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Abstract Attention deficit hyperactivity disorder (ADHD)
presents special challenges for drug development. Current
treatment with psychostimulants and nonstimulants is effec-
tive, but their mechanism of action beyond the cellular level
is incompletely understood. We review evidence suggesting
that altered reinforcement mechanisms are a fundamental
characteristic of ADHD. We show that a deficit in the trans-
fer of dopamine signals from established positive reinforcers
to cues that predict such reinforcers may underlie these
altered reinforcement mechanisms, and in turn explain key
symptoms of ADHD. We argue that the neural substrates
controlling the excitation and inhibition of dopamine neu-
rons during the transfer process are a promising target for
future drug development. There is a need to develop animal
models and behavioral paradigms that can be used to exper-
imentally investigate these mechanisms and their effects on
sensitivity to reinforcement. More specific and selective
targeting of drug development may be possible through this
approach.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is a behav-
iorally defined disorder of unknown etiology and patho-
physiology. As such, it presents special challenges to
develop animal models for drug development. In this
review, we consider evidence that altered mechanisms for
positive reinforcement may be a fundamental characteristic
of ADHD and suggest that sensitivity to positive reinforce-
ment is a useful construct for animal models and paradigms
for research into new treatments for ADHD. We have not
undertaken a comprehensive review because a number of
thorough reviews have recently appeared in the literature
dealing separately with animal models [1–8], reinforcement
theories [9–12], and psychopharmacology of ADHD
[13–15]. We have instead attempted to integrate these areas
by focusing on the neurobiology of positive reinforcement
and its implications for new drug therapy.

For clarity in terminology, we will use the term “positive
reinforcer,” or simply “reinforcer” to refer to a stimulus that
increases the likelihood of an associated response, or a
stimulus that would elicit an approach reaction, commonly
referred to as a reward. We use the term “reinforcement
learning” to refer to the associative process that occurs when
a behavior is followed by a positive reinforcer. In humans,
the term “primary reinforcer” is too restrictive for the rein-
forcing events that motivate behavior, which include social
reinforcers, such as praise or money. For these events, we
use the term “established positive reinforcer.” We first
review behavioral aspects of ADHD and evidence for
altered positive reinforcement mechanisms. We then review
the neurobiology of positive reinforcement and the central
role of the neurotransmitter dopamine in reinforcement
learning. We consider a postulated deficit in the transfer of
dopamine signals from established positive reinforcers to cues
that predict positive reinforcers as an explanation for altered
reinforcement sensitivity in ADHD. Next we consider rodent
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models for ADHD that have been evaluated in relation to
reinforcement, and their potential use in drug development.
This includes a review of behavioral paradigms that can be
used to assess sensitivity to reinforcement. We conclude that
few models have been adequately tested for altered reinforce-
ment sensitivity, or for their ability to predict the effectiveness
of new compounds for treatment of ADHD, particularly
altered reinforcement sensitivity. Finally, we consider new
directions for the development of animal models that could
test the effects of novel therapeutic agents on dopamine
responses to cues and established positive reinforcers.

ADHD is a Behaviorally Defined Disorder

ADHD is a common and debilitating disorder diagnosed on
the basis of persistent and developmentally inappropriate
levels of over-activity, inattention, and impulsivity [16].
The symptoms included in the diagnostic criteria for ADHD
are not specific to the disorder or abnormal in and of
themselves. Inattention, impulsivity, and hyperactivity exist
in the normal population, and may be normal at earlier
developmental stages. Thus, producing an animal model of
ADHD is not simply a matter of producing the symptoms.
Any model of ADHD should also include quantitative
assumptions as to what is relatively excessive. Furthermore,
as abnormality is relative, the selection of appropriate con-
trols for an animal model is as important as the selection of
the model.

Rather than trying to model ADHD in a categorical way, an
argument can be made for identifying component behavioral
characteristics. For example, impulsivity is a component of
ADHD. The ability of a drug to reduce impulsivity may
predict therapeutic efficacy in ADHD, even if it does not
affect other symptoms. This may be tested in a normal rat or
in an animal expressing levels of impulsivity lying at the
extreme of the normal range.

Altered Reinforcement Sensitivity and ADHD

Clinical reports, together with a growing number of exper-
imental studies, have identified differences in the manner in
which children with ADHD respond to reinforcement [17].
Historically, children with ADHD have been described as
less able to delay gratification and as failing to respond to
discipline [18–21]. As a group, children with ADHD have
been reported to perform less well under partial reinforce-
ment schedules [22–24], and to respond more impulsively to
reinforcements (i.e., to choose small immediate reinforce-
ment in comparison with larger delayed reinforcement [25].
These early findings led several researchers to hypothesize
that symptoms of ADHD arise from an altered or abnormal

sensitivity to positive reinforcement (for more detail see
Haenlein and Caul [18], Douglas [26], Tripp and Wickens
[27], Barkley [28], Sagvolden et al. [29], and Sonuga-Barke
[30, 31]). To test these hypotheses, researchers have com-
pared the effects of reinforcement versus nonreinforcement on
the cognitive task performance, psychophysiological reactiv-
ity, choice behavior, and brain activation of children, and to a
lesser extent, of adults, with and without ADHD using a
variety of paradigms.

