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Abstract The spontaneous recovery observed in the early
stages of multiple sclerosis (MS) is substituted with a later
progressive course and failure of endogenous processes of
repair and remyelination. Although this is the basic
rationale for cell therapy, it is not clear yet to what degree
the MS brain is amenable for repair and whether cell
therapy has an advantage in comparison to other strategies
to enhance endogenous remyelination. Central to the
promise of stem cell therapy is the therapeutic plasticity,
by which neural precursors can replace damaged oligoden-
drocytes and myelin, and also effectively attenuate the
autoimmune process in a local, nonsystemic manner to
protect brain cells from further injury, as well as facilitate
the intrinsic capacity of the brain for recovery. These
fundamental immunomodulatory and neurotrophic proper-
ties are shared by stem cells of different sources. By using
different routes of delivery, cells may target both affected
white matter tracts and the perivascular niche where the
trafficking of immune cells occur. It is unclear yet whether
the therapeutic properties of transplanted cells are main-
tained with the duration of time. The application of neural
stem cell therapy (derived from fetal brain or from human
embryonic stem cells) will be realized once their purifica-
tion, mass generation, and safety are guaranteed. However,
previous clinical experience with bone marrow stromal
(mesenchymal) stem cells and the relative easy expansion
of autologous cells have opened the way to their experi-

mental application in MS. An initial clinical trial has
established the probable safety of their intravenous and
intrathecal delivery. Short-term follow-up observed immu-
nomodulatory effects and clinical benefit justifying further
clinical trials.
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Introduction

Although current therapy in multiple sclerosis (MS) is
directed at the underlying autoimmune pathogenic process,
cell therapy has been advocated as a means of regenerative
medicine. In this review, the complexity, advantages, and
difficulties in cell therapy will be discussed.

Is Cell Therapy a Valid Option for MS?

Any discussion of cell therapy for MS needs to first take a
look at the endogenous processes of brain repair and their
failure to build a rationale for the feasibility and prospects
of treatment by cell transplantation.

Glial Progenitor Cells in the Adult Central Nervous System

The identification of neural precursor cells and neuro-
genesis in the adult central nervous system (CNS) [1–3],
including that of humans [4–6], and the identification of
persistent neural stem cells (NSCs) as the parental cells
from which new neurons are derived [7–14], has revolu-
tionized our concepts of the adult brain as structurally
immutable. There are several niches in the adult brain in
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which NSCs persist throughout life and can respond to
injurious processes [15–18]. New neurons are continuously
generated in the anterior subventricular zone (SVZ) of adult
rodents, from which they migrate via the rostral migratory
stream to the olfactory bulb [19–23], and in the subgranular
zone of the hippocampal dentate gyrus of both adult rodents
[24–27] and humans [6, 28]. The subependymal cell layer
of the ventricles [29] and spinal cord [30] contains stem
cells that give rise to both neurons and glia. Multi-potential
precursors are abundant in many regions of the adult brain
parenchyma [31–34]. In particular, oligodendrocyte pro-
genitor cells (OPCs) were isolated from various regions of
the adult rodent CNS [35–37], and were identified also in
the adult human brain [38–42] and spinal cord [43]. OPCs
are identified by expression of chondroitin-sulfate proteo-
glycan NG2+ and of platelet-derived growth factor
receptor-α are highly abundant in the adult CNS, compris-
ing up to 5% of its cells [37].

Adult Precursor Cells can Generate Remyelinating
Oligodendrocytes

The origin of endogenous remyelinating cells in the adult
CNS has been subject to multiple studies (for more detail
see Franklin and Ffrench-Constant [44]). Differentiated
postmitotic oligodendrocytes are unable to rebuild myelin
sheaths [45–47] and remyelination is dependent on cycling
cells [47, 48]. The notion that OPCs are the main
remyelinating cells of the adult CNS emerged from studies
showing remyelination after focal demyelination by resi-
dent progenitor cells [49, 50]. Tissue OPCs expressing NG2
and platelet-derived growth factor receptor-α on their cell
surface are mobilized in response to demyelination [49, 51–
53]. Recent studies provided the definitive proof that these
cells are indeed the main remyelinating cell in the CNS
following a demyelinating injury [54, 55]. In addition,
neural precursor cells (NPCs) of the adult SVZ expressing
the embryonic polysialylated form of the neural cell
adhesion molecule (PSA-NCAM) react to inflammation
and demyelination with proliferation, and migration into the
tissue and glial differentiation, generating both astrocytes
and remyelinating oligodendrocytes [56–59].

Myelin Regeneration Fails in MS

In MS, the inflammatory process in the CNS leads to
demyelination. The affected demyelinated regions can
undergo partial remyelination, leading to structural repair
and recovery of function [60–63]. Attempts to regenerate
myelin can be recognized pathologically in brains of MS
patients by the existence of shadow plaques, which are
partially remyelinated lesions. Analysis of brain tissue from
MS patients suggests there are several different pathological

patterns of demyelination [64]. In some patients, there was
progressive loss of oligodendrocytes and myelin without
reactive remyelination, whereas in others, who exhibited
strong T-cell and macrophage activity, there was robust
remyelination, indicating the important role of tissue
support to the remyelinating response [65]. The sequential
involvement of these processes underlies the clinical course,
characterized by episodes of relapses, which after full
remissions early in the course of disease, eventually leave
persistent deficits, and finally deteriorate into a secondary
chronic progressive phase. Moreover, remyelination is typi-
cally incomplete and ultimately fails in the setting of recurrent
episodes contributing to the progressive demyelination,
gliosis, axonal damage, and neurodegeneration typically
noted in MS [66, 67]. Several studies have indicated that
axonal pathology is the best correlate of chronic neurological
impairment in MS and its animal model, experimental
autoimmune encephalomyelitis (EAE) [68–73].

