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Abstract
We prove that the order of L1-approximation by elements of the disc algebra given by
Khavinson, Pérez-González and Shapiro is precise.

Let � be the unit disc, T its boundary and consider the disk algebra A of those
continuous functions on � that are holomorphic in �. InA the norm is the supremum
norm

‖ f ‖∞ = sup
t

| f (eit )|,

but we shall also consider the L1 norm given by

‖ f ‖1 = 1

2π

∫ 2π

0
| f (eit )|dt .

In connection with approximation in L1-norm by elements of a uniform algebra D.
Khavinson, F. Pérez-González and H. Shapiro proved the following theorem (see [2,
Theorem 3.3]).

Theorem Let f be a continuous function on T with ‖ f ‖∞ = 1. Assume there exists
an H1-function G such that

‖ f − G‖1 ≤ ε.

Then there exists a function G∗ in the disk algebra A such that ‖G∗‖∞ ≤ 1 and

‖ f − G∗‖1 ≤ Cε log
1

ε
, (1)
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where C is a constant independent of f .

See [2] for the motivation of this result and its connection to a theorem of Hoffman
and Wermer on homomorphisms of uniform algebras.

The authors of [2] also verified that in (1) the boundCε log 1
ε
cannot be replaced by

Cε ( [2, Theorem 3.4]), but the problem if the order O(ε log 1
ε
) in (1) can be improved

at all, i.e., if it is precise or not, remained open and stated explicitly in Remark (i) in
[2]. That problem was communicated to us by D. Khavinson [1]. In this note we prove
that the stated order is, indeed, precise.

Theorem 1 There is a constant c > 0with the property that for every sufficiently small
ε > 0 there is a continuous function f = fε, ‖ f ‖∞ = 1, such that

‖ f − G‖1 ≤ ε

for some G ∈ A, but for any G∗ in A with ‖G∗‖∞ ≤ 1 we have

‖ f − G∗‖1 ≥ cε log
1

ε
.

Proof It will be convenient to verify the claim with ε replaced by ε2.
Let

u(z) + iv(z) = ε2

1 + ε − z
,

where u(z) and v(z) are real. Using that

(1 + ε − cos t)2 + sin2 t = ε2 + 4(1 + ε) sin2(t/2),

for z = eit we have1

� 1

1 + ε − z
= 1 + ε − cos t

(1 + ε − cos t)2 + sin2 t
∼

{
1/ε if |t | ≤ ε,

1 + ε/t2 if ε ≤ |t | ≤ π,

while

∣∣∣∣
 1

1 + ε − z

∣∣∣∣ = | sin t |
(1 + ε − cos t)2 + sin2 t

∼
⎧⎨
⎩

|t |/ε2 if |t | ≤ ε,

1/|t | if ε ≤ |t | ≤ π/2,
π − |t | if π/2 ≤ |t | ≤ π.

Indeed, these are easy consequences of the inequality

2

π
u ≤ sin u ≤ u, 0 ≤ u ≤ π/2,

1 In what follows A ∼ B means that A/B lies in between two positive absolute constants, and A � B and
B � A stand for A/B being bounded.
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i.e. of

sin u ∼ u, 0 ≤ u ≤ π/2.

For example, for z = eit , ε ≤ |t | ≤ π (0 < ε ≤ 1), we obtain

� 1

1 + ε − z
= 1 + ε − cos t

(1 + ε − cos t)2 + sin2 t
= 2 sin2(t/2) + ε

ε2 + 4(1 + ε) sin2(t/2)

∼ t2 + ε

ε2 + t2
∼ t2 + ε

t2
= 1 + ε/t2

as was claimed above.
The preceding relations show that

u(eit ) ∼
{

ε if |t | ≤ ε,

ε2 + ε3/t2 if ε ≤ |t | ≤ π,
(2)

while

|v(eit )| ∼
⎧⎨
⎩

|t | if |t | ≤ ε,

ε2/|t | if ε ≤ |t | ≤ π/2
ε2(π − |t |) if π/2 ≤ |t | ≤ π.

(3)

Therefore, if we set Fε = F(z) = exp(ε2/(1 + ε − z)), |z| ≤ 1, then for small ε

�F(eit ) − 1 = eu(eit ) cos v(eit ) − 1 ≥ (1 + u(eit )) cos v(eit ) − 1

= u(eit ) cos v(eit ) − 2 sin2(v(eit )/2) > 0.

This is so, because we subtract from a term ∼ ε (|t | ≤ ε) resp � ε3/t2 (|t | ≥ ε) a
term that is at most � ε2 resp. � ε4/t2. Now the preceding inequality implies in view
of the maximum principle that �F(z) − 1 is positive in the unit disk.

Let fε = f = F/|F |, for which we have for small ε

‖ f − F‖1 =
∥∥∥∥ F

|F | (|F | − 1)

∥∥∥∥
1

= ‖|F | − 1‖1 = 1

2π

∫ π

−π

(eu(eit ) − 1)dt

∼
∫ π

−π

u(eit )dt ∼ ε2, (4)

where we used that u ≤ eu − 1 ≤ 2u provided 0 ≤ u ≤ 1/2 (cf. (2)).
Note that F is in the disk algebra and f is a continuous function with ‖ f ‖∞ = 1.

Now let G∗ ∈ A, ‖G∗‖∞ ≤ 1, be any function. We are going to show that

‖ f − G∗‖1 ≥ cε2 log
1

ε
(5)
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with some c > 0 independent of ε, and that will prove the theorem (with ε replaced
by ε2 and fαε resp. Fαε replacing f resp. G in it, where α is a constant for which
‖ fαε − Fαε‖1 ≤ ε2; see (4)).

For the L1 distance of F and G∗ we have

‖F − G∗‖1 ≤ ‖F − f ‖1 + ‖ f − G∗‖1 ≤ C1ε
2 + ‖ f − G∗‖1. (6)

The real part of

g1(z) := 1 − G∗(z) + i
G∗(0)

is clearly nonnegative. Now to the pairs g1(z) and g2(z) := F(z)−1 with nonnegative
real part in � and with imaginary part = 0 at the origin we can apply the “reverse
triangle inequality"

‖g1‖1 + ‖g2‖1 ≤ C0‖g1 + g2‖1,

proved in [2, Lemma 3.5], where C0 is an absolute constant. This yields

‖F − 1‖1 ≤ ‖g1‖1 + ‖g2‖1 ≤ C0‖(F − 1) + (1 − G∗ + i
G∗(0))‖1
= C0‖F − G∗ + i
G∗(0)‖1 ≤ C0(‖F − G∗‖1 + |i
G∗(0)|).

On the right

|i
G∗(0)| = |
(F − G∗)(0)| ≤ ‖F − G∗‖1,

so, in view of (6),

‖F − 1‖1 ≤ 2C0‖F − G∗‖1 ≤ 2C0C1ε
2 + 2C0‖ f − G∗‖1 (7)

follows. Since on the left

‖F − 1‖1 ≥ ‖
F‖1 = 1

2π

∫ π

−π

eu(eit )| sin v(eit )|dt ≥ 1

2π

∫ π

−π

| sin v(eit )|dt

� 1

2π

∫ π/2

ε

|v(eit )|dt ∼ ε2 log
1

ε
= 1

2
ε2 log

1

ε2

(where, for the ∼ relation we used (3)), the inequality (5) follows from (7) for all
sufficiently small ε. 
�
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