Several studies report differences between children with
ADHD and controls in the effects of reinforcement on
cognitive task performance (for more detail see Carlson
and Tamm [32], Konrad et al. [33], Luman et al. [34],
McInerney and Kerns [35], and Slusarek et al. [36]). Some
studies show differences in the psychophysiological respon-
siveness to reinforcement of children with and without
ADHD [34, 37–40]. Other studies have evaluated the effects
of different aspects of reinforcement (e.g., delay, frequency,
and magnitude) on task performance and response alloca-
tion. Recent studies (for more detail see Sonuga-Barke et al.
[10]) indicate that children with ADHD show relatively
strong preferences for smaller immediate in comparison
with larger delayed reinforcers, thus demonstrating greater
reinforcer delay discounting [41–53]. Contextual factors,
such as the length of delay, number of trials, or amount of
practice may modulate these effects [48, 49, 54]. Children
with ADHD perform less well than typically developing
children when reinforcement is infrequent [55]. The actions
of children with ADHD also appear to be more sensitive to
recent instances of reinforcement [56]. Reinforcement learn-
ing in ADHD is impaired when reinforcers are not contin-
gent, but probabilistic, and thus infrequent [57]. Learning
from contingent reinforcers also seems to be impaired in
children with ADHD [58].

The balance of evidence suggests that an alteration in
processing of reinforcement may be a fundamental charac-
teristic of ADHD. This characteristic has important impli-
cations for understanding the brain mechanisms underlying
the disorder and for the development of effective pharmaco-
logical interventions. The neural circuitry for reinforcement
learning is well-defined, with many pieces of evidence
showing that dopamine is a key neurotransmitter-
mediating reinforcement. Knowledge concerning reinforce-
ment mechanisms is readily applicable to the development
of animal models because reinforcement mechanisms can be
studied in simpler animal organisms. Behavioral analysis of
reinforcement, which has an extensive history in the context
of animal learning, can be applied to measure the effects of
reinforcement in humans. Thus, research demonstrating that
children with ADHD differ from typically developing chil-
dren in their sensitivity to reinforcement offers sound behav-
ioral and neurobiological starting points for developing new
and testing existing animal models.
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Neurobiology of Reinforcement

Considerable progress has been made toward understanding
the neurobiology of reinforcement learning in recent deca-
des. Three key findings have emerged that are of particular
importance in understanding abnormal reinforcement sensi-
tivity in ADHD. First, primary reinforcement is associated
with phasic activity of dopamine neurons and a subsecond
pulsatile increase in dopamine concentration, especially in
the striatum. Second, such pulsatile dopamine release causes
strengthening of corticostriatal synapses, the degree of
which is correlated with the rate of learning. Third, this
strengthening effect of dopamine has precise timing require-
ments, such that delays in the dopamine pulse result in the
loss of strengthening effect. We summarize the evidence for
these points in the following. This complex and emerging
literature has been recently reviewed [59–63].

Animal studies have identified dopaminergic circuits in
the midbrain, particularly the nigrostrial and mesolimbic
projections, as being critical in reinforcement mechanisms
[63, 64]. Dopamine neurons demonstrate activation in
response to primary reinforcers. The phasic firing is caused
by events of motivational significance, such as unexpected
primary reinforcers and stimuli that predict reinforcers
during learning [65, 66]. Although dopamine neurons are
sometimes activated by aversive stimuli, the majority of
dopamine neurons are inhibited by these stimuli [67]. Con-
sistent with the findings in nonhuman primates, rat dopa-
mine cells have also been shown to respond to appetitive
stimuli [68]. Dopamine release in response to visual and
olfactory stimuli associated with natural reinforcers has
been demonstrated in the rat nucleus accumbens [69–71]
and striatum [72]. However, dopamine cell firing activity
does not simply follow the delivery of positive reinforcers.
Established reinforcers initially evoke dopamine cell firing.
With repeated repetition and learning of a task, the dopa-
mine burst that initially occurs at the time of reinforcement
transfers to earlier and earlier predictors of reinforcement
[65]. In this manner, dopamine cells fire in anticipation of
reinforcers (i.e, in response to cues that predict the delivery
of reinforcement).

