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Abstract: A Michelson interferometer based sensor, to monitor the displacement and vibration of a 
surface, is presented. The interference signals detected in quadrature are processed using analog 
electronics to find the direction of the motion of a vibrating surface in real-time. The complete 
instrumentation and signal processing are implemented for the interpretation of the amplitude as well 
as positive and negative excursion of the vibration cycles. This new technique is simpler as 
compared to the techniques commonly used in the interferometer based vibration sensors. Using this 
technique, we have measured mechanical vibrations having a magnitude of the order of nanometers 
and frequency in the range of 50 Hz to 500 Hz. By making small changes in the electronic circuit, the 
technique can be implemented for the extended range of the vibration frequencies and amplitude. 
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1. Introduction 

Mechanical vibrations of small or large 

amplitudes are required to be monitored precisely in 

sophisticated systems. Various interferometric 

techniques to measure the vibration and 

displacement of a surface have been reported. These 

techniques are based on holographic interferometry 

[1], speckle interferometry [2], shadow Moiré 

method [3], and classical interferometry [4–13]. The 

basic principle in most of these techniques is same, 

that is two coherent beams from a single source are 

interfered to form interference fringes. One of the 

beams is used as a reference beam while the other 

one is signal beam that is reflected from the 

vibrating surface under consideration. The 

displacement of the surface is translated into the 

optical pathlength change that in turn is transformed 

to the fringe movement. After processing the fringe 

movement, the information about the mechanical 

movement is obtained. Many other parameters are 

also measured using the change in the pathlength of 

the interferometer, for example, strain/pressure, 

temperature etc. [14, 15]. 

All the methods mentioned above, except the 

classical interferometry, have a common limitation 

that the vibrating surface under study should be 

fixed at some point for reference. Also, these 

techniques are unable to detect the direction of the 

motion. Classical interferometry, on the other hand, 

can be used for the detection of the real-time 

displacement and the vibration of a body. The 

optical signal achieved can also be used to 

determine the direction of the displacement of the 

vibrating surface in real time. The vibration of the 

amplitude less than 1nm and the displacement of the 

order of meters can be measured. 

Previously, a novel technique was presented to 
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find the direction of the motion along with the 

amplitude of the vibration [5, 6, 8]. The technique 

was based on the use of two photodiodes that 

detected complementary fringes at two ports of a 

beam splitter. The two signals from the photodiodes, 

after amplification, were acquired to perform digital 

processing for the measurement of the amplitude as 

well as the direction of the motion. We reported a 

technique that measured the displacement and its 

direction using spatial phase quadrature in the 

analog electronics domain. The system would be 

portable and applicable to detect vibrations in the 

field like vibration measurement of bridges. 

Laser Doppler vibrometer (LDV) systems are 

commercially available to measure vibration at one 

point, over a surface or in a 3-dimentional object 

and their cost and complexity vary accordingly. 

Mostly, there are two interferometer setups 

(heterodyne and homodyne) used in LDV systems to 

measure the frequency and amplitude of the 

vibration. In the heterodyne interferometer based 

systems, a Bragg-cell is used to produce a frequency 

shift in the reference laser beam [16]. An extra 

circuit is required to operate the Bragg-cell. Our 

technique does not need the Bragg-cell and the 

circuit required to operate the Bragg-cell, therefore, 

our technique is simpler and less expensive. 

Secondly, in our technique, less effort is required for 

digital processing since most of the processing is 

performed through the analog circuit. In homodyne 

interferometer based systems, additional 

components, a λ/8 plate and a polarizing 

beamsplitter, are used to introduce the directional 

sensitivity so that the frequency and amplitude of 

the vibration can be calculated. Our technique has 

worth because it eliminates the need for the λ/8 plate 

and polarizing beamsplitter. 

2. Description 

We have experimentally demonstrated a 
technique in which two photodiodes are used to 
detect a fringe pattern at spatial quadrature in real 

time without using an extra beam splitter and 
transmission gratings. Our method processes the 
signals in the analog electronics regime to detect the 
movement and its direction using the differentiator, 

multiplier, and integrator. The output of the circuit 
follows the differential of the movement e.g. it 
reverses its polarity after each half cycle of the 

vibration when the vibrating surface changes its 
direction. Our technique makes the system smarter, 
faster, and less expensive. The frequency of the 

vibration can be measured with more convenience, 
even without using a computer. 