It is unclear why remyelination fails in time with MS
[44, 67]. Some studies showed a depletion of progenitor
cells after focal demyelination in experimental animals [52,
74], whereas others showed that repeated episodes of
demyelination did not slow down remyelination [75]. In
pathological specimens of chronic MS lesions in human
patients, neither decrease nor reactive increase was observed
relative to normal white matter [39, 76–78]. This suggests
that the response of the progenitor cell population to the
demyelinating process in the human brain is deficient. In the
adult and aging brain, OPC recruitment and differentiation is
impaired, resulting in slowed remyelination [79]. This is
attributable to age-dependent deficiency in histone deacety-
lase, allowing the accumulation of transcriptional inhibitors
that prevent myelin gene expression [80]. In addition cell
migration seems to be another limiting factor in myelin
regeneration. Progenitor cells that reside at the margins of
experimental lesions migrate into the lesion core and
remyelinate it, but long distance migration does not occur
in the brain parenchyma [50, 81]. The limited recruitment of
adult CNS OPCs into demyelinated lesions may be also
related to their apparent dormant state. Adult OPCs are very
slow cyclers [82], and they require prolonged exposure to
multiple growth factors before they convert into rapidly
proliferating cells [34, 83]. Thus, precursors derived from the
developing CNS may have superior migratory and remyeli-
nating capabilities than endogenous precursors.

The questions of whether remyelination failure origi-
nates from malfunction of resident OPCs or is due to the
lack of permissiveness of the adult CNS, and whether the
causes to failure are reversible, represent crucial issues in
the discussion on the prospects of replacement cell therapy
in MS. For example, there is evidence that extensive axonal
transections already occurs in acute MS lesions [84].
Remyelination cannot effectively proceed in the absence
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of sufficient intact axonal substrate, so that it may be
effectively rate-limited by the extent of underlying axonal
loss. Therefore, achieving remyelination prior to develop-
ment of axonal damage is crucial to any therapeutic
strategy. Alternatively, if reversible cell autonomous factors
or inhibitory factors that are expressed in the demyelinated
tissue limit OPC differentiation into remyelinating oligo-
dendrocytes, then the rationale treatment would be to target
them directly. Active inhibition of resident OPCs is
suggested by the sharp border of demyelinated plaque,
surrounded by OPCs [39, 76, 77]. It was suggested, for
example, that re-expression of Notch1, a regulator of
oligodendrocyte progenitor differentiation, inhibits remye-
lination in MS [85]. Yet targeted ablation of Notch1 did not
enhance remyelination in experimental animals [86]. It was
further recently shown that failure of OPC differentiation
was due to cytoplasmic entrapment of the intracellular
domain of Notch1 as a result of abnormal expression of
TAT-interacting protein 30 kDa (TIP30), an inhibitor of
importin-mediated nuclear transport [87]. Several strategies
have been proposed to overcome the intrinsic block or
extrinsic inhibition of OPC response to facilitate the
endogenous process of myelin repair. One approach is to
increase the recruitment and number of cycling OPCs by
growth factor treatment. Candidates include platelet-derived
growth factor [88–90], neuregulin-1, which is not essential
for myelination in the CNS but can induce hypermyelina-
tion when overexpressed [91], and epidermal growth factor
[59]. In addition, sonic hedgehog signaling stimulates the
maintenance and renewal of neural precursors in the
neurogenic niches of the adult brain [92, 93]. Recruitment
and mobilization of OPCs and multipotential neural
precursors in the models of MS have been mainly attributed
to the inflammatory process. Brain inflammation attracts
the migration of both endogenous [57] and transplanted
[94–97] precursor cells. Various inflammatory cytokines
can induce neural/oligodendrocyte precursor cell migration.
Transforming growth factor-β induces microglia to release
hepatocyte growth factor, which increases OPC migration
[98]. Tumor necrosis factor-α increases the motility of
neural precursors in vitro [99]. The chemokine stromal
derived factor 1 (CXCL12) induces neural stem/precursor
cell migration in models of stroke [100, 101], viral-induced
demyelination [102], and trauma [103]. In addition, the
injection of inflammatory stimuli in an ex vivo model of
hippocampal slices attracted neural precursors, depending
of monocyte chemoattractant protein (MCP-1) signaling via
the CCR2 receptor [104]. Moreover, inflammation stim-
ulates the remyelinating process [105, 106]. The apparent
link between the acute inflammatory phase and setting of
regenerative processes in motion may define a narrow time
window when remyelination is feasible. The necessity to
remyelinate before axonal damage occurs, and the limited

