τ/2) j

j !
∣
∣Hj (z)

∣
∣ 2 .

(4.1)

We have the following lemma (see [45, Proposition 2.3] for a related statement.).

Lemma 4.1 With x = Re z and FN as in (4.1), we have

∂FN
∂x (z) = 4τ x

1+τ
FN (z) − 4(τ/2)N

1+τ
Re[HN−1(z)HN (z̄)]

(N−1)! .

Proof We apply two standard facts for Hermite polynomials, namely the three-term
recursion Hj+1(z) = 2zHj (z) − H ′

j (z) and the identity H ′
j (z) = 2 j Hj−1(z). These

lead to

∂FN
∂z =

N−1∑

j=0

(τ/2) j

j ! · 2 j Hj−1(z) ·
(
2z̄H j−1(z̄) − H ′

j−1(z̄)
)
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= 2τ z̄
N−2∑

j=0

(τ/2) j

j ! |Hj (z)|2 − τ

N−2∑

j=0

(τ/2) j

j ! Hj (z)H
′
j (z̄). (4.2)

Using once more the three-term recursion, the last sum is recognized as

∂FN
∂ z̄ (z) − 2z̄ (τ/2)N−1

(N−1)! |HN−1(z)|2 + (τ/2)N−1

(N−1)! HN−1(z)HN (z̄).

Inserting this in (4.2), we obtain after some straightforward manipulations,

∂FN
∂z (z) = 2τ z̄FN (z) − τ

∂FN
∂ z̄ (z) − 2 (τ/2)N

(N−1)! HN−1(z)HN (z̄). (4.3)

The lemma follows from (4.3) by taking real parts and rearranging. ��
Now consider the cross-section cN , which we write in the form

cN (ξ) = 1
N2

∫

R

RN (ξ + i y
N ) dy. (4.4)

Fix a point ξ ∈ Iα,δ .
By (4.1) with a = 1

2 and b = 1
2
N
c2

we have

1
NRN (ξ + i y

N ) =
√
N

2c e
− N

2 ξ2− 1
2c2

y2
FN

(
N√

2(N−c2)
(ξ + i y

N )

)

.

Applying Lemma 4.1, we obtain after some straightforward computations

1
N

∂RN
∂ξ

(ξ + i y
N ) = − 1

c
√
2

N+c2
(N−1)!

√
N

N−c2
e
− N

2 ξ2− 1
2c2

y2
(

N−c2

2(N+c2)

)N

× Re

{

HN−1

(
N√

2(N−c2)
(ξ + i y

N )

)

HN

(
N√

2(N−c2)
(ξ − i y

N )

)}

.

(4.5)

Thus we have asymptotically, as N → ∞,

1
N2

∂RN
∂ξ

(ξ + i y
N ) = − (1 + o(1)) · 1

c
√
2
e
− N

2 ξ2− 1
2c2

y2−2c2 1
2N (N−1)!

× Re

{

HN−1

(√
N
2 ξ + i y√

2N

)

HN

(√
N
2 ξ − i y√

2N

)}

.

(4.6)

We now apply the inequality (A.6) in (4.6), which gives that there are constants
C = C(α, δ) and k = k(α, δ) such that whenever ξ ∈ Iα,δ ,

1
N2

∂RN
∂ξ

(ξ + i y
N ) ≤ Ce

− 1
2c2

y2 max
{
1, y2N

N N

}
cosh2(ky).
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Using this and differentiating with respect to ξ in (4.4) we find that the derivative
c′
N satisfies

|c′
N (ξ)| ≤ C

∫

R

e
− 1

2c2
y2 max{1, y2N N−N } cosh2(ky) dy ≤ C1,

with a new constant C1 = C1(α, δ, c). This proves equicontinuity of the functions cN
on Iα,δ .

Since the functions cN are also uniformly bounded (Lemma 3.4) we can apply
the Arzela-Ascoli theorem and conclude that each subsequence of the functions cN
has a further subsequence which converges uniformly on Iα,δ to a limit c(ξ). In view
of Theorem 2.2, we must then have c = π · σV on the interval Iα,δ where σV is
the equilibrium measure in potential V (ξ) = 1

2ξ
2, i.e., σV = σsc is Wigner’s semi-

circle law. We have thus shown locally uniform convergence cN (ξ) → πσV (ξ) for
ξ ∈ (−2, 2) \ {0}. It is not hard to obtain convergence also at ξ = 0, by using the
Mehler-Heine formulas in (A.2). This detail may be left to the reader. Our proof of
Theorem 1.3 is thereby complete. ��

4.2 Cross-sections for ALUE

We now prove Theorem 1.6 on the cross-sections of the ALUE. To this end we fix a
real number c > 0 and a non-negative integer ν and take

QN (ζ ) = − 1
N log

{
Kν(aN |ζ |) · |ζ |ν}− bRe ζ, (4.7)

where we abbreviate

a = aN = 1
c2
N , b = bN = 1

c2
N − 1. (4.8)

Let us fix a small α > 0 and put Iα = [α, 4 − α]. We must prove that the cross-
sections cN (ξ) converge uniformly on Iα to π · σMP(ξ) = 1

2ξ

√
ξ(4 − ξ).

For this purpose, we first recall from [2, 3, 49] that the j th orthonormal polynomial
q j in weight e−NQN /2 can be expressed in terms of the Laguerre polynomial Lν

j (z) =
z−νez
j !

d j

dz j
(e−z z j+ν) via

q j (ζ ) = CN · τ j
√

j !
( j+ν)! L

ν
j (

a2−b2
2b Nζ ),

(
τ = τN = b

a = 1 − c2
N

)
, (4.9)

where CN = √
aN ( a

2−b2
2a N )

ν+1
2 .

Hence if we introduce the function

GN (z) =
N−1∑

j=0

τ 2 j j !
( j+ν)! |Lν

j (z)|2, (4.10)
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then the 1-point function in external potential QN becomes

RN (ζ ) = C 2
N · GN

(
a2−b2
2b Nζ

)
· e−NQN (ζ ). (4.11)

Now pick ξ in the interval Iα = [α, 4 − α], and put

ζ = ξ + i y
N , (y ∈ R).

Using (1.26) and (1.24), it follows from (4.11) that

1
N2RN (ζ ) =

√
π
2
1
c N

ν · ξν− 1
2 e

−Nξ− y2

2c2ξ · GN (Nζ ) · (1 + o(1)),

where we have used

N
(
N
c2

· |ζ | −
(
N
c2

− 1
)

· Re ζ
)

= N2

c2
·
√

ξ2 + y2/N 2

−
(
N2

c2
− N

)
ξ = Nξ + y2

2c2ξ
+ O

( 1
N

)
.

We next use a summation identity found in [24, (10.12.42)] to write

j !
( j+ν)! |Lν

j (z)|2 =
j∑

k=0

|z|2k
k!(k+ν)! L

ν+2k
j−k (z + z̄). (4.12)

As a consequence, we can write, in turn:

GN (z) =
N−1∑

j=0

τ 2 j
j∑

k=0

|z|2k
k!(k+ν)! L

ν+2k
j−k (z + z̄),

1
N2RN (ζ ) =

√
π
2
1
c N

ν · ξν− 1
2 e

−Nξ− y2

2c2ξ ·
N−1∑

j=0

τ 2 j
j∑

k=0

|Nζ |2k
k!(k+ν)! L

ν+2k
j−k (2Nξ)(1 + o(1)).

Observing that |Nζ |2k = (Nξ)2k(1 + (
y
Nξ

)2)k and integrating in y, we find for
ξ ∈ Iα

cN (ξ) =
√

π
2
1
c N

ν · ξν− 1
2 e−Nξ

N−1∑

j=0

τ 2 j
j∑

k=0

(Nξ)2k

k!(k+ν)! L
ν+2k
j−k (2Nξ)

×J (N , k) · (1 + o(1)), where J (N , k) =
∫

R

e
− y2

2c2ξ (1 + (
y
Nξ

)2)k dy.