At the cellular level, the phasic dopamine release that
occurs in response to reinforcement is thought to lead to
strengthening of connections at the synaptic level. Several
authors have suggested that dopamine-dependent synaptic
plasticity mechanisms in the neostriatum may underlie such
strengthening [73–77]. In support of this, experimental stud-
ies have shown that a conjunction of cortical presynaptic
and striatal postsynaptic activity combined with pulsatile
application of dopamine, such as that caused by unexpected
primary reinforcement, leads to long-term potentiation
(LTP) of corticostriatal synapses [78, 79]. Similarly, stimu-
lation of the substantia nigra pars compacta in vivo induces

LTP [80, 81]. Consistent with these findings, dopamine
depletion or dopamine receptor antagonists can block LTP
[82, 83]. For example, LTP is reduced where there is
decreased synaptic release of dopamine, and is restored by
dopamine receptor stimulation [84]. These findings together
show that dopamine may act at a cellular level to strengthen
corticostriatal synapses.

The timing of dopamine release is critical for this
dopamine-mediated strengthening of synapses. Direct meas-
ures of the timing requirements for potentiation have shown
that dopamine pulses must occur within subsecond intervals
of the synaptic activity that is being potentiated [79]. Similar
temporal requirements have been shown using dopaminer-
gic reinforcement of single cell activity in the hippocampus
[85]. Recently, studies of spike-timing dependent plasticity
have been conducted in the corticostriatal pathway. These
have produced interesting but conflicting results. Fino et al.
[86] measured spike-timing dependent plasticity of cortico-
striatal connections in rat brain slices. They reported that
LTP was induced when a striatal postsynaptic action poten-
tial preceded stimulation of corticostriatal, presynaptic
inputs. Conversely, LTD was induced when the postsynaptic
action potential came after the cortical stimulation. In
contrast, Pawlak and Kerr [87] found that temporal require-
ments are almost the reverse of those reported by Fino et al.
[86]. This is an area of ongoing research that is presently
unresolved.

In summary, at the cellular level, dopamine acts by mod-
ulating or controlling synaptic plasticity. Phasic increases in
dopamine concentration, which occur with reinforcer-
related release of dopamine, in association with synaptic
activity cause LTP of corticostriatal synapses [60, 78, 88].
However, this potentiating effect has strict temporal require-
ments for the dopamine pulse and synaptic activity. Taken
together, these findings define a cellular mechanism for the
effects of reinforcement in which phasic and appropriately
timed pulses of dopamine strengthen synaptic connections.

At the behavioral level, a delay between the response or
stimulus and the reinforcer results in less rapid learning
[89–91]. However, learning can be enhanced under condi-
tions of delayed reinforcement by a distinctive environmental
cue, which reliably precedes delivery of the final reinforcer.
The transfer of dopamine responses to the cue may be a
mechanism to compensate for delay of reinforcement. When
predictive cue signals are not available, the timing require-
ments for behavioral reinforcement are determined by the
timing requirements for cellular reinforcement. For example,
when electrical stimulation of the brain is used as the rein-
forcer delays of as little as 1 second may impair the effect of
reinforcement in rats [92].

In situations in which reinforcement is delayed, the
anticipatory dopamine release is thought to bridge the delay
between cues and reinforcement, ensuring that the dopamine
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pulses occur with the required timing at the cellular level
[27, 93]. We propose that in normal humans, as in nonhu-
man primates and rats, dopamine cell responses transfer
from established reinforcers to earlier cues in the behavioral
sequence, and this is important for learning with delay
of reinforcement.

Dopamine Transfer Deficit, a Neurobiological Theory
of Altered Reinforcement Sensitivity in ADHD

Reward dysfunction has been proposed in a number of
different theories of ADHD, including the Cognitive-
Energetic model [94], the Dual Process theory [30, 31],
and the Dynamic Development Theory [95]. These are gen-
eral theories of ADHD that acknowledge altered reward
sensitivity as an important component. More specific com-
putational theories have also been proposed, drawing on
recent models of reinforcement learning (for more detail
see Luman et al. [9]).

Drawing on the extensive evidence linking dopamine cell
activity to positive reinforcement, we formulated the dopa-
mine transfer deficit (DTD) hypothesis as an explanation for
altered processing of positive reinforcement in children with
ADHD [27, 93]. The background of this theory is the neuro-
biology of reinforcement previously described. We assume
that in normal humans, as in nonhuman primates and rats, the
same 3 processes occur: 1) phasic dopamine signals that trans-
fer from established positive reinforcers to earlier cues that
predict reinforcers, 2) dopamine-dependent strengthening of
connections, and 3) a precise timing requirement for the
dopamine signal. Thus, the repeated experience of a cue
followed by a reinforcer leads to transfer of dopamine cell
responses from established reinforcers (e.g., praise or attention
to earlier cues in the behavioral sequence that predict the later
delivery of reinforcement). When this process occurs nor-
mally, it provides a mechanism of ensuring that the timing
of the dopamine signal at the cellular level is immediate and
continuous even when behavioral reinforcement is delayed or
discontinuous. This immediate and continuous dopamine sig-
nal ensures that even in a natural environment in which
reinforcers fluctuate according to the circumstances, the cel-
lular mechanism is able to engage effectively and maintain
reinforced behavior.