time window of opportunity in face of the dormant state of
resident progenitors, may cause a temporal mismatch
underlying remyelination failure [105]. However, although
this time window may be too narrow for adequate
endogenous progenitor cell mobilization, it may suffice
for therapeutic cell transplantation. Another approach to
push remyelination is to force OPC differentiation. Among
several neurotrophic factors tested, the ciliary neurotrophic
factor family was found to promote oligodendrocyte
differentiation and remyelination [107]. More recently,
pharmacologic induction of OPC differentiation by inhibition
of RhoA-Rho-kinase II (ROCK-II), and/or protein kinase C
signaling [108], or by anti-Leucine-rich repeats and Ig
domain-containing, neurite outgrowth inhibitor (Nogo)
receptor-interacting protein-1 (LINGO1) antibodies [109, 110]
accelerated remyelination. Statins and inhibitors of receptor
tyrosine phosphatases are other pharmacologic agents that
induce rodent [111] and human [112] oligodendrocyte
differentiation. However, when tested in the cuprizone model
of demyelination in vivo, statin therapy inhibited remyelina-
tion [113]. Olig1 is an important transcription factor in early
oligodendrocyte specification and differentiation. Its induc-
tion may stimulate remyelination [114]. Analysis of gene
expression profiles during development in the normal adult
brain and during demyelination identified several novel
regulatory pathways of oligodendrocyte differentiation. These
studies showed that oligodendrocyte differentiation and remye-
lination are dependent on retinoid-X receptor-gamma receptor
agonists [115] and on Wnt-beta-catenin signaling [116]. In
addition, type 2 cyclin dependent kinase (also known as cdk2),
which controls the cell cycle, does not interfere with myelina-
tion during development, but its knock-out facilitates remyeli-
nation [117]. These exciting findings open novel therapeutic
targets for enhancing remyelination. In addition, they highlight
the discussion on whether the preferable regenerative thera-
peutic strategy in MS will be by cell transplantation or by
boosting up endogenous remyelination, or both.

The Therapeutic Plasticity of Stem Cells

Cell Replacement

Transplantation of both rodent and human OPCs and
various types of neural precursor cells has shown their
potential in remyelinating the CNS. This has been estab-
lished both in models of genetic dysmyelinating disorders
(for more details see Goldman et al. [118]) and models of
acquired demyelination in the adult rodent CNS (for more
details see Ben-Hur and Goldman [119], Yang et al. [120],
Miron et al. [121], and Martino [122].

Early studies focused on oligodendrocyte progenitors
with the notion of cell replacement (i.e., remyelination)
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therapy in mind. Although postmitotic oligodendrocytes
have poor remyelinating capacity [123], their immediate
progenitors exhibit greater mitotic, migratory, and regener-
ative properties in both genetic dysmyelinating and adult
focal demyelinating models of disease [124–127]. Trans-
planted rodent OPCs myelinated nude axons and restored
nerve conduction velocity to near normal values in the
spinal cord of md rats [128], and canine OPCs repaired
large brain areas in the sh pup [126].

Human OPCs showed similar properties as their rodent
counterparts, and myelinated efficiently in models of focal
demyelination [127, 129] and of congenital dysmyelination
[42]. The in vitro propagation of glial precursors neces-
sitates continuous mitogenic exposure to obtain a sufficient
amount of cells. An alternative approach that may circum-
vent the potential negative effects of prolonged in vitro cell
expansion may be by high scale selective isolation of
precursor cells. For example, precursor cells could be isolated
from dissociated fetal and adult CNS tissue by transfection
with a plasmid encoding green fluorescent protein (GFP)
placed under the control of the 2′,3′-cyclic nucleotide 3′-
phosphodiesterase-2 (CNP2) promoter, a regulatory element
activated in early oligodendrocyte progenitor cells, followed
by fluorescence activated cell sorting [40, 42, 127]. Alterna-
tively, fluorescence–activated or immunomagnetic sorting
were used to isolate A2B5(+)/poly-sialic acid-neural cell
adhesion molecule (PSA-NCAM)(−) fetal and adult human
glial progenitors [42]. Highly efficient and widespread
donor-derived myelination was obtained with these human
precursors within a month of transplant to newborn shiverer
mice [42], which are congenitally deficient in myelin basic
protein [130]. Additional intracerebellar injection resulted in
substantial infiltration and myelination of cerebellar white
matter, peduncles, and dorsal brainstem [131]. Importantly,
the transplanted shiverers lived significantly longer than their
un-transplanted controls, and a fraction of the mice appeared
to be completely rescued in terms of survival and neurological
disability [131]. In correlation, donor-derived myelin sheaths
had the ultra-structural architecture of compact and function-
al myelin [131]. Interestingly, fetal and adult-derived human
glial precursors demonstrated different functional properties;
fetal progenitors emigrated more widely and engrafted more
efficiently than adult cells, but the adult progenitors
generated oligodendrocytes more efficiently, and myelinated
recipient brains much more rapidly and with more axons per
donor cell than did fetal cells [42].

Several studies examined whether earlier stages of neural
precursor cell development also may be valuable for
remyelinating therapy. The potential advantages in NSCs
are as nontransformed cells that are able to self-renew
indefinitely, allowing their expansion in large quantities. As
discussed, mammalian multi-potential NSCs support neuro-
genesis and gliogenesis within specific areas of the CNS