(4.13)

We pause to evaluate the integral J (N , k).
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Lemma 4.2 J (N , k) = c · √
2π ξ · k!

(−2c2

N2ξ

)k
L−k−1/2
k

(
N2ξ

2c2

)
.

Proof We shall use the following integral representation of the confluent Hypergeo-
metric function U (a, b, z) found in [50, (13.4.4)]

U (a, b, z) = 1
�(a)

∫ ∞

0
e−zt ta−1(1 + t)b−a−1 dt .

By a change of variable and using �( 12 ) = √
π , this leads to

∫

R

e−ay2 (1 + (by)2)k dy =
√

π

b U ( 12 , k + 3
2 , a

b2
) =

√
π

b ( a
b2

)
−k− 1

2U (−k,−k + 1
2 , a

b2
).

For the last identity, we also use the well-known (Kummer’s) transformation

U (a, b, z) = z1−b U (a − b + 1, 2 − b, z),

see [50, (13.2.29)]. We finish the proof of the lemma by use of the functional relation
U (−n, ν + 1, z) = (−1)n n! Lν

n(z) found in [50, (13.6.9)]. ��
We next use the closed form of Laguerre polynomial in [55, Chapter V],

Lν
n(x) =

n∑

j=0

�(n+ν+1)
(n− j)!�( j+ν+1)

(−x) j

j !

to infer that J (N , k) = c · √2π ξ · (1+ O( 1
N2 )). Inserting this in (4.13), we arrive at

cN (ξ) = π(Nξ)ν · e−Nξ ·
N−1∑

j=0

τ 2 j
j∑

k=0

(Nξ)2k

k!(k+ν)! L
ν+2k
j−k (2Nξ) · (1 + o(1))

= π(Nξ)ν · e−Nξ ·
N−1∑

j=0

τ 2 j
j !

( j+ν)! [Lν
j (Nξ)]2 · (1 + o(1)), (4.14)

where we used (4.12) with z = Nξ to obtain the last equality.
On the other hand, we shall verify that

lim
N→∞(Nξ)νe−Nξ

N−1∑

j=0

j !
( j+ν)!

[
Lν
j (Nξ)

]2 = 1
2πξ

√
(4 − ξ)ξ . (4.15)

To prove (4.15), we use the classical Christoffel-Darboux formula

n−1∑

j=0

j !
( j+ν)! L

ν
j (x)L

ν
j (y) = n!

(n−1+ν)!
1

x−y (L
ν
n−1(x)L

ν
n(y) − Lν

n−1(y)L
ν
n(x))
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together with differentiation rule d
dx L

ν
j (x) = −Lν+1

j−1(x) to obtain

(Nξ)νe−Nξ
N−1∑

j=0

j !
( j+ν)! [Lν

j (Nξ)]2 = (Nξ)νe−Nξ N !
(N−1+ν)!

× (Lν
N−1(Nξ)Lν+1

N−1(Nξ) − Lν
N (Nξ)Lν+1

N−2(Nξ)).

Next we apply the following Plancherel-Rotach type formula from [28, Section III]:
for x = 4nX with ε

n ≤ X < 1 and fixed m,

Lν
n+m(x) = x−ν/2ex/2(−1)n+m(2π

√
X(1 − X))−1/2nν/2−1/2(gν

n,m(X) + O(mn )),

(4.16)

where

gν
n,m(X) = sin(2n(

√
X(1 − X) − arccos

√
X) − (2m + ν + 1) arccos

√
X + 3π/4).

Using (4.16), we obtain that

Lν
N−1(Nξ)Lν+1

N−1(Nξ) − Lν
N (Nξ)Lν+1

N−2(Nξ)

= (Nξ)−νeNξ N ν−1 · 2
π

1
ξ
√
4−ξ

(gν
N ,−1(X)gν+1

N ,−1(X) − gν
N ,0(X)gν+1

N ,−2(X)) · (1 + o(1)),

where X = ξ
4 . Hence, using an elementary trigonometric reduction formula, we infer

that

gν
N ,−1(X)gν+1

N ,−1(X) − gν
N ,0(X)gν+1

N ,−2(X) = 1
2 (

√
X − cos(3 arccos

√
X))

= 1
4

√
ξ(4 − ξ).

This gives that the convergence (4.15) holds locally uniformly for ξ ∈ (0, 4). (We
refer to [34, Propoistion 1] or [27, Subsection 7.2.3] for further expansion of (4.15)
up to order O(1/N 2).)

Combining (4.14) and (4.15), using that τ = a/b → 1 as N → ∞, it follows that
cN (ξ) → π · σMP(ξ) for all ξ ∈ Iα. This finishes our proof for Theorem 1.6. ��

5 Bulk scaling limits

In this section we obtain bulk scaling limits for the almost-Hermitian GUE and LUE,
i.e., we prove Theorem 1.4 and Theorem 1.7, respectively.

5.1 Bulk scaling limits for AGUE

We now prove Theorem 1.4. To this end, recall that QN (ζ ) = 1
2ξ

2 + 1
2
N
c2

η2. We also
fix a small parameter α, 0 < α < 2 and write Iα = [−2 + α, 2 − α]. Finally we fix a
point p∗ ∈ Iα .
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Let R = lim RNk be a limiting rescaled 1-point function about p∗ (guaranteed
to exist by Lemma 3.5). By Theorem 3.8 it suffices to prove that R is horizontal
translation invariant, for then R will be given by the explicit form in (3.5).

Next recall that RN (z) = 1
N�QN

RN (ζ ), where z = √
N�QN · (ζ − p∗), i.e.,

ζ = p∗ + 2c
N z · (1 + O(N− 1

2 )).

Thus using (4.1) and Lemma 4.1 (with a = 1
2 , b = 1

2
N
c2
, τ = b−a

b+a ) we obtain after
some elementary manipulations,

∂RN
∂x (z) = −e−NQN (ζ ) 4a√

(b−a)�QN

(τ/2)N

(N−1)! · Re
{

HN−1

(√
Nab
b−a ζ

)

HN

(√
Nab
b−a ζ̄

)}

(5.1)

= −e−NQN (ζ )(1 + o(1)) 4
√
2c2e−2c2

2N N ! · Re
{

HN−1

(√
N
2 ζ1

)

HN

(√
N
2 ζ̄1

)}

,

(5.2)

where we write

ζ1 = p∗ + cz√
N/2

· (1 + O(N− 1
2 ))

here, the second line follows from τ N = e−2c2 + O(N−1).
Now fix a large number M . Applying the Plancherel-Rotach asymptotic in

Lemma A.1, we obtain for all w with |w| ≤ M and all p∗ ∈ Iα that

HN

(√
N
2 · p∗ + w√

N

)

= e
N
4 p2∗2

N
2
√
N ! · N− 1

4 · O(1), (N → ∞), (5.3)

where the O(1) constant depends on M and α. Inserting this in (5.2) we obtain, for
z in a given compact subset of C, that | ∂RN

∂x (z)| = O(N−1) as N → ∞. To be more
precise, it follows from

e−NQN (ζ )+ N
2 p2∗ = O(1), O

(
1
N !
√
N !(N − 1)!N−1/2

)
= O

(
N−1

)
.