The schematic of the setup used for the 

experiments is shown in Fig. 1. The mirror M1 is 
slightly tilted to form spatially linear fringes [shown 
in (4)], and M2 is the reflecting vibrating surface that 

moves in the direction a or b. A mirror can also be 
mounted on the vibrating surface for this purpose. A 
diverging lens can be used to achieve the fringe 

pattern with a larger size. The larger size of the 
fringe pattern helps to detect the signals using two 
photodiodes (PD1 and PD2) placed in spatial 

quadrature. Figure 2 shows that the two photodiodes 
are placed at a phase separation of π/2 with respect 
to the intensity profile of the fringe pattern. Let us 

assume that L1 and L2 are the optical path differences 
(OPDs) corresponding to PD1 and PD2, respectively. 
The phase of the interference signal detected by PD1 

can be expressed as 

   1

2
t L t




              (1) 

where the constant phase difference between the 

outputs of the two photodiodes is 

 2 1

2
.L L




              (2) 

In our technique, the two photodiodes are 

adjusted precisely using a mechanical arrangement 

such as 

 ........2 0,1,2,.... ...n n         (3) 

If the fringe spacing (FS) is too small, higher 

values of n can be selected to adjust the photodiodes. 

However, as the fringe spacing is reduced, a 

correspondingly smaller area photodiode is required. 
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The fringe spacing is given by 

 2sin 2
FS F




             (4) 

where λ is the wavelength of light, θ is the angle 

between two interfering beams, and F is the factor 

by which the fringe pattern spreads out depending 

on the focal length of the lens or a lens system and 

the distance of photodiodes from the lens. The angle 

between the two interfering beams can be controlled 

by the tilt of the mirror M1. The distance between 

PD1 and PD2 is adjusted by moving one of the 

photodiodes precisely using a linear stage while 

observing their outputs on the oscilloscope. When 

the spatial phase difference between them becomes 

about π/2, the photodiodes are fixed there. The 

accuracy of the distance between PD1 and PD2 

should be ±0.5 mm in our case. This accuracy 

depends on the tolerable error in phase difference 

between outputs of the photodiodes which in turn 

depends on the circuit design. When the fringes 

move due to the vibration, the relative phase 

between the two output signals will be either +π/2 or 

–π/2 depending on the placement of the 

photodiodes. 

Laser

PD1 PD2

M1

M2

Analog processing

Diverging lens

Fringes Direction

BS a b

a

b

 
Fig. 1 Experimental arrangement for vibration/displacement 

measurement (BS: beam splitter; M1 and M2: mirrors; PD1 and 

PD2: photodiodes). 

We have performed the experiments with a 
1-mW He-Ne laser at the wavelength of 543 nm as 
well as a 5-mW laser diode at the wavelength of 
635 nm. Using the He-Ne laser, we have measured 

the displacement with the least count of 68 nm 
without using an analog to digital converter (ADC). 
However, when an ADC is used to resolve the 

intensity profile of the fringe pattern, the 
displacement or amplitude of the vibration with the 
accuracy of picometers would be possible. But it 

requires overcoming the factors producing noise,  
for example, temperature fluctuation and 
electromagnetic interference. 

 
Fig. 2 Two photodiodes, PD1 and PD2, spatially separated by 

φ=π/2 with respect to the intensity prifile of the fringes. 

3. Modeling 

The block diagram of the processing sequence 

using analog electronics is shown in Fig. 3. The 

instantaneous intensity of the moving fringes is 

sensed by the two photodiodes spatially separated by 

π/2. The two signals are then amplified using 

amplifiers Amp1 and Amp2. For analog processing, 

the direct current (DC) components in the outputs of 

amplifiers must be removed to make the signal 

purely sinusoidal oscillating equally between 

positive and negative peak values. The band-pass 

filters BPF1 and BPF2 are used to remove the DC 

components as well as the high frequency noise. The 

circuit similar to the differentiator is used for 

band-pass filtering (the characteristics of the circuit 
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is described in Fig. 4). Since both of the signals 

undergo same differential operation due to BPF1 and 

BPF2, therefore, the time delay produced by these 

filters is same and causes no problem for further 

processing. Normalized outputs of the two 

band-pass filters S1 and S2 can be expressed as 

   1 cos ( ) ,S t t             (5) 

   2 cos ( ) .S t t             (6) 

Using (3), we have 

   2 sin ( ) .S t t             (7) 

When S1(t) passes through the differentiator 

(Diff), the output is 

   1 1 sin ( ) .
dS t dL

t
dt dt

           (8) 

To discriminate the direction a or b of the fringe 
movement, the two signals from BPF2 and Diff are 

multiplied in real time using IC AD633. The output 
of the multiplier that can be used to discriminate the 
direction a or b can be expressed as 

     1 21
2 sin .

dS t dL
S t t

dt dt


 
          

 
   (9) 

 
Fig. 3 Processing sequence in analog electronics. 

The output of the multiplier will oscillate either 
in the positive region for direction a or in the 
negative region for direction b. The direction is 
indicated by plus and minus signs of dL1/dt. To 

remove the oscillations presented in the output of 
the multiplier for the direction a or b, we have used 
an electronic integrator. To achieve a clean step 
function response for the direction of the motion, the 
output of the integrator passes through a comparator 
Comp3. To measure the frequency of the vibration, 
the output of Comp3 is processed via the computer 
(using LabVIEW) as well as the microcontroller. 