during development and adulthood, and can be isolated
from fetal and adult brains [10, 132, 133]. The notion that
glial committed neural stem cells may combine the capacity
for self-renewal and plasticity of stem cells, together with
the remyelinating properties of OPCs, led to identification
of such precursors in the developing brain [134]. Expres-
sion of PSA-NCAM on the cell membrane has been
associated with stem cell commitment to neuronal or glial
fate, depending on time and place in development [135–
137]. Indeed, such PSA-NCAM+ glial precursors, growing
as neurospheres and also termed as oligospheres [135, 138],
efficiently myelinated the brains of shi mice [138–140],
remyelinated 95 to 100% of axons following local injection
into the dorsal columns of rats [141], and efficiently
migrated along inflamed white matter tracts of rats with
EAE [94, 95]. Similarly, adult human SVZ precursors
remyelinated the adult rat spinal cord [142]. Finally, multi-
potential NSC also showed a capacity to perform efficient
myelination in the spinal cords of shiverer mouse, md rat,
and sh pup [143–145], as well as in adult animals with
traumatic spinal cord injury [146, 147]. However, before
discussing which cell type is the optimal remyelinating cell
for clinical translation in MS, it is important to point out
that many of these studies have not yet established the
necessary proof-of-concept for cell therapy-based myelin
repair in MS. When focal demyelinated lesions were induced
by myelinotoxic chemicals, such as ethidium-bromide,
lysolecithin, or cuprizone [148–150], it was followed by a
rapid process of remyelination by endogenous cells. In fact, a
prerequisite in all of these models to be able to show
transplant-derived remyelination was the prior removal
of endogenous OPCs, by means such as X-irradiation.
Moreover, transplantation experiments have been typi-
cally performed during the acute phase, immediately
after lesion induction. Obviously, these experimental
models do not represent the complexity of the chronic
MS brain, in which resident OPCs are present, but fail
to perform their duties. EAE is considered the closest
animal model to human MS, and served for the development
of several immunotherapies. However, EAE has not proven
useful for developing the cell transplantation approach for
remyelination. A central problem is that the existing chronic
EAE models have an extensive axonal pathology at the early
acute phase, which does not allow any myelin repair [151].
Thus, there is urgent need for a clinical relevant model of
remyelination failure where the potential of cell therapy may
be examined properly. In particular, such models would serve
to both develop and test therapeutic approaches to accelerate
remyelination in the adult CNS and to examine whether the
supply of exogenous myelin-forming cells has any advantage
in comparison to endogenous precursors.

Although cell therapy was originally believed to be
primarily a means of replacing damaged cells in the CNS,
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transplantation experiments in several pre-clinical models
of neurological disorders showed that the remarkable
functional recovery obtained at NPC transplantation does
not correlate with the amount of terminally differentiated
neural cells originating from transplanted NPCs (for more
details see Martino and Pluchino [152]). Multiple studies
have pointed at other powerful mechanisms of actions by
which transplanted cells exhibit a beneficial effect, termed
collectively as therapeutic plasticity of stem cells.

Trophic Support by Transplanted Precursor Cells

Recent studies have focused on several bystander neuro-
protective and neurotrophic properties of transplanted
NPCs. The NPCs seeded on a synthetic biodegradable
scaffold and grafted into the cord of hemi-sectioned rats
induced significant clinical recovery, which was associated
with reduced necrosis and limited secondary cell loss,
inflammation, and glial scar formation of the surrounding
parenchyma [153]. Moreover, the NPC graft induced a
permissive environment for axonal regeneration [153].
Injection of biodegradable scaffolds loaded with NPCs into
hypoxic brain regions induced substantial endogenous
reconstitution of the brain structural connectivity [154]. A
similar effect was observed following intracerebral trans-
plantation of NPCs after ischemia/reperfusion injury in
mice [155]. In a Parkinson's disease model, transplanted
NPCs rescued endogenous dopaminergic neurons of the
mesostriatal system [156], and in models of amyotrophic
lateral sclerosis transplanted NPCs prevented motor neu-
rons from dying [157–159]. Transplantation experiments in
models of spinal cord injury have provided several insights
to the basic biological mechanisms by which the various
types of precursor cells exhibit their therapeutic functions
(for more detail see Einstein and Ben-Hur [160]). First,
neural and mesenchymal stem and progenitor cells reduce
the acute deleterious inflammatory process and induce a
permissive environment for axonal regeneration after spinal
cord injury [161]. They produce a myriad of neurotrophic
growth factors [162], and induce matrix metalloproteinases
that degrade the extracellular matrix and cell surface
molecules that impede axonal regeneration, thus enabling
axons to extend through the glial scar [163]. In addition, the
increased bioavailability of neurotrophins, such as nerve
growth factor, brain-derived neurotrophic factor, ciliary
neurotrophic factor, and glial-derived neurotrophic factor
[162], attributes to the NPCs-driven bystander effect in
increasing the survival and/or functions of endogenous glial
and neuronal progenitors surviving to the pathological
insult. Also, cell transplantation into the injured spinal cord
provides proper realignment and guidance to enable axonal
regeneration along long fiber tracts [164], and induces
angiogenesis in the lesioned tissue, which provides trophic

support and enables tissue repair [165]. Finally, transplanted
cells increase remyelination in the lesion by both endoge-
nous and graft-derived myelin forming cells to enhance
action potential conduction and limit secondary axonal
degeneration [166].

Recent work has also indicated that transplanted stem cells,
including NPCs, can enhance endogenous neurogenesis in
certain physiological and pathological conditions [167, 168].
Mice exposed prenatally to opioids display impaired learning
associated with reduced neurogenesis, and transplantation of
NPCs improves learning functions, as well as host brain-
derived neurogenesis in the dentate gyrus of the hippocam-
pus [169]. A similar neurotrophic effect was also reported in
physiological aging. Although neurogenesis in the dentate
gyrus declines severely by middle age, transplantation of
NPCs stimulates the endogenous NPCs in the subgranular
zone to produce new dentate granule cells [167]. With more
direct relevance to remyelination failure, a recent study of a
chronic cuprizone-induced demyelination model in aging
mice showed that transplanted NPCs facilitated the endog-
enous process of remyelination [170]. This effect was
mediated by induction of resident OPCs proliferation and
their differentiation [170].

Thus, transplanted NPCs may enhance the adult CNS
capacity to repair itself by restoring the ability of
endogenous progenitors to respond properly to the diseased
state and replace damaged CNS cells. In particular, stem/
precursor cell therapy may serve as an approach to
overcome the failure of endogenous remyelination in MS.