Letting Nk → ∞ we conclude the desired horizontal translation invariance. ��

5.2 Bulk scaling limit for ALUE

We now prove Theorem 1.7, and begin by recalling that

QN = − 1
N log

(
Kν(

N2|ζ |
c2

)|ζ |ν
)

−
(
N
c2

− 1
)
Re ζ.
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Again we fix a small α > 0 and consider zooming points p∗ in the interval Iα =
[α, 4 − α]. It suffices (by Theorem 3.8) to show that each limiting rescaled 1-point
function R about p∗ is horizontal translation invariant, i.e., ∂R

∂x = 0.
Recall that R = lim RNk where

RN (z) = 1
N�QN (p∗)RN (ζ ), z = √

N�QN (p∗) · (ζ − p∗). (5.4)

By the asymptotic formula in (1.30), z and ζ in (5.4) are related as

ζ = ζ(z) = p∗ + z√
N�QN (p∗)

= p∗ + 2c
√
p∗

N z + o
( 1
N

)
. (5.5)

Moreover, when z = x + iy remains in a fixed compact set, while p∗ ∈ [α, 4− α]
for some small α > 0, we infer from (1.27) that

e−NQN (ζ ) =
√

π
2

c
N p∗ ν− 1

2 e−Np∗−2c
√
p∗x−2y2 · (1 + o(1)). (5.6)

Next recall the relation (4.11),

RN (ζ ) = C2
N · GN ( a

2−b2
2b Nζ ) · e−NQN (ζ ),

⎛

⎝a= N
c2

b= N
c2

−1, CN=√
aN

(
a2−b2
2a N

) ν+1
2

⎞

⎠.

(5.7)

We will invoke an identity found in [3, Lemma 2], which asserts that if ν is an
integer, then

GN (z) = τ 2N ez̄

4π2zν
UN (z),

(

τ=1− c2
N

)

, (5.8)

UN (z) =
∮

γ1

du
∮

γ2

dv

(
v(u − 1)

(v − 1)u

)ν (v

u

)N ez
u

u−1−z̄ v
v−1

(τ 2v − u)(v − 1)(u − 1)
, (5.9)

where γ1 is a simple closed contour encircling u = 0 but not u = 1, while γ2 encircles
both the point v = 1 and the entire γ1 in such a way that τ 2v − u �= 0 on γ2.

Lemma 5.1 With x = Re z and UN as in (5.9), we have

∂UN
∂x (z) = (2π i)2(−1)νe−z̄ L1−ν

N+ν−1(z)L
ν+1
N−1(z̄) · (1 + o(1)), (N → ∞).

Proof By a straightforward computation,

∂
∂x

[
e
z u
u−1−z̄

v
v−1

τ2v−u

]
= e

z u
u−1−z̄

v
v−1

(u−1)(v−1) · (1 + o(1)).

Differentiating under the integral sign, we obtain that

∂UN
∂x (z) =

∮

γ1

(u−1)ν−2

uN+ν ez
u

u−1 du
∮

γ2

vN+ν

(v−1)ν+2 e
−z̄ v

v−1 dv · (1 + o(1)).



52 Page 36 of 57 Y. Ameur, S.-S. Byun

Wenow recall an integral representation for Laguerre polynomials, found for exam-
ple in [3, Section III],

Lν
j (z) = 1

2π i

∮

γ

e
−z s

1−s

(1−s)ν+1s j+1 ds, (5.10)

where the contour γ encircles the origin s = 0 but not the essential singularity at
s = 1. The identity (5.10) immediately implies

1
2π i

∮

γ1

(u−1)ν−2

uN+ν ez
u

u−1 du = (−1)νL1−ν
N+ν−1(z).

On the other hand the change of variable v = 1/w gives

1
2π i

∮

γ2

vN+ν

(v−1)ν+2 e
−z̄ v

v−1 dv = e−z̄ 1
2π i

∮

γ

e
−z̄ w

1−w

(1−w)ν+2wN dw = e−z̄ Lν+1
N−1(z̄).

Combining all of the above, we obtain the lemma. ��

Combining the identities (5.5) through (5.8) and using (1.30), we see that

RN (z) = a
�QN (p∗)

e−NQN (ζ )
(
a2−b2
2a N

)ν+1
GN

(
a2−b2
2b N ζ(z)

)

= a
�QN (p∗)

e−NQN (ζ )
(
a2−b2
2a N

)ν+1
τ 2N

4π2

(
a2−b2
2b N ζ(z)

)−ν

e
a2−b2
2b N ζ̄ (z)UN

(
a2−b2
2b N ζ(z)

)

= aN
�QN (p∗)

a2−b2
2a

τ 2N+ν

4π2 ζ(z)−νe−NQN (ζ )e
a2−b2
2b N ζ̄ (z)UN

(
a2−b2
2b N ζ(z)) · (1 + o(1)

)

= c
√
p∗√

2π3/2 e
−2y2−2c

√
p∗ yi−2c2UN

(
a2−b2
2b N ζ(z)

)
· (1 + o(1)).

(5.11)

For the last equality, we also used τ 2N = e−2c2(1 + o(1)) and (5.6).
Therefore it remains to show that ∂

∂x UN ( a
2−b2
2b N ζ(x + iy)) → 0 as N → ∞,

where ζ(z) is the map (5.5).
However, by Lemma 5.1 (and since a2−b2

2b = 1 + O(N−1)), we have

∂
∂x UN

(
a2−b2
2b N ζ(z)

)
= Ce− a2−b2

2b N ζ̄ ×L1−ν
N+ν−1

(
a2−b2
2b N ζ

)

· Lν+1
N−1(

a2−b2
2b N ζ̄ ) · (1 + o(1)),

(5.12)

where the constantC = (2π)2(−1)ν+12c
√
p∗ is independent of N . By (5.5), we have

for p∗ ∈ [α, 4 − α]

a2−b2
2b Nζ = Np∗ + c2

2 p∗ + 2c
√
p∗ z + O(N−1).
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When p∗ ∈ [α, 4 − α] and z remains in a compact subset of C, we now apply the
Plancherel-Rotach asymptotic in Lemma B.2 to conclude that as N → ∞

L1−ν
N+ν−1

(
a2−b2
2b N ζ(z)

)
Lν+1
N−1

(
a2−b2
2b N ζ̄ (z)

)
= 1

N e
a2−b2

2b N ζ(z)+ζ̄ (z)
2 · O(1),

which together with (5.12) shows that

∂
∂x UN

(
a2−b2
2b N ζ(z)

)
= C 1

N e
a2−b2

2b N ζ(z)−ζ̄ (z)
2 · O(1)

= C 1
N e

2c
√
p∗i Im z · O(1) = O

( 1
N

)
.

We have shown that each subsequential limit R = lim RNk obeys
∂R
∂x = 0. ��

6 Edge scaling limits

In this section we study edge scaling limits for the almost-Hermitian GUE and LUE,
and we prove Theorem 1.5 and Theorem 1.8, respectively.

6.1 Edge scaling limit for AGUE

We now prove Theorem 1.5. We shall now give a somewhat simplified proof (with
respect to earlier proofs in [3, 19]) by using the summation formula in (5.1).

Consider the modified ellipse potential QN = 1
2ξ

2 + 1
2
N

1
3

c2
η2. Recall that the right

end-point pN of the droplet SQN is

pN = 2

(

1 + c2

N
1
3

)− 1
2 = 2 − c2

N
1
3

+ 3
4

c4

N
2
3

+ O( 1
N ). (6.1)

We rescale about pN by setting

RN (z) = 1
N�QN

RN (ζ ), z = √
N�QN · (ζ − pN ),

i.e.,

ζ = ζ(z) = pN + z√
N�QN

= pN + 2c

N
2
3
z + o(N−1). (6.2)

Making use of the formula (4.1) we see that

RN (z) = e−NQN (ζ ) 2
√
ab

a+b

N−1∑

j=0

1
j ! (

τ
2 ) j
∣
∣
∣
∣Hj

(√
Nab
b−a ζ

)∣∣
∣
∣

2

,
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where

a = 1
2 , b = 1

2
N

1
3

c2
, τ = b−a

b+a = 1 − 2c2

N
1
3

+ O(N− 2
3 ). (6.3)

By (6.2) and (6.1) and an elementary computation,

√
Nab
b−a ζ = √

2N + c4+2cz√
2N1/6 + O(N− 5

6 ). (6.4)

Write z = x + iy. Then again by (6.2) and (6.1), we have

NQN (ζ ) = N
2

(
pN + x√

N�QN

)2 + 1
2
N

1
3

c2
y2

�QN
+ O(N− 1

3 )

= 2N − 2c2N 2/3 + 2(c4 + 2c x)N
1
3 − 2(c6 − y2 + 2c3x) + O(N− 1

3 ).