In ADHD, we propose the transfer of the dopamine
response to previously neutral cues is disrupted. In partic-
ular, we assume that the phasic dopamine cell response to
cues that predict reinforcement is reduced in amplitude to
the point of being ineffective (i.e., there is a failure of the
mechanism that normally comes to excite the dopamine
cells in response to cues that repeatedly and persistently
precede reinforcement). In addition, we assume there is a
failure of the mechanism that inhibits dopamine cell firing at

the time of the primary reinforcement. The net result of
these 2 assumptions is a failure of the dopamine signal to
transfer to the earlier cues that predict reinforcement.
Instead, the dopamine signal continues to occur at the time
of established positive reinforcers. Moreover, if the rein-
forcer is intermittent or delayed, the dopamine signal is
likewise intermittent and delayed. We argue as follows that
this may cause key symptoms of ADHD.

The exact nature and cause of the failure is currently
unknown. However, there are many ways that such failure
might occur. For example, altered dopamine transporter func-
tion, or altered dopamine receptor function, as a consequence
of genetic polymorphisms in these molecular mechanisms,
could disrupt the transfer process. Other possibilities also
exist, such as abnormalities in the systems that are afferent
to the dopamine cells, which may include prefrontal cortical
mechanisms. The precise cause of the deficient transfer, how-
ever, is a separate matter from the symptoms that can be
predicted from it.

We predict that such failure would lead to a number of
symptoms of ADHD. As a consequence of failure to predict
reinforcers, individuals with ADHD experience a delayed
dopamine signal (delayed reinforcement), or no signal (dis-
continuous reinforcement) at the cellular level, rather than
the immediate anticipatory dopamine signal experienced by
typically developing individuals. This would make them
abnormally sensitive to delayed or discontinuous reinforce-
ment. It would also have the effect of making individual
instances of actual reinforcement more salient, which may
result in greater control by incidental stimuli in the environ-
ment over the integrated history of reinforcement. These
corollaries are developed more fully in earlier theoretical
articles [27, 93, 96]. DTD is only one of several recent
theories addressing the neurobiology of altered reinforce-
ment sensitivity and ADHD, which have also been reviewed
in detail by Luman et al. [9]. This is emphasized here
because its predictions are testable and have implications
for the selection of animal models for developing new drug
treatments for ADHD.

The assumption that dopamine signaling in humans paral-
lels that measured in experimental animals has some support
from functional magnetic resonance imaging (fMRI) studies.
Changes in blood flow and oxygenation measured by fMRI
signals are thought to provide an indirect measure of dopa-
mine release. In particular, dopamine may activate postsynap-
tic neurons by potentiation of corticostriatal synapses, and
therefore increase local fMRI signals [97]. Functional activa-
tions in the dorsal striatum occur in relation to reinforcement
of an action [98, 99], and activation of the nucleus accumbens
in relation to anticipation of reinforcement [100].

Recent functional studies in humans have been enhanced
by the use of models based on the temporal difference algo-
rithm for predicting reinforcement. This machine-learning
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algorithm generates prediction error signals that correlate with
dopamine signals in primates during Pavlovian conditioning
[101]. In human studies, responses to cues predicting a juice
reinforcer have been measured in the ventral and dorsal stria-
tum. The ventral striatal area was affected by prediction error
(estimated from a temporal difference model) in both Pavlo-
vian and instrumental conditioning, whereas the dorsal striatal
was affected by instrumental conditioning [102, 103].

Evidence from recent fMRI studies provides support for
the DTD hypothesis of impaired anticipatory dopamine cell
firing in ADHD. In normal subjects, preference for imme-
diate in comparison with delayed reinforcement is associated
with the magnitude of ventral striatal activity [104]. Adoles-
cents [105] and adults [106–108] with ADHD show reduced
activation in the ventral striatum in response to cues predicting
reinforcement in monetary incentive delay tasks [105, 106,
108] and in a temporal discounting task [107]. Stoy et al. [109]
also reported a larger neural response in the putamen of adult
control participants versus those with ADHD during gain
anticipation with a monetary incentive delay task. These
studies are consistent with the assumption of reduced response
to cues.

Evidence for the assumption that dopamine cells continue
to fire in response to established positive reinforcers is more
equivocal. Strohle et al. [106] observed increased activations
of the orbitofrontal cortex in ADHD participants in response
to reinforced outcome. Neither the studies of Scheres et al.
[105] nor Stoy et al. [109] found group differences in response
to reinforcement, however, their studies were not designed to
test DTD. In a study designed to test DTD assumptions
directly, Furukawa et al. [110] reported preliminary findings
that are consistent with impaired transfer of responses from
reinforcers to cues predicting reinforcement.

