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Abstract
Gustafsson andLin recently published a significant result concerningLaplacian growth
problems that start from a simply connected planar domain. However, the validity of
their result depends on the verification of a particular conjecture. This paper provides
the missing proof.
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1 Introduction

A recent book of Gustafsson and Lin [4] explores the evolution of domains under
a Laplacian growth process that starts from a simply connected planar domain with
smooth boundary. A key result of theirs, Theorem 5.1, states that this process can be
continued indefinitely as a family of simply connected domains on a suitable branched
Riemann surface. However, their theorem relies on the validity of a lemma which they
believe to be true but are unable to prove. (See also section 8 of [3].) The purpose of
this note is to verify their conjecture and so complete the proof of their result.

Let g be a holomorphic function on a connected neighbourhood ω of D, where D
denotes the unit disc, and let λ denote planar Lebesgue measure. (We assume that
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g �≡ 0 and assign g the value 1, say, outside ω to make it globally defined.) For each
t > 0 we define �(t) = {ut > 0}, where

ut = inf{w ∈ C(R2\{0}) : w ≥ 0, �w ≤ |g|2 λ|R2\D − tδ0} (1)

in the sense of distributions and δ0 is the unitmeasure at 0. The conjecture ofGustafsson
and Lin is that the domains �(t) are simply connected for all sufficiently small t > 0.
Their difficulty in verifying it arises when the function g has one or more zeros on
∂D. Indeed, they remark that the same issue was also left unresolved in earlier work
of Sakai [7]. We prove their conjecture below.

Theorem 1 There exists δ > 0 such that the domains �(t) (0 < t < δ) are all
starshaped about 0, and so in particular are simply connected.

Our proof of Theorem 1 remains valid if we replace |g|2 in (1) by any C1 function
f > 0 on a neighbourhood of D. (Indeed, with minor modifications, it also yields the
corresponding result in higher dimensions for such functions f .) However, the result
may fail if f is allowed to have even one zero, as we now illustrate.

Example 2 There is a C∞ function f : R2 → [0,∞) with precisely one zero such
that, if |g|2 is replaced by f in (1), then there are arbitrarily small values of t > 0 for
which �(t) is multiply connected.

Thus the geometrical character of �(t) for small t > 0 is highly sensitive to the
nature of this function f .

Wewill establishTheorem1andExample 2 inSects. 3 and 4, respectively, following
a brief review of the technique of partial balayage, on which these arguments rely. A
survey of related topics, including quadrature domains and free boundary problems,
may be found in [6].

2 Partial balayage

Ifμ is a (positive) measure with compact support inR2, then we define the logarithmic
potential

Uμ(x) = − 1

2π

∫
log |x − y| dμ(y) (x ∈ R

2)

and note that −�Uμ = μ (in the sense of distributions). Let f : R
2 → [0,∞)

be a continuous function such that f ≥ 1 outside some compact set. The following
construction, known as partial balayage, was developed by Gustafsson and Sakai [5]
and also expounded by the authors in [2].

We define, for t > 0,

Vt, f = sup
{
v ∈ C(R2\{0}) : −�v ≤ f λ|R2\D, v ≤ tUδ0

}

and ut, f = tUδ0 − Vt, f , whence ut, f ≥ 0. Then

− �Vt, f = f λ|� f (t)\D, where � f (t) = {ut, f > 0} ⊃ D, (2)
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and so Vt, f = U ( f λ|� f (t)\D). It follows easily, using the assumption that f ≥ 1
outside a compact set, that � f (t) is bounded. Also,

∫
� f (t)\D

f (y)dλ(y) = t, (3)

since tUδ0 = Vt, f outside � f (t).
Here are some more basic properties that we will need.

Proposition 3 Let t > 0 and f , fn : R2 → [0,∞) (n ≥ 1) be continuous functions
that exceed 1 outside some compact set.

(a) If f1 ≤ f2, then Vt, f1 ≤ Vt, f2 , ut, f1 ≥ ut, f2 and � f2(t) ⊂ � f1(t).
(b) If ( fn) decreases to f , then Vt, fn → Vt, f , ut, fn → ut, f and

∪∞
n=1� fn (t) = � f (t).