(6.5)

Inserting (6.3) into the identity (5.1), we have

∂RN
∂x (z) = − 4

√
2 e−NQN (ζ )√
N2/3c−4−1

(τ/2)N

(N−1)! · Re
{

HN−1

(√
Nab
b−a ζ

)

HN

(√
Nab
b−a ζ̄

)}

. (6.6)

Note that by (6.5), we have

e−NQN (ζ )τ N√
N2/3c−4−1

= c2

N 1/3 e
−2N−2(c4+2c x)N1/3

e
4
3 c

6−2y2+4c3x · (1 + o(1)), (6.7)

where we used that log τ N = −2c2N
2
3 − 2

3c
6 + O(N− 2

3 ).

We now invoke the critical Plancherel-Rotach estimate in [55, Theorem 8.22.9 (c)]:

HN (
√
2N + z√

2N1/6 ) = (2π)
1
4 2

N
2
√
N !N− 1

12 e
1
2 (

√
2N+ z√

2N1/6 )2

(Ai z) · (1 + o(1)).

Applying (6.4), we now obtain

Re

{

HN−1

(√
Nab
b−a ζ

)

HN

(√
Nab
b−a ζ̄

)}

= Re
{
HN−1

(√
2N + c4+2cz√

2N1/6

)
HN

(√
2N + c4+2cz̄√

2N1/6

)}
· (1 + o(1))

= √
π 2N N !

N
2
3
e2N+2(c4+2c x)N

1
3 |Ai(2cz + c4)|2 · (1 + o(1)).

(6.8)

For the last equality we used that

Re

{(√
2N + 2cz+c4√

2N1/6

)2} = 2N + 2(c4 + 2c x)N
1
3 + O(N− 1

6 ).
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Combining (6.6), (6.7) and (6.8), we obtain that

∂RN
∂x (z) = −√

2π 4c2e
4
3 c

6−2y2+4c3x |Ai(2cz + c4)|2 · (1 + o(1)), (6.9)

where o(1)-term holds uniformly on compact subsets of C.
Let R = lim RNk be a limiting 1-point function. We shall prove that for all y ∈ R,

lim
x→+∞ R(x + iy) = 0. (6.10)

To verify this, we note that the modified potential QN satisfies �QN � N
1
3 . The

modified counterpart to Lemma 3.3 is thus thatRN (ζ ) ≤ CN
4
3 e−N (QN−Q̌N )(ζ ). Com-

bining this with the estimate (3.3) with MN � N
1
3 in the present case, we obtain

(6.10).
Using the asymptotic formula (1.23), we obtain

e4c
3x |Ai(2cz + c4)|2 = −

∫ ∞

0

∂
∂u {e4c3(u+x)|Ai(2c(z + u) + c4)|2} du

= − ∂
∂x

∫ ∞

0
e4c

3(u+x)|Ai(2c(z + u) + c4)|2 du.

Therefore, using (6.9) and (6.10), an integration with respect to x gives that

R(x + iy) = √
2π 4c2 e

4
3 c

6−2y2
∫ ∞

0
e4c

3(u+x)|Ai(2c(x + iy + u) + c4)|2 du.

Our proof of Theorem 1.5 is complete. ��

6.2 Edge scaling limit for ALUE

We now prove Theorem 1.8 and recall that

QN (ζ ) = − 1
N log(Kν(

N2|ζ |
c2

)|ζ |ν) − ( N
c2

− 1)Re ζ.

Also let V = lim QN be the Marchenko–Pastur potential in (1.28).
We now rescale about the origin. It follows from the formula (4.11) that the rescaled

1-point function

RN (z) = ( c
N )4RN (ζ ), z = ( Nc )2ζ

is given by

RN (z) = e−NQN (ζ ) ( c
N )2( a

2−b2
2a N )ν+1 ·

N−1∑

j=0

τ 2 j j !
( j+ν)! |Lν

j (
a2−b2
2b Nζ )|2, (6.11)



52 Page 40 of 57 Y. Ameur, S.-S. Byun

where we remind that

a = 1
c2
N , b = 1

c2
N − 1, τ = b

a = 1 − c2
N .

Note that since e−NQN (ζ ) = Kν(|z|) · ( c
N )2ν |z|νe(1− c2

N ) Re z, we have

e−NQN (ζ ) ( c
N )2

(
a2−b2
2a N

)ν+1 = Kν(|z|) |z|ν eRe z ·
(
c2
N

)ν+1 · (1 + o(1)). (6.12)

For a fixed parameter t ∈ (0, 1), we will now estimate the contribution of terms

|Lν
j (

a2−b2
2b Nζ )|2 = |Lν

j (
c2
N z)|2(1 + O(N−2))

as j, N → ∞ with j
N = t . For this we note that

log τ 2 j = 2 j log(1 − c2
N ) = −2c2t · (1 + O(N−1)),

j !
( j+ν)! = j−ν(1 + O(N−1)).

Therefore we obtain that, on replacing j
N by t ,

N−1∑

j=0

τ 2 j j !
( j+ν)! |Lν

j (
a2−b2
2b Nζ )|2 = (1 + o(1))

N−1∑

j=0

e−2c2 t

jν |Lν
j (

c2t
j z)|2. (6.13)

Inserting (6.12),(6.13) into (6.11), we have

RN (z) = (1 + o(1))Kν(|z|) |z|ν eRe z · c2
N

N−1∑

j=0

(c2t)ν e−2c2 t

j2ν
|Lν

j (
c2t
j z)|2. (6.14)

We now apply the formula

lim
j→∞

1
jν L

ν
j (

z
j ) = z−

ν
2 Jν(2

√
z),

found in [55, Theorem 8.1.3]. This leads to

RN (z) = (1 + o(1))Kν(|z|) eRe z · c2
N

N−1∑

j=0

e−2c2t |Jν(2c
√
t z1/2)|2. (6.15)

Recognizing the right hand side a Riemann sum, we conclude that

RN (z) = (1 + o(1)) Kν(|z|) eRe z · c2
∫ 1

0
e−2c2t |Jν(2c

√
t z

1
2 )|2 dt

= (1 + o(1)) 1
2Kν(|z|) eRe z

∫ 2c

0
s e−s2/2|Jν(s z 1

2 )|2 ds,
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which completes our proof of Theorem 1.8. ��
Remark Consider the 1-point function R in Theorem 1.8, namely

R(z) = 1
2Kν(|z|) eRe z

∫ 2c

0
s e− 1

2 s
2 |Jν(s z 1

2 )|2 ds. (6.16)

Arguing as in [17, Section 3], one can prove that R satisfies a Ward equation of the
form

∂̄C = R − �Q0 − � log R, Q0(z) = − log(Kν(|z|) · |z|ν). (6.17)

Following the method in [17], it can be shown that in the limit as c → ∞, i.e., the
function R(c=∞)(z) = 1

2Kν(|z|)Iν(|z|) is the unique radially symmetric solution to
(6.17), which also satisfies the mass-one condition

∫
C
B(z, w) d A(w) = 1. We skip

giving a detailed proof, but we remark that in the special cases when ν ∈ {± 1
2 }, this

result is shown in [17], and that the general case can be treated in a similar way.

7 Chiral ensembles

In this section, we compare our results for the ALUE to related ensembles which arise
for example in connection with quantum chromodynamics with a chemical potential
(QCD).