There are several ADHD symptoms that can be inter-
preted as arising from a dysfunction in the transfer of dop-
amine cell firing. Symptoms of inattention include: “often
fails to give close attention to details or makes careless
mistakes in schoolwork, work, or other activities”; “often
has difficulty sustaining attention in tasks or play activities”
and “is often easily distracted by extraneous stimuli.” These
symptoms occur with higher frequency in children with
ADHD, and may be explained by impaired anticipatory
dopamine release. The reason for this is that if the dopamine
release occurs only in response to actual instances of rein-
forcement, incidental aspects of the environment that acti-
vate dopamine neurons may reinforce off-task behaviors
rather than the socially established cues present in classroom
situations. Other symptoms of inattention can be interpreted
as failure of conditioned reinforcers leading to increased
sensitivity to delay of reinforcement and less effective per-
formance under schedules of partial reinforcement. These
include: “often does not follow through on instructions and
fails to finish schoolwork, chores, or duties in the workplace,”

and “often avoids, dislikes, or is reluctant to engage in tasks
that require sustained mental effort.”

The DTD theory also explains some symptoms of hyper-
activity and impulsivity. The symptom of “often leaves seat in
classroom or in other situations in which remaining seated is
expected” may be interpreted as a lack of effective reinforce-
ment for remaining seated arising from a deficit in anticipation
of reinforcement. The symptoms “often has difficulty await-
ing turn,” “often blurts out answers before questions have
been completed,” and “often interrupts or intrudes on others”
involve a delay between the target behavior and the actual
reinforcement. Therefore, they may be interpreted as being
due to abnormal sensitivity to delay of reinforcement arising
from a failure of the transfer of dopamine cell firing activity in
response to cues that predict reinforcement.

Although many ADHD symptoms can be explained by
DTD, it would be possible to have DTD and not meet
criteria for ADHD, because some symptoms might arise
by different mechanisms. However, DTD does provide a
distinct framework for the development of animal models
and new targets for pharmacological compounds for a
particular set of symptoms.

Current Drug Treatment of ADHD

Because the neurotransmitter dopamine is involved in the
processing of reinforcement and reinforcement learning, it is
an important system in the development of new medications
to treat ADHD. In particular, the importance of timing require-
ments suggests that ADHD medications should target antici-
patory release of dopamine. However, the primary action of
the drugs currently used in the treatment of ADHD is an action
on dopamine signals, which is not specific to the timing or
cause of the dopamine signal. They may compensate for a
deficit in dopamine transfer, but do not correct the primary
deficit of failure to transfer. Such specificity of action may not
be possible with drugs that act on the dopamine transporter
rather than the circuitry that controls the dopamine neurons.

The molecular actions of existing drugs used in the man-
agement of ADHD provide limited insight into the underlying
pathology of ADHD. It is commonly assumed that because
these drugs are indirect dopamine agonists, there must be an
overall deficiency of dopamine. However, no such overall
deficiency has been conclusively identified, and more subtle
alterations in dopamine function, such as DTD may be impor-
tant for the development of new variants of these drugs and
novel therapeutic compounds. Currently 2 major classes of
drugs are used in the treatment of ADHD: 1) psychostimulants
and 2) norepinephrine reuptake inhibitors. Amphetamine
(Adderall) and methylphenidate (Ritalin, Concerta) are psy-
chostimulants. Atomoxetine (Strattera) is a norepinephrine
reuptake inhibitor.
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At therapeutic dosages, an amphetamine is a dopamine
reuptake inhibitor and also a norepinephrine reuptake inhibitor,
and it is also a very weak inhibitor of serotonin reuptake [111].
At higher doses, an amphetamine also evokes the release of
dopamine, norepinephrine, and 5-hydroxytryptamine. Simi-
larly, methylphenidate (dl-threo-methylphenidate) is a reuptake
inhibitor for dopamine and norepinephrine, while it is inactive
for 5-hydroxytryptamine. Both drugs are very effective in
reducing the symptoms of ADHD [112–114], but the
therapeutic effects require the presence of the drug and do not
outlast drug exposure [13].

Atomoxetine (Strattera) is a nonstimulant that acts as a
presynaptic blocker of norepinephrine reuptake [115], increas-
ing the duration of action of norepinephrine after its release.
Atomoxetine also increases dopamine concentration because
the norepinephrine transporter plays an important role in
clearance of dopamine in this region [115, 116], but this is
not so in the striatum, and therefore, the effects on dopamine
are regionally selective. Thus, atomoxetine increases dopa-
mine, as well as norepinephrine in the prefrontal cortex, but
not in the striatum where the dopamine transporter plays the
major role in clearance.