(c) If ( fn) increases to f , then Vt, fn → Vt, f , ut, fn → ut, f ,

� f (t) ⊂ ∩∞
n=1� fn (t) and

∫
∩∞
n=1� fn (t)\� f (t)

f dλ = 0.

Proof (a) This follows immediately from the definition of Vt, f .
(b) By part (a) the sequence (ut, fn ), which equals

(
tUδ0 −U

(
fnλ|� fn (t)\D

))
,

increases to the limit
v = tUδ0 −U ( f λ|(∪n� fn (t))\D),

where
0 ≤ v ≤ ut, f = tUδ0 −U

(
f λ|� f (t)\D

)
.

Since v = ut, f outside� f (t), this equalitymust hold everywhere. The other assertions
follow immediately.

(c) The argument is similar to part (b), except that (� fn (t)) is now decreasing. 
�
Let

Dr (w) = {z ∈ C : |z − w| < r} (w ∈ C, r > 0)

and Dr = Dr (0), so that D = D1. We identify C with R
2 in the usual way. The

function g in Sect. 1 is holomorphic on a neighbourhood ω of D. We choose R > 1
such that DR ⊂ ω and g has no zeros in DR\D. In the next section we choose f such
that f = |g|2 on DR and f = 1 outside DR+1, and will drop the symbol f from the
subscripts in the notation Vt, f , ut, f , � f (t) where no confusion can arise. We claim
that there exists ε > 0 such that

�(t) ⊂ DR (0 < t < ε).

To see this we note that, if 1 < r1 < r2 < R, then there exists c ∈ (0, 1] such that
f ≥ c on the set A = (

Dr2\Dr1

) ∪ (
R
2\DR+1

)
. Hence � f (t) ⊂ �cχA(t). The latter

set is of the form Dρ(t) for some ρ(t) > 1, and ρ(t) → r1 as t → 0+, in view of (3).
Indeed, there exists r(t) > 1 such that r(t) → 1 as t → 0+ and � f (t) ⊂ Dr(t).
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3 Proof of Theorem 1

Let g, f and R be as described above.

Lemma 4 Let x1, x2, . . . , xk denote the zeros (if any) of g on ∂D. Then, for each
i ∈ {1, 2, . . . , k}, there exist ri ∈ (0, R − 1) and a positive constant Ci such that

∇ f (x) · x ≥ −Ci f (x) (x ∈ Dri (xi )\D).

Proof Suppose that g has a zero of order m at xi . Then f (x) = |x − xi |2m h(x) on ω,
where h ≥ 0 is smooth and h(xi ) > 0. It follows that

∇ f (x) · x = 2m|x − xi |2m−2h(x)(x − xi ) · x + |x − xi |2m ∇h(x) · x
= h(x) |x − xi |2m

(
2m

(x − xi ) · x
|x − xi |2 + ∇h(x) · x

h(x)

)

≥ f (x)
∇h(x) · x

h(x)
(x ∈ DR\D),

since
(x − xi ) · x = |x |2 − xi · x > 0 (|x | > |xi | = 1).

The result follows on noting that h > 0 on a neighbourhood of xi . 
�
Lemma 5 There exists C0 > 0 such that

∇ f (x) · x + (C0 + 2) f (x) ≥ 0 (x ∈ DR\D).

Proof Let xi , ri ,Ci (i = 1, . . . , k) be as in Lemma 4 and define

A = DR\
(
D ∪ Dr1(x1) ∪ · · · ∪ Drk (xk)

)
.

Clearly inf A f > 0. The result follows on choosing C0 large enough so that C0 + 2 ≥
Ci (i = 1, . . . , k) and

inf
x∈A

∇ f (x) · x + (C0 + 2) inf
A

f ≥ 0.