7.1 Ensembles with d-interaction

Let us fix an integer d ≥ 1 which we call the interaction parameter. We associate to a
configuration {ζ j }N1 the d-energy with respect to an external potential QN as

HN ,d =
∑

j �=k

log 1
|ζ dj −ζ dk | + N

N∑

j=1

QN (ζ j ). (7.1)

Given an inverse temperature β > 0, we define a corresponding Boltzmann-Gibbs
measure by

dPβ
N ,d = 1

Zβ
N ,d

e−βHN ,d d AN . (7.2)

Let {ζ j }N1 denote a random sample with respect to (7.2) where β = 1. It is easy to
see that the process is determinantal, and that a correlation kernel KN may be taken
as the reproducing kernel for the subspace WN ,d of L2 = L2(d A) spanned by the
weighted monomials

ζ jd · e− 1
2 NQN (ζ ), j = 0, . . . , N − 1.
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Fig. 8 The Berezin density η �→ BN (ζ, η) where d = 2, Q(ζ ) = |ζ |2, N = 100

Below we write RN (ζ ) = KN (ζ, ζ ) for the 1-point function of {ζ j }N1 .
Note that due to the form of the logarithmic interaction in (7.1) a particle ζ j

will simultaneously repel d symmetrically distributed positions ζ j · e 2π ik
d for k =

0, 1, . . . , d − 1.

Example (“d-Ginibre ensemble”) Suppose that QN (ζ ) = |ζ |2 for all N . It is easy to
see that the process {ζ j }N1 is determinantal with a correlation kernel of the form

KN (ζ, η) = N
N−1∑

j=0

(Nζ η̄)d j

(d j)! e− 1
2 N |ζ |2− 1

2 N |η|2 .

To illustrate the Zd -symmetry of this ensemble, we consider the Berezin kernel

BN (ζ, η) = |KN (ζ,η)|2
KN (ζ,ζ )

.

This kernel measures the repelling effect of insertion of a point charge at ζ , more
precisely we haveBN (ζ, η) = RN (η)−R(ζ )

N−1(η),whereR(ζ )
N−1 is the 1-point function

for the (N − 1)-point process which is “{ζ j }N1 conditioned on the event ζ ∈ {ζ j }N1 ”,
see [13, Subsection 7.6].

Figure 8 illustrates the effect of insertion of a charge at various points ζ in the chiral
case d = 2.

7.2 Chiral almost-Hermitian LUE-type ensembles

Now fix an integer d ≥ 1 and consider the d-interacting ensemble {ζ j }N1 associated
with the potential

QN (ζ ) = QN ,d(ζ ) = 1
N log 1

Kν (N2c−2|ζ |d )|ζ |d(ν+2)−2 −
(
N
c2

− 1
)
Re ζ d . (7.3)

I.e., we let {ζ j }N1 be random sample from the measure (7.2). Note that when d = 1,
we recover the eigenvalue statistics of the almost-Hermitian LUE discussed earlier.
For d = 2 we recover the eigenvalue statistics of Dirac matrices, which is relevant for
QCD theory. See [49] as well as [27, Section 15.11] with references.

In general, using the evident relation between QN ,d(ζ ) and QN ,1(ζ
d), it is not hard

to see that the system {ζ j }N1 will tend to occupy the d-droplet Sd where Sd = {ζ ; ζ d ∈
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Fig. 9 d-droplets for a few values of d

S}, S being the droplet associated with d = 1, given in (1.25). Figure9 shows such
droplets for d ∈ {1, 2, 3}.

We rescale the process {ζ j }N1 about the origin via

z j = ( Nc )
2
d ζ j , j = 1, . . . , N

and denote by RN (ζ ) = ( c
N )

4
d RN (ζ ) the 1-point function of the system {z j }N1 , where

z = ( Nc )
2
d ζ .

(The rescaling order N
2
d is chosen according to the mean sample spacing, which

follows the density d−1�QN near the origin.)
With a slight modification of our proof of Theorem 1.8 (i.e., by a similar argument

as used in [49]) one can obtain the following result.

Theorem 7.1 We have RN → R uniformly on compact subsets of C, where

R(z) = d
2 |z|2d−2 Kν(|z|d)eRe zd

∫ 2c

0
s e−s2/2|Jν(s zd/2)|2 ds. (7.4)

We now show that for d = 2 and ν ∈ {± 1
2 }, the process in (7.4) interpolates between

known point fields, namely between (1-dimensional) anti-symmetric sine-processes
and (2-dimensional) Mittag-Leffler fields.

To this end, we first note that passing to the limit as c → ∞ in (7.4), we obtain the
limiting 1-point function

R(c=∞)(z) = d
2 |z|2d−2 Kν(|z|d)Iν(|z|d). (7.5)

To obtain a 1-dimensional perspective, we rescale once more. Given the limiting
point-field {z j }∞1 , we pass to the system {z̃ j }∞j=1 where z̃ j = c2z j . The corresponding

1-point functions are related via R̃(z̃) = c−4R(c−2 z̃).
In the limit as c → 0, the functions R̃(c) converges to a limit R̃(c=0) which vanishes

on C\(∪d−1
k=0 e

2π ik
d · R+) and is for any integer k given on the ray e

2π ik
d · R+ by

R̃(c=0)(e
2π ik
d · x) = πd

4 xd−1(Jν(x
d
2 )2 − Jν+1(x

d
2 )Jν−1(x

d
2 )), (x > 0). (7.6)
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In the special cases when when d = 2 and ν ∈ {±1/2}, the 1-point function in
(7.5) becomes

R(c=∞)(z) =
{
e−|z|2 sinh(|z|2) if ν = + 1

2 ,

e−|z|2 cosh(|z|2) if ν = − 1
2 .

(7.7)

The 1-point functions in (7.7) correspond precisely to the 1-point functions of the
degenerate elliptic determinantal point processes with root system C or D found by
Katori in [41, Theorem 3.5], and are special cases of Mittag-Leffler fields in [17].

On the other hand, for d = 2 and ν ∈ {± 1
2 }, the expression (7.6) reduces to

R̃(c=0)(x) = 1 ∓ sin(2x)
2x , if ν = ± 1

2 , (x ∈ R) (7.8)

which corresponds to the anti-symmetric sine point processes in [47, Section 13.1].

8 Further results and concluding remarks

In this section, we give further results and provide some concluding remarks. We shall
consider variants of our main model ensembles (generalized ALUE, induced AGUE,
hard edge ensembles) and compare with other related works.

8.1 Almost-Hermitian LUE with rectangular parameter

For a non-negative integer ν (and β = 1), a random sample {ζ j }N1 picked with respect
to the ALUE-potential QN in (1.24) can be realized as the eigenvalues of the product
matrix X = X1X∗

2 where

X1 = √
1 + τ P + √

1 − τ Q, X2 = √
1 + τ P − √

1 − τ Q, τ = 1 − c2
N .

(8.1)

here P and Q are rectangularmatrices of size N×(N+ν), with independent, centered,
complex Gaussian entries of variance 1

4N (see e.g., [4, 40]).
We now fix α ≥ 0 and consider the case when ν = νN (not necessarily an integer)

varies with N as

νN = αN · (1 + o(1))

where o(1) → 0 as N → ∞. Thus we consider the potential

QN (ζ ) = 1
N log

[
KνN

(
N2|ζ |
c2

)
· |ζ |νN

]
−
(
N
c2

− 1
)

· Re ζ. (8.2)

We shall use the code-notation ALUE(α) to denote a corresponding random sample
{ζ j }N1 (and various limits as N → ∞).
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By [4, Theorem 1], the droplet SQN is approximately given by the equation

(ξ − α − 2)2 + (Nη/c2)2 ≤ 4(α + 1).

Note in particular that for α > 0, the origin is outside of the droplet for large N since
(α +2)2 > 4(α +1). This makes the analysis somewhat easier, with more tools being
available.

Also note that QN converges pointwise to the limit

V (ξ) = ξ − α log ξ, ξ > 0, (8.3)

and V = +∞ off of [0,∞). Cf. [4, Subsection 3.1].
It is well known (again [4] and references) that the equilibrium density in potential

(8.3) is the Marchenko-Pastur law σMP(α) given by

σMP(α)(ξ) = 1
2π ξ

√
(λ+ − ξ)(ξ − λ−) · 1[λ−,λ+](ξ), λ± = (

√
α + 1 ± 1)2.