Volkow et al. [117] showed that a standard clinical dose
of 0.5 mg/kg methylphenidate blocks approximately 60 %
or more of the dopamine transporter. Other studies also
suggest that clinically relevant doses of methylphenidate
produce their therapeutic effects by increasing extracellular
dopamine [118–120]. Volkow et al. [121] proposed that the
therapeutic effects of methylphenidate may be “secondary to
its ability to enhance stimuli-induced dopamine increases,
thus making them more motivationally salient and thereby
improving performance.”

Human studies support suggestions that actions on rein-
forcement mechanisms underlie the therapeutic effects of
methylphenidate. In children with ADHD, methylphenidate
has been shown to raise the breakpoint (i.e., the point at
which the participant elects to stop responding) on progres-
sive ratio tasks [122, 123]. Methylphenidate has also been
shown to reduce delay discounting (i.e., preference for small
immediate delayed reinforcers in comparison with larger
delayed reinforcers in children with ADHD during a real-
time discounting task [124].

Rodent Models for ADHD

A number of different rodent models have been proposed, and
there are several comprehensive reviews [1–8, 125, 126]. Here
we focus on those most relevant to reinforcement theories.
The main approaches include: 1) developing measures of the
altered reinforcement responses in ADHD and studying the
effects of drugs on these measures in normal animals; 2)
selecting for behavioral characteristics by selective breeding

or selection of phenotypes from the natural variation in sensi-
tivity to reinforcement; 3) mimicking presumed pathology by
making brain lesions of brain reinforcement circuitry; and 4)
manipulation of candidate genes and the production of trans-
genic animals. These approaches are considered as follows.

Behavioral Paradigms Used to Model ADHD and Drug
Actions

The symptoms of ADHD are not unique to it and are present
in some degree in the normal population. Similarly, psychos-
timulant drugs modify attention, impulsivity, and hyperactiv-
ity in people with and without ADHD. The use of “normal”
rats, with appropriate behavioral measures, is thus well justi-
fied. A number of excellent reviews of behavioral paradigms
are available (for more detail see Evenden [127, 128] and
Winstanley et al. [129]). As follows, we describe the most
frequently used paradigms and the effects of existing drugs on
these measures.

Delay Discounting

The delay-discounting paradigm measures the tendency to
choose an earlier, smaller reinforcer in preference to a larger,
later reinforcer. In general, organisms discount future rein-
forcers as a function of the delay from the time of choice
[130], choosing immediate reinforcers, even if this results in
fewer total reinforcers [127]. A number of studies have
investigated the effects of psychostimulants on the perform-
ance of normal rats in delay-discounting tasks.

Bizot et al. [131] trained rats in a T-maze to choose
between a smaller immediate reinforcer and a larger rein-
forcer that was delayed by 30 seconds. Methylphenidate
(3 mg/kg), atomoxetine (1 mg/kg), d-amphetamine (1 and
2 mg/kg), and desipramine (8 and 16 mg/kg) all led to an
increased choice of the larger delayed reinforcer. The authors
suggest that the T-maze procedure in juvenile animals may be
suitable for testing the therapeutic potential of drugs for the
management of ADHD [131].

5-Choice Serial Reaction Time Test

The 5-choice serial reaction time test (5-CSRT) is a rat version
of the continuous performance test used in humans [132]. In
this task, the animal is required to learn to nose-poke into 1 of
5 apertures after the presentation of a brief visual stimulus in
that aperture to obtain a food reinforcer. The stimulus is short
in duration, requiring the rat to “attend” closely. Premature
responses reflect higher levels of impulsivity and provide a
measure of behavioral inhibition.

The 5-CSRT can be used to identify rats within a “normal”
populationwith a deficit in selective attention accompanied by
impulsivity. Rats selected for high levels of impulsivity on a
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5-CSRT task also exhibited high levels of impulsive decision-
making on a delay-of-reinforcement task [133]. However, the
same rats were not impaired on a stop-signal task requiring
inhibition of an already initiated motor response [134]. These
animals have been proposed as a rodent model of ADHD.

Puumala et al. [135] used a 5-CSRT to assess sustained
attention, measured by choice accuracy, and motor hyperac-
tivity, measured by percentage of premature responses. At
lower doses, methylphenidate slightly improved sustained
attention in poorly performing animals, but at higher doses
(1 mg/kg) it increased the number of premature responses.
Similarly, Navarra et al. [136] found that methylphenidate at
therapeutic doses improved sustained attention. Cole and
Robbins [137, 138] reported that methylphenidate at higher
doses increased premature responding on the 5-CSRT,
whereas atomoxetine induced a marked decrease in impulsiv-
ity and overall improvement in attention. The different effects
of methylphenidate and atomoxetine may reflect different
involvement of prefrontal and striatal regions in these tasks.