Immune Modulation

The first indication of a novel anti-inflammatory effect of
NPCs was obtained when neurospheres were transplanted
intracerebroventricularly (ICV) in acute spinal cord
homogenate-induced EAE Lewis rats [171]. This model
manifests with acute reversible paralytic disease that is the
result of disseminated CNS inflammation without demyelin-
ation or axonal injury [172]. NPC transplantation in spinal
cord homogenate-induced EAE Lewis rats attenuated the
inflammatory brain process and clinical severity of disease
[171]. Follow-up studies examined the effect of NPC
transplantation on either ICV or intravenous cell injection in
the myelin oligodendrocyte glycoprotein (MOG) 35–55
peptide-induced EAE in C57BL/6 mice. In this model, a T
cell-mediated autoimmune process causes an acute paralytic
disease due to severe axonal injury and demyelination.
Subsequently, the mice remain in a fixed neurological sequel,
the severity of which is correlated with the extent of axonal
loss [73]. NPC transplantation in MOG35-55-induced EAE
mice attenuated brain inflammation, reduced acute and
chronic axonal injury and demyelination, and improved the
overall clinical and neurophysiological performance of the
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CNS of the mice [173, 174]. Finally, such immune regulatory
properties were also shown for human embryonic-stem cell-
derived NPCs in rodents [151] and for somatic NPCs in
primates [175]. Again, the therapeutic effects of both these
latter NPC sources was not related to graft- or host-driven
remyelination, but rather were mediated by an immune
regulatory mechanism that protected the CNS from immune-
mediated injury [151].

In the CNS, NPC-mediated bystander immune regulation
may take place in the ventricular space and white matter tracts
[176], as well as at the level of the atypical perivascular
niches [97, 152, 173]. Following systemic delivery, immune
regulation by NPCs occurs in secondary lymphoid organs,
such as the lymph nodes [177] or the spleen [178].

Several mechanisms were suggested to explain how trans-
planted NPCs attenuate CNS inflammation. One school of
thought was suggested that NPCs induce apoptosis of Th1
cells, but not Th2 cells, selectively, via the inflammation-
driven up-regulation of membrane expression of functional
death receptor ligands (e.g., Fas Ligand, TNF-related
apoptosis-inducing ligand-TRAIL, Apo3 ligand) on NPCs
[173]. Alternatively, it has been suggested that NPCs inhibit
T-cell activation and proliferation by a nonspecific, bystander
immune suppressive action [177]. This notion emerged from
co-culture experiments that showed a striking inhibition of
the activation and proliferation of EAE-derived, as well as
naive, T cells by NPCs, following stimulation by various
stimuli [171, 177, 179]. The suppressive effect of NPCs on T
cells was accompanied by a significant suppression of
proinflammatory cytokines, such as interleukin (IL)-2, tumor
necrosis factor-α, and interferon-γ [177]. Moreover, NPCs
inhibited multiple inflammatory signals, as exemplified by
attenuation of the T-cell receptor IL-2- and IL-6-mediated
immune cell activation and/or proliferation [179]. The
relevance of such NPC/T-cell interaction was first suggested
when NPCs were intravenously injected prior to EAE disease
onset (e.g., at 8 days after the immunization) and were
transiently found in peripheral lymphoid organs, where they
interacted with T cells to reduce their encephalitogenicity
[177]. In a similar fashion, when NPCs were subcutaneously
injected they targeted secondary lymphoid organs, where
they interacted with immune cells and stably modified (e.g.,
for more than 2 months after cell injection) the perivascular
microenvironment. Within this context, surviving NPCs
stalled the activation of myeloid dendritic cells via a bone
morphogenetic protein-4-dependent mechanism, which was
completely reverted by the bone morphogenetic protein
antagonist Noggin [180].

Therapeutic Plasticity of Non-Neural Stem Cells

Neurotrophic and immune regulatory properties seem to be
a common property of stem cells from various sources. This

was most thoroughly studied in bone marrow stromal
(mesenchymal) stem cells (BMSC). These cells form the
bone marrow stroma that support hematopoiesis [181] and
serve as precursors of the various bone cell types
(adipocytes, myocytes, and chondrocytes) [182]. They do
not express hematopoietic markers and can be identified by
expression of CD105, CD44, CD 90, and others. The
neurotrophic properties of these cells were demonstrated in
several models of neurological diseases, including stroke [183]
and trauma [184]. BMSC possess wide immunomodulatory
functions; they inhibit maturation of monocytes into dendritic
cells [185], they impair the antigen-presenting function of
dendritic cells [186, 187], they inhibit T-cell proliferation in a
non-major histocompatibility complex (MHC) restricted
manner [188–190], they induce a shift of T cells to an anti-
inflammatory (IL-4 producing) phenotype [190], and they
inhibit B-cell proliferation and differentiation [191]. Several
soluble factors have been implicated in the immunomodula-
tory functions of BMSC, such as indoleamine 2,3-
dioxygenase, transforming growth factor-β1, hepatocyte
growth factor, IL-10, and others, but these effects were also
partially dependent on cell-cell contact (for more details see
Uccelli et al. [192]). Clearly, there is no single factor that is
responsible for the diverse BMSC effects. BMSC exhibited
powerful immunomodulatory effects in various conditions in
vivo. Specifically, intravenously injected BMSC effectively
attenuated EAE [193, 194], resulting in efficient protection
of the CNS from tissue injury [195].

In conclusion, the observation that stem cell (from
various sources) transplantation attenuates the clinical
course of EAE ignited clinical translation and application of
cell therapies in MS. Different types of stem cells share
common immunomodulatory and neurotrophic properties,
which can be exploited both systemically and in the CNS.
When delivered directly into the CNS, then cell therapy may
provide trophic support and induce repair, as well as a broad
acting, yet tissue specific immunomodulatory effect, as
compared to all other systemic immune therapies (Fig. 1).