�
Proof of Theorem 1 Let

vt (x) = ∇ut (x) · x + C0ut (x) (t > 0),

where ut is as in Sect. 2 and C0 is as in Lemma 5. We choose R > 1 and ε > 0 as in
Sect. 2, whence �(t) ⊂ DR when 0 < t < ε. Since

�(∇ut (x) · x) = 2�ut (x) + (∇�ut (x)) · x
= 2 f (x) + ∇ f (x) · x (x ∈ �(t)\D),
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the function vt is subharmonic in �(t)\D.
We know that ut , and hence vt , vanishes outside �(t). Next, we will show that

vt ≤ 0 on ∂D for all sufficiently small t . Suppose that x �= 0. Since

ut (x) = − t

2π
log |x | + 1

2π

∫
�(t)\D

log |x − y| f (y)dλ(y), (4)

we see that

∇ut (x) · x = − t

2π

x

|x |2 · x + 1

2π

∫
�(t)\D

x − y

|x − y|2 · x f (y)dλ(y)

= − t

2π
+ 1

2π

∫
�(t)\D

x − y

|x − y|2 · (x − y) f (y)dλ(y)

+ 1

2π

∫
�(t)\D

x − y

|x − y|2 · y f (y)dλ(y)

= 1

2π

∫
�(t)\D

x − y

|x − y|2 · y f (y)dλ(y), (5)

by (3). This last integrand is negative when |x | = 1, since (x − y) · y = x · y − |y|2
and |y| > 1. Let

Ax,t = {y ∈ �(t)\D : x · y ≤ 0} (x ∈ ∂D, t > 0).

Then
x − y

|x − y|2 · y ≤ − |y|2
|x − y|2 ≤ −1

4
(y ∈ Ax,t ),

and so

∫
�(t)\D

x − y

|x − y|2 · y f (y)dλ(y) ≤ −1

4

∫
Ax,t

f dλ ≤ −1

4
inf
z∈∂D

∫
Az,t

f dλ. (6)

There exists c > 0 such that �(t) ⊃ D1+ct , because f is bounded above. Since f has
only finitely many zeros on ∂D, there exists C∗ > 0 such that

inf
z∈∂D

∫
Az,t

f dλ ≥ C∗t (0 < t < ε),

so we now see from (5) and (6) that

∇ut (x) · x ≤ −C∗
8π

t < 0 (x ∈ ∂D, 0 < t < ε). (7)
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Also, it follows from (4) and (3) that the family {ut/t : 0 < t < ε} of subharmonic
functions on R2\{0} is locally uniformly bounded above. Since

lim sup
t→0+

ut (x)

t
= 0 (x ∈ R

2\D),

this upper limit is bounded above by − (log |x |) /2π on D. It follows from Corollary
5.7.2 of [1] that ut (x)/t → 0 uniformly on ∂D as t → 0+. Hence, by (7), there exists
δ ∈ (0, ε) such that

∇ut (x) · x ≤ −C∗
8π

t

ut (x)
ut (x) ≤ −C0ut (x) (x ∈ ∂D, 0 < t < δ),

and so vt ≤ 0 on ∂D when 0 < t < δ, as claimed.
We can now apply the maximum principle to the subharmonic function vt on

�(t)\D to see that vt < 0 there. Hence

∇ut (x) · x ≤ −C0ut (x) < 0 (x ∈ �(t)\D, 0 < t < δ),

and we also know that ∇ut (x) · x = 0 on R2\�(t). Since D ⊂ {ut > 0} = �(t), and
ut is decreasing in the radial direction from 0 at each point of �(t)\D, it follows that
�(t) is starshaped about 0, as required. 
�

4 Details of Example 2

Let

fe(x) =
{
exp

(− |x − y0|−2) (x ∈ R
2\{y0})

0 (x = y0)
,

where y0 is the point (1, 0), and let ψ : R2 → [0, 1] be a C∞ function such that
ψ(x) = 0 when |x | ∈ [ 12 , 3

4 ] and ψ(x) = 1 when |x | ∈ [0, 1
4 ] ∪ [1,∞). For each n in

N we define

xn =
(
cos

π

n
, sin

π

n

)
and rn = 1

n(n + 1)
,

whence the discs Drn (xn) are pairwise disjoint, and the closed annulus

An = D3rn/4(xn)\Drn/2(xn).