Stop Signal Reaction Time Task

Stop-signal reaction time tasks (SSRTs) measure the ability
to withhold or inhibit an already initiated or pre-potent
motor response [139]. Stop-signal tasks are similar to “go/
no go” tasks, in which the stop signal is presented before or
simultaneously with the go signal. Behavioral paradigms for
both SSRT and “go/no go” have been developed for use in
animal studies [140, 141]. The effects of psychostimulants
on these paradigms were recently reviewed [142]. Psychos-
timulants and atomoxetine decrease impulsivity on the
SSRT [143], suggesting that this task may be useful in
animal studies of potential therapeutic agents.

Rodent Models Developed through Selective Breeding

The spontaneously hypertensive rat (SHR) is the most widely
used animal model of ADHD [144–149]. SHRs are more
impulsive than their control strain, Wistar Kyoto (WKY).
Bizot et al. [150] found that adult SHR are more impulsive
thanWKYorWistars in a T-maze, in which rats had to choose
between a small, but immediate and a large, but delayed
reinforcer. Fox et al. [151] used a similar procedure and found
that the SHRs chose more small/immediate reinforcers than
the WKYs at the longest delays. Similarly, Pardey et al. [152]
found that SHRs were more sensitive to delay of reinforce-
ment than WKYs on an operant task, allowing free choice
between a small reinforcer delivered immediately and a larger
reinforcer delivered after a delay.

Closelyrelatedtothedelay-discountingparadigm,Sutherland
et al. [153] adapted a signal detection task used to measure the
effectsofdelayof reinforcement inchildren [56] forusewith rats.
In the task, the rat is required to press 1 of 2 available levers on

each trial. One lever delivers an immediate reinforcement,
whereas the other lever delivers a reinforcement after a
fixed delay. Sutherland et al. [153] found that the SHRs
were more sensitive to delay of reinforcement than control
strains. These findings collectively support the SHR as a
model for impulsive behavior. However, these comparisons
were made against various control strains, the normality of
which can be difficult to establish.

There have been relatively few studies of the effects of
psychostimulants on the SHR. In the T-maze task, previously
described, in which rats had to choose between a small, but
immediate and a large, but delayed reinforcer procedure [150],
the SHR exhibits more impulsive behavior. Bizot et al. [150]
found that methylphenidate 3 mg/kg did not reduce impulsiv-
ity in the SHR. Kantak et al. [154] investigated the effects of
oral methylphenidate (1.5 mg/kg) on delayed win-shift (non-
spatial working and reference memory), win-stay (habit learn-
ing), and attentional set-shifting (attention and behavioral
flexibility) tasks. On all 3 tasks, the SHR made significantly
more errors than the WKY. Treating the SHR with methyl-
phenidate eliminated strain differences in all 3 tasks. Liu et al.
[155] investigated the effects of atomoxetine on the behavior
of the SHR in the Morris water maze. Maze learning was
improved after atomoxetine administration. The performance
of the SHR has also been tested in the 5 choice serial reaction
time paradigm, but this was not abnormal. Methylphenidate
(0.1-1.0 mg/kg) did not improve performance of SHR in this
task [156].

Similar to the SHR, a genetically independent, hyperten-
sive rat strain, known as the Genetically Hypertensive (GH)
rat, was developed in New Zealand by selective breeding of
Wistar rats for hypertension [157–159]. The GH showed no
evidence of hyperactivity within an open field in comparison
to its parent strain, the Wistar [160–162]. Wickens et al. [163]
tested the GH strain using the FI-EXT task that has been used
extensively in studies with the SHR. As with the SHR, the GH
showed higher terminal response rates and response bursts,
and a greater level of continued responding during EXT, in
comparison to both the Wistar and WKY strains. In a direct
measure of sensitivity to delay of reinforcement, Sutherland et
al. [153] found that both SHR and GH rats allocated signifi-
cantly more responses to the immediately reinforced lever
than their genetic control strains. These findings support the
use of both SHR and GH rat to model altered reinforcement in
ADHD.

The GH provides an interesting complement to the SHR,
in that in both strains the hyperactivity has arisen from the
selection for high blood pressure, although is not related to
blood pressure per se. This convergence across strains sug-
gests that the relevant genes may be physically close, but they
are not identical to those for hypertension. However, further
work is needed to analyze the behavioral characteristics of
the GH rat.
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Selective Lesion Rodent Models

Neurochemically, selective lesions of the dopamine neurons by
neonatal administration of the neurotoxin 6-hydroxydopamine
(6-OHDA) lead to locomotor hyperactivity [3, 164]. The
hyperactivity induced by neonatal 6-OHDA lesions is reduced
by amphetamine [165] and methylphenidate [166, 167].
Kuczenski and Segal [168] established psychostimulant doses
and conditions that approximated clinically relevant condi-
tions. They found that low, oral doses of methylphenidate,
which produce blood levels similar to those in patients with
ADHD, decrease locomotor activity in juvenile rats [168, 169].
These low doses have a preferential effect on the norepinephr-
ine transporter, increasing norepinephrine levels in the prefron-
tal cortex [170]. Altered norepinephrine in the prefrontal
cortex, may in turn modulate dopamine release in response to
reinforcer predicting cues.