Practical Aspects of Cell Therapy Are Issues for Basic
Research

In genetic dysmyelinating diseases transplanted cells
integrate into the normal developmental program of the
CNS. This leaves us essentially with choosing the optimal
myelin-forming cell for transplantation and producing the
large mass of cell necessary for widespread CNS myelina-
tion. The chronic and multi-focal nature of MS along with
hindrances to repair in the adult brain raise several
additional crucial issues of timing, route of cell delivery,
and long-term survival of grafted cells in such a “hostile
environment.” The basic biological mechanisms governing
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these aspects need to be studied to bring the therapeutic cell
transplantation approach closer to clinical reality.

What Type of Cell to Transplant?

Various cell types have been considered as candidates for
therapeutic transplantation in MS. These include immediate
glial progenitors of the oligodendrocyte lineage, earlier
neural precursor and stem cells, non-CNS myelin forming
cells, and non-neural cell populations. There is still no
consensus regarding the optimal donor cell phenotype, but
some generalities can be made to compare the relative
merits of various candidate cell populations.

Neural Stem and (Oligodendro-) Glial Precursor Cells

In view of the multiple mechanisms by which neural
precursor cells may induce beneficial effects in MS,
including their regenerative potential, their trophic, immu-
nomodulatory, and neuroprotective properties, they seem to
be an excellent candidate for cell therapy. Specifically, they
may have an advantage on committed myelin forming cells
that might not possess other stem cell properties, and on
non-neural cells that cannot perform remyelination. How-

ever, these hypotheses need to be examined in clinically
relevant models, as previously discussed. In addition, the
value of transplanting purified cell populations versus a
mixture of stem cells and OPCs that need to be directly
compared.

Embryonic Stem and Induced Pluripotential Cells

The practical limitations in getting sufficient human
oligodendrocytes prompted research on deriving tissue-
specific progenitor cells from human embryonic stem cells.
Embryonic stem (ES) cells are derived from the inner cell
mass of blastocyst-stage embryos, and are pluripotent cells
that are able to generate the entire repertoire of cell types in
the body. Glial precursors with myelinogenic properties
were derived from mouse ES cells [196–198]. Human ES
cells [199, 200] can be directed into neural fate [201, 202].
Recent studies have discovered the means to mimic the
tightly controlled human embryonic developmental pro-
gram to produce highly enriched populations of specific
neurons [203–206] and oligodendrocytes [207, 208].
Human embryonic stem cell-derived oligodendrocytes
appear functional and capable of myelination [207, 209].
Clinical translation will need to deal with the much feared

Fig. 1 Using the therapeutic plasticity of stem cells and myelin-
forming cells in multiple sclerosis, each candidate cell type should be
evaluated in terms of its regenerative capabilities, immunomodulatory
properties, and trophic effects. The arrows show proven mechanisms
of action by the various cell types. Although the therapeutic effects

achieved by each of these mechanisms have been studied, there are
still many “unknowns.” These unknowns represent important areas of
future research. CNS=central nervous system; hES=human embry-
onic stem; iPS = induced pluripotent stem cells
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potential for tumorigenesis [210]. In particular, human
embryonic stem cell-based therapies might give rise to
teratomas, growing from persistent undifferentiated ES cells
in the graft [211], or neuroepithelial tumors arising from
incompletely differentiated neural cells [212]. Purification
of clinical grade and "safe" human ESC-derived glial
precursors may be achieved by the same technologies that
were developed for isolating these cells from the human
brain [42, 131].

Although the use of ES cells dictates an allogeneic donor
cell source, the recent generation of induced pluripotential
stem (iPS) cells from somatic mouse [213] cells and from
human [214, 215] cells may alleviate this limitation. iPS
cells are similar to ES cells in their pluripotency, as defined
by their ability to generate cells of all major germ layers
and teratomas in vivo. Importantly, initial reports have
validated their ability to generate functional postmitotic
neurons [216–218] and oligodendrocytes [219, 220]. It will
now be necessary to explore the potential for generating
populations of iPS-derived oligodendrocytes for autologous
grafting in the myelin disorders.

Non-CNS Myelin Forming Cells

Schwann Cells

These peripheral myelin-forming cells can myelinate CNS
axons very efficiently [221–223]. Their transplantation into
the CNS resulted in production of compact myelin [223,
224] and restoration of normal conduction velocity in the
dorsal columns of the spinal cord, predicting functional
recovery [221, 225–228]. They can be isolated from a sural
nerve biopsy, expanded in culture, and eventually delivered
as an autologous graft to a demyelinated focus in the CNS.
As autologous cells, they might obviate the need for
immunosuppressives, while concurrently escaping the
autoimmune attack of MS, which is typically directed
against the central myelin antigens. A clinical trial of
Schwann cell transplantation was performed into single
demyelinating lesions in 3 MS patients in 2001 at Yale
University. The surgical procedure proved to be safe, but
the study was discontinued in early 2003, after follow-up
brain biopsies could not demonstrate either Schwann cell
survival or new myelin formation. It is not known whether
this failure resulted from poor cell preparation, autoimmune
attack, or if it was due to a lack of integration of peripheral
myelinating cells in the adult human brain environment.
Although this study has dampened further clinical experi-
mentation with Schwann cell transplants, recent reports
renewed interest in using Schwann cell precursors isolated
from the neural crest. These cells, and specifically boundary
cap cells, which form the border between the developing
peripheral and CNS, generate myelinating Schwann cells

[229]. Their increased migratory and myelinating properties
[230], as well as their potential to also generate myelinating
oligodendrocyte [231], make Schwann cells another prom-
ising candidate for cell replacement therapy in myelin
disorders.