(8.4)

Now write cN (ξ) = 1
N

∫
R
RN (ξ + iη) dη for the usual cross-section. We have the

following result, which generalizes Theorem 1.6.

Theorem 8.1 (“Cross-section convergence for ALUE(α)”) We have the convergence
1
π
cN → σMP(α) in the weak sense of measures, as N → ∞.

Remark on the proof Our proof in the case α = 0 in Sect. 4.2 generalizes without
difficulty to the case when α > 0, and in fact we could have treated the general case
α ≥ 0 at once. Indeed, the j :th orthonormal polynomial q j in weight e−NQN /2 can
be taken as

q j (ζ ) = N
c (N − c2

2 )
νN+1

2 (1 − c2
N ) j
√

j !
( j+νN )! L

νN
j

(
N (2N−c2)
2(N−c2)

ζ
)

. (8.5)

Withminormodifications, these polynomials can be analyzed using similar techniques
as in the case α = 0. Details are omitted. ��

Now fix a bulk point p∗ (i.e., λ− < p∗ < λ+). We rescale the process {ζ j }N1 about
p∗ as usual (see (1.12)) where QN is given by (8.2), and denote by RN the 1-point
function of the rescaled system {z j }N1 . It is easy to see that the limit (1.7) is given by
ρ(p∗) = 2c

√
p∗ for all α (cf. [4, Subsection 3.1] for details).

We have the following generalization of Theorem 1.7.

Theorem 8.2 (“Bulk scaling limit for ALUE(α)”) For any α ≥ 0, if λ− < p∗ < λ+
and if ν > −1 is an integer then RN → R locally uniformly where R(z) = F(2 Im z)
and F(z) = γ ∗ 1(−2a,2a)(z), a = a(p∗) = π

2 · ρ(p∗) · σMP(α)(p∗).

Remark on the proof Our proof in the case α = 0 in Sect. 5.2 generalizes in a
straightforward way to α > 0, using again the form of orthogonal polynomials (8.5).
We omit details. ��
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8.2 Induced almost-Hermitian GUE

We now briefly consider the induced AGUE. This is a natural generalization of AGUE
introduced in the paper [7], obtained by inserting a point charge (of strength 2ν) at the
origin.

For the definition, we fix c > 0 and put

qN (ζ ) = 1
2ξ

2 + 1
2
N
c2

η2.

Ne next fix a real number ν > −1/2 and consider the potential

QN (ζ ) = qN (ζ ) + 2ν
N log 1

|ζ | . (8.6)

Let {ζ j }N1 be a random sample with respect to the corresponding Boltzmann-Gibbs
measure (1.2) (with β = 1) and rescale about the origin via z j = √

N�qN · ζ j . Writing

R(ν,c)
N (z) for the 1-point function of {z j }N1 , it is natural to try to characterize limiting

1-point functions R(ν,c) = limk→∞ R(ν,c)
Nk

. It was observed in [7] that when ν is an

integer, R(ν,c) as well as a correlation kernel K (ν,c), can be obtained from the known
case ν = 0 by an inductive procedure. For example, since K (ν=0) is nothing but the
kernel K from (1.20), we obtain after a brief computation

R(1,c)(z) = R(0,c)(z) − B(0,c)(0, z)

= R(0,c)(z) − 1
4erf(

√
2c)

e−|z|2 |erf
(
2c+i z√

2

)
+ erf

(
2c−i z√

2

)
|2, (8.7)

where we used the interpretation of the Berezin kernel B(0,c)(0, z) = |K (0,c)(0,z)|2
R(0,c)(0)

as

the difference R(0,c)(z)−R(1,c)(z), see e.g., [13, Lemma 7.6.2]. A similar reasoning is
used in [7] to go from ν = 1 to ν = 2, and this procedure can in principle be repeated
to obtain correlation kernels for all positive integers ν. (We are not aware a result for
general real ν at this time.)

We now explain how the above kernels K (ν,c) (for integers ν) interpolate between
known insertion ensembles in dimension one in [22, 43], and in dimension two from
the papers [17, 26]. It will suffice to treat the case ν = 1 in detail.

More precisely, let V (ξ) be the Gaussian potential, V (ξ) = 1
2ξ

2 for ξ ∈ R and
+∞ otherwise, and consider the corresponding insertion potential VN (ζ ) = V (ζ ) +
2ν
N log 1

|ζ | .
It is shown in [43, Theorem 1.1] that in the appropriate scaling limit, a microscopic

correlation kernel at the origin takes the following form, for x, y ∈ R with xy > 0

K (ν)
R

(x, y) = π
2

√
xy

(x−y) (Jν+ 1
2
(πx)Jν− 1

2
(π y) − Jν+ 1

2
(π y)Jν− 1

2
(πx)). (8.8)

On the other hand, taking QN (ζ ) = |ζ |2 + 2ν
N log 1

|ζ | and rescaling in a natural way
about the origin, one obtains a point field with correlation kernel
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Fig. 10 Graphs of R̃(1)
R

(x) and of R(1,1)(z), R(1)
C

(z)

K (ν)
C

(z, w) = G(z, w)P(ν, zw̄), P(a, z) = γ (a,z)
�(a)

, (8.9)

where G is the Ginibre kernel (1.19) and γ (a, z) is the lower incomplete Gamma
function. This kernel appears in [26] and in [17], for example.

Sending c → ∞ in (8.7) we can recover (8.9), i.e.,

lim
c→∞ R(1,c)(z) = 1 − e−|z|2 = R(1)

C
(z).

here, we have used R(0,c)(z) → 1 as c → ∞ and erf(x) → 1 as x → +∞.
To pass to the corresponding one-dimensional limit, after an appropriate rescaling,

we are led to consider the 1-point function

R̃(ν,c)(z) = 1
α2 R

(ν,c)( z
α
), α = 2

π
c.

Write K̃ (0,c) for a corresponding rescaled correlation kernel, R̃(ν,c)(z) = K̃ (ν,c)(z, z).
By the discussion after the formulation of Theorem 1.4, we can arrange that

limc→0 K̃ (0,c) = πK sin. Hence R̃(1,c)(z) converges to R̃(1)
R

(x) = πK (1)
R

(x, x), as
c → 0 if z = x is real (and R̃(1,c)(z) → 0 otherwise) where

K (1)
R

(x, y) = 1
π

sin(πx−π y)
x−y − 1

π2
sin(πx) sin(π y)

xy

which is the same as (8.8) when ν = 1.
We have shown that the 1-point function R(ν,c) interpolates between R(ν)

R
and R(ν)

C

when ν = 1, see Fig. 10. As we indicated, a similar proof works in the case when ν is
an arbitrary integer.

8.3 Almost-Hermitian hard-edge ensembles

Let (QN )∞1 be a suitable sequence of potentials, for instance the AGUE-potentials in
(1.24), or a more general admissible sequence in the sense of Sect. 2. In particular, the
potential QN is real-analytic in a neighbourhood of the boundary ∂SQN .

In the hard edge setting we completely confine the gas to the droplet by redefining
the potential QN by setting QN (ζ ) = +∞ when ζ /∈ SQN . Similarly, we redefine the
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limiting potential V = lim QN by setting V = +∞ outside of SV . This kind of hard
edge ensembles are studied in the papers [14–16, 21, 52].

Fix a point p∗ in the bulk, i.e., a point p∗ ∈ R satisfying σV (p∗) > 0. We also
assume that the limit ρ(p∗) in (1.7) exists and is strictly positive. We recall that the
asymptotic height of the rescaled droplet is then given by the expression a(p∗) in
(1.8), i.e.,

a(p∗) = π
2 · ρ(p∗) · σV (p∗).

Under these hypothesis we look at the cross-sections

cN (p∗) = 1
N

∫

R

RN (p∗ + iη) dη,

where RN is the 1-point function for the hard edge ensemble {ζ j }N1 associated with
the redefined potential. (So in particular RN = 0 on C\SQN .)