Figure 4 is the Bode diagram showing the circuit 
characteristics of the differentiator. Band-pass filters 
have the similar characteristics because the circuit is 
same. The differentiator works well for the vibration 
with the amplitude of few micrometers and the 
frequency between 50 Hz and 500 Hz. For example, 
if the mechanical vibration has an amplitude of 5 µm 
and a frequency of 50 Hz, then, the frequency of the 
modulated output of the interferometer would be 
about 2 kHz. Figure 4(a) shows that the gain of the 
differentiator is about 10 dB, and Fig. 4(b) shows 
that the phase difference is less than 30° (90°–60°) 
at 2 kHz which is tolerable for analog processing 
proposed in our technique. The complete circuit 
used for analog processing in our technique is 
shown in Fig. 5. 
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Fig. 4 Bode diagram showing characteristics of the 

differentiator: (a) the magnitude curve and (b) the phase curve. 
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The integrator introduces a delay in processing 

after the output of the multiplier changes its polarity. 

Simple analysis reveals that the time delay introduced 

by the integrator is about 1 ms at the frequency of 2 kHz. 

This delay is equal for each half cycle, therefore, it 

does not produce error in the measurement. The 

effects of the differentiator and integrator can be 

seen from experimental results in Section 4. 
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Fig. 5 Electronics circuit for analog processing. 

4. Experimental results 

Experimental outputs for damped vibrations, at 

different stages of the analog processing, recorded 

by the oscilloscope, are shown in Figs. 6(a)–6(d) and 

7. The results are in well agreement with (9). It 

means that the output of the multiplier is either 

positive or negative depending on the direction of 

the motion of the vibrating surface. The sign of “±” 

in (9) shows the direction towards “a” or “b”. In  

Fig. 6(a), it can be noted that outputs of the 

differentiators 2 and 3 become in and out of phase, 

respectively during each subsequent half cycle of the 

vibration. Similarly in Fig. 6(b), the output of the 

multiplier oscillates subsequently in positive and 

negative regions. Figure 6(d) shows the output of the 

system for the damped amplitude of the vibration 

with a frequency of 200 Hz. The frequency is 

selected by varying the length of the supporting rod 

(on the hit and trial basis) on which the mirror M2 is 

mounted. The vibration is actuated by providing the 

impulse force by hitting the supporting rod of M2. 

Also, we have confirmed the frequency measured by 

our system by applying the known frequency 

through a speaker actuated by a function generator. 

The mirror M2 is attached with the diaphragm of the 

speaker. It can be noted that the number of fringes in 

one half cycle gives the amplitude of the vibration 

cycle, and the step function response (high or low) 

gives real-time information about the direction of 

the motion. Since the oscillation given to the mirror 

M2 is damped, therefore, the oscilloscope captures 

different data at different time. 

It should be noted that the two signals shown in 

Fig. 6(a) are not perfectly in or out of phase in each 

half cycle. This error is due to the phase difference 

introduced by the electronic differentiator Diff, as 

shown in Fig. 4(b). Another reason of the error is 

that the two photodiodes, used in our experiment, 

are not perfectly separated by π/2, and the sensitive 

area of the photodiodes is not small enough. The 

unwanted delay in analog processing can be 
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compensated by use of the additional circuit but it 

will increase the complexity of the system. Figure 

6(c) shows that the delay introduced by the 

integrator is about 1 ms. 
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Integrator

Diff
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Fig. 6 Experimental outputs at different stages: (a) BPF2 and 

Diff, (b) Diff and multiplier, (c) Diff and integrator, and (d) Diff 

and Comp3. 

Fringes

Direction

t
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Fig. 7 Final experimental outputs give the frequency and 

amplitude of the vibration. 

5. Conclusions 

This paper proposes a new method by which the 

moving direction of a vibrating surface is detected 

by the output signal of the step function which is 

produced with the simple electronic circuit from the 

interference signal. We have measured mechanical 

vibrations having magnitude less than 100 nm and 

frequency in the range of 50 Hz to 500 Hz. Most of 

the processing is performed in analog electronics. 

The main advantage of our technique is that the 

direction of the motion can be detected without 

computer processing which makes the technique 

faster. Another merit of the technique, unlike 

holography, is that the surface under study needs not 

to be fixed at any point for reference. There are two 

limitations of the technique. Firstly, the surface 

under consideration should be reflective and flat. 

Secondly, modes of the vibration of the whole 

surface cannot be obtained. 

A good application of our proposed technique is 

the measurement of the amplitude and the frequency 

of vibrations in the walls of nuclear reactors or other 

sophisticated buildings. Other applications of our 

technique are damage detection in materials and 

recognition of wear and tear in parts of machines. 
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