Olfactory Nerve Ensheathing Cells

Olfactory nerve ensheathing cells (OECs) display properties
of both astrocytes and Schwann cells. These cells are
unique in that they continue to arise in the olfactory
epithelium from which they can migrate to the olfactory
bulb throughout life [232–234]. Rodent and human OECs
generate Schwann-cell-like myelin and improve conduction
properties when transplanted to areas of demyelination in
the brain or spinal cord [227, 233, 235–240]. OECs also
have the capacity to promote axonal growth [241] and to
secrete neurotrophic molecules [242, 243]. Thus, the
relative availability of these cells, their apparent myelinat-
ing properties and their trophic effect on axonal growth
make them another promising candidate for autologous
therapeutic transplantation. It is not known whether OECs
posess any immunologic properties.

Non-Neural Stem Cells

Bone Marrow Stromal Cells

BMSCs are nonhematopoietic mesenchymal stem cells
that give rise to bone, tendon, and fat progeny. These
type of cells burst into the regenerative neuroscience
field with the suggestion that promiscuity of stem cells
may allow them to transdifferentiate into mature cells of
other tissues [244, 245]. Specifically, a number of
investigators have reported that adult mouse and human
BMSCs can differentiate in vitro into other cell types,
including muscle, skin, liver, lung, and neural cells [246–
250]. It was also suggested that bone marrow-derived
stromal cells can generate astrocytes [251], as wedll as
produce myelin and remyelinate a demyelinated lesion of
the spinal cord of the rat [252, 253]. The potential of
stromal cells for cell replacement therapy is still contro-
versial in view of reports showing that stromal cells may
rather fuse with existing neurons and glia, resulting in the
formation of heterokaryons [248, 254]. Although the
potential of BMSCs to remyelinate is controversial, a
large volume of research has demonstrated their powerfull
neurotrophic and immunomodulatory properties, as previ-
ously described. Thus, BMSCs may serve as an easily
expandable, autologous source of cells with powerful
therapeutic capabilities and probably a safe profile. These
properties make them a good candidate for relatively
straigtforward translation into clinical practice.
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Route of Cell Delivery

For a multi-focal disease like MS, the route of cell delivery
becomes a primary consideration, raising 2 main questions: 1)
what are the anatomic–biologic targets of cell therapy? The 2
main targets that may be contemplated include the white
matter tracts, where immune-mediated demyelination should
be halted and repair processes activated, and also the
perivascular niche, where trafficking of immune cells occurs;
and 2) to reach these targets, cell migration is crucial.
Therefore, the cellular and environmental determinants of
directed migration of transplanted cells into the proper sites
need to be identified. Indeed, cell migration is a major limiting
factor in endogenous remyelination. Intraventricular trans-
plantation of various types of rodent precursor cells led to
widespread myelination in the genetic dysmyelinating models
of the shi mouse [143, 255] and the md rat [196]. Human
oligodendrocyte progenitors showed similar capacity to
disseminate white matter throughout the brain in these
models [131]. However, in the lesioned adult CNS, there is
limited migration of endogenous remyelinating cells result-
ing in local remyelination that may be insufficient for
widespread lesions [50, 256].

The inflammatory process in the CNS of EAE animals
was found to be a powerful stimulus stimulating subven-
tricular PSA-NCAM+ cells [56, 57] and attracting targeted
migration of transplanted neural and oligodendroglial
precursor cells [94, 95, 257]. Following ICV transplantation
of neurospheres, cells migrated into inflamed periventricu-
lar white matter tracts, and differentiated mainly into glial
progeny. The greatest degree of migration occurred early in
the course of disease [96], suggesting that transplantation
may be optimally effective during a relatively narrow time
window following the onset of an acute demyelinating
episode. Importantly, transplanted precursors were found to
possess superior migratory capabilities over endogenous
precursors [81]. Thus, a major rationale for ICV route of
cell delivery is that most white matter tracts that are
involved in MS are in close proximity to the ventricular and
spinal subarachnoid spaces. Following ICV injection, trans-
planted neural precursors may disseminate throughout the
ventricular and subarachnoid space, enabling their
inflammation-induced targeted migration into the white
matter. By this, intraventricular and intrathecal transplanta-
tion may bring the remyelinating cells closest to the
multiple foci of disease in MS without a separating barrier.
Notably, when human embryonic stem cell-derived neural
precursors were transplanted ICV, they also responded to
inflammation by migration into the involved white matter
tracts [96]. The observation that human neural precursors
respond to tissue signals in an MS model in a very similar
fashion to rodent cells is obviously indicative for the
potential of clinical translation of cell therapy.

Various cytokines and growth factors, such as platelet
derived growth factor [258, 259], fibroblast growth factor
2 [260], class 3 semaphorins [261, 262], Sonic hedgehog
[263], stem cell factor [264], the chemokine stromal
derived factor 1 (CXCL12) [265–269], epidermal growth
factor [270], and vascular endothelial growth factor [271]
increased the migration of progenitor cells of the oligo-
dendrocyte or neuronal lineages in vitro, and were
implicated in CNS development in vivo. Very little is
known, however, on the molecular signals that control
neural stem and progenitor cell migration in inflammation.
In vitro studies showed that transforming growth factor-β
induces microglia to release hepatocyte growth factor,
which increases OPC migration [98]. Tumor necrosis
factor-α increased the motility of neural precursors in
vitro [99]. Several chemokines were shown to be
expressed in the inflamed brain [272]. Among these,
stromal derived factor 1 was shown to induce neural stem/
precursor cells migration in stroke [100, 101], viral-
induced demyelination [102], and trauma [103]. MCP-1
and its receptor CCR2 were shown to modulate neural
precursor cell migration following cerebral ischemia
[169]. In addition, injection of inflammatory stimuli in
an ex vivo model of hippocampal slices attracted neural
precursor depending of MCP-1 signaling via the CCR2
receptor [104].