A 6-OHDA mouse model has also been developed, which
shows increased activity levels and a reduction in activity after
treatment with psychostimulants [171, 172]. The neonatal
6-OHDA lesioned animal model has not yet been validated
using tasks that measure behavioral characteristics, such as
impulsivity or sensitivity to delay of reinforcement.

Transgenic Animal Models

Several pieces of evidence suggest that abnormal dopamine
transporter (DAT) functionmay be important in ADHD.Over-
expression of DAT has been found in human ADHD, and 1 of
the major actions of the psychostimulants is to block DAT.
Thus, DAT dysfunction has been proposed as a possible cause
of ADHD, and mice with genetically engineered changes of
DAT function have been proposed as models for use in
ADHD research [173–175]. For example, DAT knockout
mice show increased locomotion. In the open-field environ-
ment, high doses of methylphenidate (30 mg/kg) increased
locomotion in wild-type mice and decreased locomotion in
DAT knockout mice. The effects in knockout mice were
mediated by increases in serotonin, suggesting that therapies
directed at serotonin may be useful in ADHD [176]. Although
genetic engineering offers powerful approaches to develop
models, only a small fraction of variance in human popula-
tions is accounted for by variation in dopamine transporter,
and unconditionally increased locomotor activity is not a key
component of ADHD.

Future Directions

Based on the increasing evidence that altered reinforcement
mechanisms may underlie or be associated with some symp-
toms in ADHD [27], we suggest that future efforts to develop
drug treatments may be usefully focused on these mechanisms.

Compounds of potential value can be identified by their effect
on animal tasks thatmeasure reinforcement variables. Strategies
may include further characterization of the altered reinforce-
ment processing in children with ADHD and the translation of
tasks into reliable and valid animal behavior paradigms.

The DTD hypothesis identifies certain neural targets for
intervention in ADHD. In particular, the circuitry mediating
excitation of dopamine neurons by cues predicting rein-
forcement is a potential target. Candidate structures include
the basolateral amygdala projection to the nucleus accum-
bens, [177] central nucleus of the amygdala projection to the
dorsolateral striatum, and [178] pallidal projection to the
lateral habenular [179–181], in addition to more commonly
understood projections from the prefrontal cortex and
pedunculopontine nucleus. Synaptic plasticity in this circui-
try may mediate the association of cues with dopamine
release. Understanding the mechanisms of synaptic plasti-
city in this circuit may be important for development of new
drugs. At the same time, the circuitry mediating inhibition of
the dopamine neurons at the time of primary reinforcement
is another strong candidate target of therapy. Although it
may be difficult to elucidate these mechanisms in the short
term, it should be possible to test whether disrupting these
circuits leads to altered sensitivity to reinforcement and
behavioral characteristics of ADHD. This requires the use
of tests of sensitivity to reinforcement that have been trans-
lated from human to animal paradigms. Another possibility
would be to investigate differential activation of circuits in
animals that exhibit extremes of sensitivity to reinforcement.
Compounds that correct activity in these circuits or produce
compensatory changes in other circuits are candidates for
further development.

The identification of the neurobiological substrates under-
lying reinforcement by basic research suggests more specific
and selective targeting of drug development may be possible,
focusing on the mechanisms that mediate anticipation of
reinforcement. The therapeutic effects of existing drugs can
be understood in this framework, but there are likely to be
improvements within their wide spectrum of action on neuro-
modulators. For example, blocking dopamine transporter
activity probably increases dopamine signals evoked by both
cues and established positive reinforcers. According to the
DTD hypothesis, a better result would be to increase the
dopamine signal in response to the cues, and decrease the
signal in response to the established positive reinforcer. To
achieve this it would be necessary to target the neural circuitry
that excites the dopamine neurons in response to the cues (and
enhance its effects), and separately target the circuitry that
inhibits the dopamine neurons at the time of the reinforcer.
To date, we know of no treatment designed to produce
these effects.

Advances in understanding the pathophysiology of ADHD
in terms of altered reinforcement sensitivity may also lead to
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the development of animal models of specific components of
the ADHD syndrome. This may range from the selection of
phenotypes from normal populations, selective breeding,
genetic manipulation, or specific lesions. Another possibility
is optogenetic inhibition of dopamine cell firing at the time of
cue presentation, directly simulating DTD.

With these advances, it may be possible to target specific
symptoms of ADHD for selective treatment. It is well
known that ADHD is a heterogeneous disorder that overlaps
with other behavioral disorders. Treatments that target rein-
forcement mechanisms are unlikely to cover all aspects of
the disorder. However, such treatments may reduce specific
symptoms or processes that affect learning and socialization.
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