We further define

ψn(x) = ψ

(
x − xn
rn

)
, ψn,m(x) = ψn(x) + 1/m

1 + 1/m
(m ∈ N)

and
f0 = fe

∏
n≥1

ψn .
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Since
∫
� f0 (t)\D1

f0dλ = t and

∫
Dr1/4(x1)\D1

f0dλ =
∫
Dr1/4(x1)\D1

fedλ > 0,

we can choose t1 > 0 small enough to ensure that

Dr1/4(x1)\� f0(t1) �= ∅.

In view of (2) the nonnegative function ut1, f0 is nonconstant and harmonic on the
domain

(
D1 ∪ A◦

1

) \{0}, and so is strictly positive there. Further, ut1, f0 cannot take
the value 0 at any point y of ∂A1, since this would imply that ∇ ut1, f0(y) = 0, which
contradicts the Hopf lemma. Hence

A1 ⊂ � f0(t1)

and the constant c1 = (
inf A1 ut1, f0

)
/2 is strictly positive. We define

f1,m = feψ1,m

∏
n≥2

ψn (m ∈ N)

and note that the sequence ( f1,m) decreases to f0, whence by Proposition 3 the
sequences (� f1,m(t1)) and (ut1, f1,m ) are increasing,

lim
m→∞ ut1, f1,m = ut1, f0 and ∪m � f1,m(t1) = � f0(t1).

By compactness we can choose m1 ∈ N such that A1 ⊂ � f1,m1(t1) and
inf A1 ut, f1,m1

> c1, and then define

f1 = f1,m1 = feψ1,m1

∏
n≥2

ψn .

Since f1 ≥ f0 we note that

Dr1/4(x1)\� f1(t1) ⊃ Dr1/4(x1)\� f0(t1) �= ∅.

Next, arguing as above, we choose t2 ∈ (0, t1/2) small enough to ensure that

Dr2/4(x2)\� f1(t2) �= ∅

and, noting that f1 = f0 outside Dr1(x1), observe that

A2 ⊂ � f1(t2).
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Let c2 denote the positive constant
(
inf A2 ut2, f1

)
/2. We define

f2,m = feψ1,m1ψ2,m

∏
n≥3

ψn (m ∈ N)

and note that ( f2,m) decreases to f1. As before, we can choose m2 ∈ N such that

A j ⊂ � f2,m2(t j ) and inf
A j

ut j , f2,m2
> c j ( j = 1, 2).

We define
f2 = f2,m2 = feψ1,m1ψ2,m2

∏
n≥3

ψn

and note that � f2(t) ⊂ � f1(t) (t > 0), whence

Dr1/4(x1)\� f2(t1) �= ∅ and Dr2/4(x2)\� f2(t2) �= ∅.

Proceeding inductively in thisway,we obtain a sequence of numbers (t j ) decreasing
to 0, a sequence of positive numbers (c j ), and an increasing sequence of functions
( fk) such that

A j ⊂ � fk (t j ), Dr j /4(x j )\� fk (t j ) �= ∅ and ut j , fk > c j on A j (1 ≤ j ≤ k).

We define
f = lim

j→∞ f j = fe
∏
j≥1

ψ j,m j .

Clearly
Dr j /4(x j )\� f (t j ) �= ∅ ( j ∈ N).

By Proposition 3 again we note that (ut, fk ) decreases to ut, f as k → ∞ for every
t > 0. Since ut j , fk ≥ c j on A j for all j ≤ k, we see that ut j , f ≥ c j on A j for all j ,
and so A j ⊂ � f (t j ) for each j . Thus � f (t j ) is multiply connected for each j ∈ N.
Finally, f vanishes precisely at y0 and, since

inf

{
r j

|x − y0|2
: x ∈ Dr j (x j ), j ≥ 1

}
> 0,

we see that f ∈ C∞(R2).
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