As in the case of “free-boundary ensembles”, we expect that the cross-sections
should enjoy the convergence 1

π
cN (p∗) → σV (p∗), but our above proofs in the

cases of AGUE/ALUE, which depend on computations with particular orthogonal
polynomials, do not immediately carry over to a hard edge setting. In order not to
complicate matters, let us assume for the sake of argument that this limit holds, i.e.,
that

lim
N→∞ cN (p∗) = π · σV (p∗). (8.10)

Given these assumptions, we now rescale about p∗ precisely as in the free-boundary
case (see (1.6)) and we write RN for the 1-point function of the rescaled system.
The structure theorem for limiting kernels (analogue of Lemma 3.5) then takes the
following form.

Lemma 8.3 (“Structure of limiting hard edge kernels”) Under the above hypotheses,
there exists a sequence cN (z, w) of cocycles such that each subsequence of the kernels
cN KN has a further subsequence which converges locally uniformly on the set

�(p∗) = {(z, w) ∈ C
2; | Im z| < a(p∗), | Imw| < a(p∗)}

to a Hermitian kernel of the form K (z, w) = G(z, w) ·L(z, w)where G is the Ginibre
kernel and L is a Hermitian-analytic function on �(p∗).

Remark on the proof This follows by a simple adaptation of the normal-families
argument used in the proof of Lemma 3.5. See [15, Subection 1.9] for related com-
ments. ��

By the lemma, we can form limiting 1-point functions R(z) = lim RNk (z) which
are smooth in the strip | Im z| < a(p∗) and satisfy R(z) = 0 when | Im z| > a(p∗).
Since R is not identically zero by the assumption (8.10), we can assert that R > 0
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throughout the strip, and that Ward’s equation

∂̄C(z) = R(z) − 1 − � log R(z), | Im z| < a(p∗) (8.11)

holds if we understand C(z) as the function

B(z, w) = |K (z,w)|2
R(z) 1�(p∗)(z, w), C(z) =

∫
B(z,w)
z−w

d A(w).

Note that (8.11) gives a hard edge analogue of Corollary 3.7. The proof in the hard
edge case works basically the same way as in the free boundary case, again see [15,
Subection 1.9].

Now recall the function F = γ ∗ 1(−2a,2a) appearing in the free boundary case
(Theorem 1.4), i.e.,

F(z) = γ ∗ 1(−2a,2a)(z) = 1√
2π

∫ 2a

−2a
e− 1

2 (z−t)2 dt .

We can now state the following theorem.

Theorem 8.4 Under the above assumptions (in particular we assume that the cross-
section convergence (8.10) holds), each translation invariant limiting 1-point function
R at p∗ is of the form

R(z) = 1{| Im z|<a} · 1√
2π

∫ 2a

−2a

e− 1
2 (2 Im z−t)2

F(t) dt, (8.12)

where a = a(p∗) is given in (1.8).

Proof We appeal to the characterization of translation invariant solutions to the hard
edgeWard equation (8.11) found in [15, Theorem 6], which gives that each translation
invariant R must be given by the formula (8.12) for some a > 0. Then the rescaled
version of the cross-section convergence (8.10) fixes the value of a as a(p∗). ��

The assumptions (cross-section convergence and translation invariance) may in
general be subtle to check, even in the simplest model cases such as for hard edge
AGUE. We shall not dwell on this matter here (it will be the topic of a forthcoming
study), but we remark that Theorem 8.4 yields further support for the conjecture in
[15] that the parameter-value a = a(p∗) should yield the correct “physical” solution
to Ward’s equation in a strip.

See Fig. 11 for the 1-point density R in (8.12) for a few values of c.

8.4 Further related works

Beyond the topics we study in this work, there have been several investigations on
almost-Hermitian regime in various contexts. In [6], a fixed-trace version of AGUE



52 Page 50 of 57 Y. Ameur, S.-S. Byun

Fig. 11 Graphs of natural candidates for limiting 1-point density R(z) about p∗ = 0

is studied, which brings about some new challenges since this ensemble is not deter-
minantal. The paper [38] studies the interpolation problem between the Tracy-Widom
andGumbel distributions. An almost-Hermitian analogue of the Jacobi unitary ensem-
ble was recently discovered in [48]. The bulk statistics for almost-Hermitian Gaussian
ensembles in orthogonal and symplectic symmetry classes are found in [29] and [39]
respectively, and edge statistics is studied in [8]. Analogous problems for Laguerre
ensembles are investigated in [2, 10]. Theseworks,which construct 2×2matrix-valued
kernels of Pfaffian point processes, use explicit computations with skew-orthogonal
polynomials.

We also want to mention the paper [30], where a different kind of almost-Hermitian
model is introduced, motivated by applications to resonance statistics in quantum
chaotic scattering. This model is non-determinantal, but in [30] it is argued that one
can still define determinantal universality limits given by certain explicit kernels.
Some rigorous results in this direction were obtained by Kozhan in [42]. (We thank
Yan Fyodorov for this remark.)

We finally want to mention that in dimensions 1 and 2, various microscopic limits
in the determinantal case β = 2 have been used to extract information about other
β-ensembles, and specifically, they were used to study “freezing transitions”, which
occur for large β, in [18, 46] and the references there. As far as we are aware, a
rigorous analysis for almost Hermitian β-ensembles, relying on properties of various
explicit kernels found above, has not yet been carried out, and could potentially be
quite interesting.
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Appendix A. Plancherel–Rotach asymptotics for Hermite polynomials

In this appendixwe collect certain asymptotic formulas forHermite polynomialswhich
are used in our proofs of cross-section convergence in Sect. 4.1 and of translation
invariance in Sect.ion 5.1. In both cases, we fix a point p ∈ (−2, 2), and we look at

asymptotics for the scaled Hermite polynomial Hn(

√
N
2 ζ )where n = N −1 or n = N

and ζ is in a microscopic neighbourhood of p (of radius proportional to N−1/2) or
on the vertical line p + iR. Recall that here Hn(z) = (−1)nez

2 dn
dzn e

−z2 is the n:th
“physicists’ Hermite polynomial”, which has leading coefficient 2n .

It turns out that our desired estimates can be deduced using strong asymptotic
formulas of Plancherel-Rotach type, as given in the paper [57]. These formulas look
a little different depending on whether −2 < p < 0, p = 0, or 0 < p < 2.

The following partially overlapping asymptotic formulas are known. By [57, Corol-
lary 4.1], we have for z in a neighborhood of p, where 0 < p < 2,

Hn

(√
n
2 z
)

= ( 2ne )
n
2 (4 − z2)−

1
4 e

nz2
4

× 2 cos
[
(n + 1

2 ) arccos
z
2 − nz

4

√
4 − z2 − π

4

]
· (1 + o(1)).

(A.1)

For comparison, note that [57] uses monic orthogonal polynomials πn rather than Hn ,
so Hn = 2nπn . (There is a similar formula for −2 < p < 0 in [57], which we skip
stating here.)

In a microscopic neighbourhood of the origin, we have instead the following
Mehler-Heine formula (see [50, Section 18.11])

lim
n→∞

(−1)n
√
n

22nn! H2n

(
z

2
√
n

)
= 1√

π
cos z, lim

n→∞
(−1)n

22nn! H2n+1(
z

2
√
n
) = 2√

π
sin z, (A.2)

which holds uniformly for z in any compact subset of C.
Finally, for z in the complement of a neighbourhood of the interval [−2, 2], we

have by [45, Lemma 2.5] or [57, Corollary 4.1]

Hn

(√
n
2 z
)

= ( n
2e )

n
2

(
z +

√
z2 − 4

)n (
z+√

z2−4
2
√
z2−4

) 1
2
e
n
4 z
(
z−√

z2−4
)

· (1 + o(1)).

(A.3)

Using (A.1), (A.2) and Stirling’s formula, one easily obtains the following lemma.