Targeting the perivascular niche has been suggested
mainly by the intravenous route of cell delivery from
which the cells may cross the blood-brain-barrier [253,
273, 274]. The specific homing of NSCs to the brain was
explained in part by the constitutive expression of a wide
array of adhesion molecules (integrins, selectins, and so
forth) and chemokine receptors by the transplanted cells
[273, 275]. Integrins promote selective CNS homing
through the interaction between transplanted cells and
integrin receptor-expressing activated endothelial and
ependymal cells surrounding inflamed brain tissues [276,
277]. Specifically, transendothelial migration was related to
the expression of very late antigen-4 (VLA-4) and CD44 on
NPCs, interacting with vascular cell adhesion molecule-1
(VCAM-1) and hyaluronic acid, respectively [173, 278].
This was shown to occur at a specific time window during
the acute phase of EAE [273]. Recently, ICV transplanted
NPCs were also shown to target the perivascular niche.
Although cell migration was evident mostly in white matter
tracts, cells also migrated in a radial fashion toward the
cortex, along inflamed blood vessels [97]. Thus, transplanted
NPCs may exhibit combined immunomodulatory, trophic,
and regenerative properties in the involved white matter
tracts, as well as at the perivascular spaces, which serve as
junctions of inflammatory cell trafficking.

For the clinical application of BMSC transplantation,
using their neurotrophic and immunomodulatory properties,
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similar targets should be considered, as discussed for neural
precursors. BMSC can extravasate from the blood vessels
into the tissue in a cell-adhesion molecule-dependent
manner, similar to immune cells [279]. Therefore, intrave-
nously administered BMSCs may arrive at the site of active
disease in the inflamed CNS [194]. Alternatively, BMSCs
can be delivered into the ventricular and subarachnoid
space from which they inhibit EAE [195]. Several studies
addressed the issue of BMSC migration within CNS tissue
[280, 281], but it is not yet clear whether this occurs
efficiently in EAE.

When to Transplant

In a chronic-relapsing disease like MS, timing of
transplantation may be crucial, as cells that are
introduced into the CNS during nonactive phases of
the disease might not survive, whereas if they are
introduced after the onset of relapse, it may be too late.
The developing brain is highly permissive to trans-
planted neural stem and progenitor cells. In these
circumstances, their target of migration and lineage fate
are directed by the normal pattern of development at
that stage. Accordingly, human multipotential NSCs that
were transplanted into the embryonic rat brain generated
mostly neurons [282], but when transplanted into the
newborn brain, a stage in which neurogenesis is complete
and gliogenesis is in action, the stem cells generated
mostly glia [283]. In contrast, the adult CNS does not
support the survival of transplanted cells [284]. Trans-
planted cells may integrate significantly better in acutely
lesioned tissue. When oligodendrocyte progenitor cells
were transplanted into the spinal cord of animals with
experimental EAE and an ongoing inflammatory process,
they survived much better in vivo [257]. It is not well
understood what tissue factors support graft survival and
integration, and that is an important direction of further
basic research to develop improved cell transplantation
strategies in chronic and degenerative brain conditions.
One approach may be to promote self support of trans-
planted NSCs, independent of the CNS environment. It
has been shown that in the form of spheres, NSCs may
survive for a prolonged period of time both in vitro and in
vivo in the lack of any exogenous growth factors [285].
After ICV transplantation, neurospheres survived for
months in the ventricular space and retained their ability to
migrate into the brain parenchyma in response to delayed
induction of EAE. However, graft survival is also dependent
also on it not being attacked by the autoimmune process or the
host immune system in case of allogeneic transplantation.
These issues are as yet unsolved, and in particular, whether or
not the immunomodulatory properties of stem cells are
sufficient to protect them from rejection.

Clinical Translation

Although clinical translation of neural/oligodendrocyte pre-
cursor cell therapy awaits the mass production of clinical
grade cells with proven safety, BMSC therapy has already
been implemented. Initial promising studies on the use of
BMSC for improving hematopoietic stem cell transplantation
and for prevention of graft versus host disease were not
confirmed in controlled trials (for more details see Caimi et
al. [286]). However, this clinical experience opened the way
for a trial of BMSC transplantation in MS. As previously
discussed, the rationale for BMSC therapy was to exploit
their immunomodulatory and trophic properties in a CNS-
targeted manner. In a phase I/II open-safety clinical trial
[287], BMSC were delivered intravenously and intrathecally
into patients with chronic MS that had failed conventional
treatments, and to patients with amyotrophic lateral sclerosis.
There were transient side effects of headache and low grade
fever, attributable to meningeal irritation, but no major side
effects. Clinical follow-up showed that no patient worsened,
and there was improvement in mean expanded disability
score scale in the MS patients. Short-term immunological
studies confirmed a systemic immunomodulatory effect of
the intravenous treatment in these patients. Thus, we have
entered an exciting new era of clinical experimentation of
cell therapy in MS. Further studies are warranted to be able
to define the efficacy of various cellular platforms, optimal
dose, route of cell delivery, and timing of therapy.
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