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1 Suppose that |p| ≤ α where α < 2 and fix M > 0. Then for all z with
|z| ≤ M, we have

HN

(√
N
2 · p + z√

N

)

= e
N
4 p22

N
2
√
N ! · N− 1

4 · O(1), (N → ∞), (A.4)

where the O(1)-constant may depend on M and α.

A.1. Computation for cross-section

Again fix p with 0 < p < 2.
Recall from (4.5) that the ∂

∂ξ
-derivative of the 1-point function with respect to

potential (1.13) obeys

1
N2

∂RN
∂ξ

(p + i y
N ) = − (1 + o(1)) 1

c
√
2
e
− N

2 p2− 1
2c2

y2−2c2 1
2N (N−1)!

× Re

{

HN−1

(√
N
2 (p + i y

N )

)

HN

(√
N
2 (p − i y

N )

)}

.

(A.5)

We use (A.1) to conclude that there is δ = δ(p) > 0 and k = k(δ) > 0 such that
when |y| ≤ δN , then

HN

(√
N
2 (p − i y

N )

)

= ( 2Ne )
N
2 e

N
4 p2 · cosh(ky) · O(1)

and

HN−1

(√
N
2 (p + i y

N )

)

= ( 2Ne )
N−1
2 e

N
4 p2 · cosh(ky) · O(1).

Therefore there is a constant C such that for all |y| ≤ Nδ,

1
N2

∂RN
∂ξ

(ξ + i y
N ) ≤ C1e

− 1
2c2

y2 cosh2(ky),

where C1 = C1(C, k) is a new constant.
On the other hand, for y such that |y|/N > δ, letting z = p − i y

N

HN

(√
N
2 (p − i y

N )

)

HN−1

(√
N
2 (p + i y

N )

)

≤ C2(
2N
e )N− 1

2 | z+
√
z2−4
2 |2N−1e

N
2 Re [z(z−√

z2−4)]

≤ C3(
2N
e )N− 1

2 (
C4 y
N )2N e− y2

2N .

Combining all of the above, we obtain that

1
N2

∂RN
∂ξ

(p + i y
N ) ≤ Ce

− 1
2c2

y2 max{1, y2N N−N } cosh2(ky). (A.6)
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This latter estimate (A.6) is used inSect. 4.1 to deduce convergence of cross-sections
of the AGUE.

Appendix B. Plancherel-Rotach asymptotics for Laguerre
polynomials

In this appendix, we explain how to deduce certain asymptotic formulas for Laguerre
polynomials, which were used in our proof of translation invariance of bulk scaling
limits for theALUE, in Sect. 5.2.More precisely, we shall adapt to our present situation
some Plancherel-Rotach type asymptotic formulas from Vanlessen’s paper [56].

Fix a small δ > 0 and define a “bulk region” by

Bδ = {z ∈ C; δ < Re z < 1 − δ, −δ < � z < δ}.

The following lemma is a special case of [56, Theorem 2.4, (b)].

Lemma B.1 For z ∈ Bδ we have the following form of Plancherel-Rotach asymptotic
for Laguerre polynomials, as n → ∞.

Lα
n (4nz) = (4nz)−

α
2 e2nz(2π

√
z(1 − z))−

1
2 n− 1

2 (
(n+α)!

n! )
1
2

×
[
cos(2n

√
z(1 − z) − (2n + α + 1) arccos

√
z + π

4 )(1 + O(1/n))

+ cos(2n
√
z(1 − z) − (2n + α − 1) arccos

√
z + π

4 )O(1/n)
]
.

(B.1)

Proof We explain how to see this formula from [56, Theorem 2.4, (b)]. Consider the
Laguerre-type weight

w(x) = xαe−x , x ∈ [0,∞).

We denote that the associated orthonormal polynomials (on R) are given in terms of
the Laguerre polynomials Lα

n by

pn(x) =
(

n!
(n+α)!

) 1
2
Lα
n (x). (B.2)

Then by [56, Theorem 2.4, (b)] (in the special case m = 1, Q(x) = x , A1 = 1
2 ,

β(0) = 4, βn = 4n) we have that for z as above,

pn(βnz) = (βnz)
−α/2eQ(βn z)/2

√
2

πβn

1
z1/4(1−z)1/4

×
[

cos( 12 (α + 1) arccos(2z − 1) − πn
∫ z

1
ψn(s) ds − π

4 )(1 + O(1/n))

+ cos( 12 (α − 1) arccos(2z − 1) − πn
∫ z

1
ψn(s) ds − π

4 )O(1/n)

]

.
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Here the function
∫ z
1 ψn(s) ds is explicitly computable (see [56, Remark 2.5, 3.14,

3.15]) and the result is

∫ z

1
ψn(s) ds = 1

2π Hn(z)
√
z(1 − z) − 2

π
arccos

√
z,

where Hn is certain polynomial with real coefficients of degree m − 1, i.e., it is a

constant. (Indeed, Hn is the polynomial appearing in the density m
2π

√
1−x
x Hn(x) of

the associated equilibrium measure.)
In the special case when Q(x) = x , we have Hn(x) = 4, (again see [56, Remark

2.3]) thus

∫ z

1
ψn(s) ds = 2

π
(
√
z(1 − z) − arccos

√
z).

Combining all of the above we obtain that when Q(x) = x ,

pn(4nz) = (4nz)−
α
2 e2nz(2π

√
z(1 − z))−1/2n−1/2

×
[
cos( 12 (α + 1) arccos(2z − 1) − 2n(

√
z(1 − z)

− arccos
√
z) − π

4 ) · (1 + O(1/n))

+ cos( 12 (α − 1) arccos(2z − 1) − 2n(
√
z(1 − z)

− arccos
√
z) − π

4 )O(1/n)
]
.

Note that since arccos(2z − 1) = 2 arccos
√
z, we can simplify above expression as

pn(4nz) = (4nz)−α/2e2nz(2π
√
z(1 − z))−1/2n−1/2

×
[
cos(2n

√
z(1 − z) − (2n + α + 1) arccos

√
z + π

4 ) · (1 + O(1/n))

+ cos(2n
√
z(1 − z) − (2n + α − 1) arccos

√
z + π

4 )O(1/n)
]
.

Now (B.1) follows from this and the relation (B.2). ��

B.1. Computation for translation invariance

We now use Lemma B.1 to verify the following estimate, which is used in our proof
of translation invariance in Sect. 5.2. We will use the notation in Sect. 5.2, i.e., we fix
a point p∗ ∈ Iα = [α, 4 − α] where α > 0 is small and we write

ζ(z) = p∗ + 2c
√
p∗

N z + o( 1
N ).

Moreover, we put a = N
c2

and b = N
c2

− 1.
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Lemma B.2 In the above setting, we have as N → ∞,

L1−ν
N+ν−1(

a2−b2
2b N ζ(z))Lν+1

N−1(
a2−b2
2b N ζ̄ (z)) = 1

N e
a2−b2

2b N ζ(z)+ζ̄ (z)
2 · O(1).

Proof Recall that we have for p∗ ∈ Iα we have a2−b2
2b Nζ = Np∗ + c2

2 p∗ +2c
√
p∗ z+

O(N−1). Hence by (B.1) together with the asymptotic (
(n+α)!

n! )
1
2 = n

α
2 · (1 + o(1)),

we obtain

Lα
n (4nz) = (4nz)−α/2e2nz(2π

√
z(1 − z))−1/2nα/2−1/2 · O(1)

= n−1/2e2nz · O(1).
(B.3)

Setting n = N + ν − 1 and then n = N − 1 we obtain

L1−ν
N+ν−1(

a2−b2
2b N ζ(z)) = N−1/2e

a2−b2
2b N ζ(z)

2 · O(1)

Lν+1
N−1(

a2−b2
2b N ζ̄ (z)) = N−1/2e

a2−b2
2b N ζ̄ (z)

2 · O(1),

which completes the computation. ��
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