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Abstract
Interactions among entities are usually modeled using graphs. In many real scenarios, these relations may change over time, 
and different kinds exist among entities that need to be integrated. We introduce a new network model called temporal dual 
network, to deal with interactions which change over time and to integrate information coming from two different networks. 
In this new model, we consider a fundamental problem in graph mining, that is, finding the densest subgraphs. To deal with 
this problem, we propose an approach that, given two temporal graphs, (1) produces a dual temporal graph via alignment 
and (2) asks for identifying the densest subgraphs in this resulting graph. For this latter problem, we present a polynomial-
time dynamic programming algorithm and a faster heuristic based on constraining the dynamic programming to consider 
only bounded temporal graphs and a local search procedure. We show that our method can output solutions not far from the 
optimal ones, even for temporal graphs having 10000 vertices and 10000 timestamps. Finally, we present a case study on a 
real dual temporal network.

Keywords Complex networks · Temporal graphs · Dual graphs · Graph algorithms · Dense subgraph

1 Introduction

Novel network models have been introduced, extending the 
classic graph model to represent properties of complex sys-
tems. For example, temporal information about interactions 
is represented in temporal graphs (Kempe et al. 2002; Holme 
and Saramäki 2012; Wu et al. 2014; Kostakis et al. 2017; 
Akrida et al. 2020; Dondi and Hosseinzadeh 2021; Rozen-
shtein and Gionis 2019; Galicia et al. 2020; Hosseinzadeh 

et al. 2023), while integration of different kinds of relation-
ships is considered in dual graphs (Wu et al. 2016; Chen 
et al. 2022; Dondi et al. 2021) and network of networks (Gu 
et al. 2022).

In this paper, we introduce a new network model, called 
temporal dual network, to integrate interactions from two 
different networks (as in dual networks) that change over 
time (as in temporal graphs). The new model can be help-
ful to analyze the evolution of networks, in particular their 
cohesive parts. The integration of two static graphs via dual 
networks has been successfully applied in different domains 
(Wu et al. 2016). Examples of dual networks application 
range from genetics (protein–protein interaction - physical 
network - and interaction between two genetic variants - 
conceptual network) to social networks (co-author network 
- physical - and interest similarity - conceptual network) 
and recommender systems (social connectivity - physical 
network - and rating similarity - conceptual network). Our 
approach can be applied in these domains when it is inter-
esting to consider also the temporal evolution of a network.

In this paper, we consider the case where we want to 
analyze a community an author belongs to. The idea is to 
consider two networks, a co-authorship network (conceptual 
network) and a network based on research interest (physi-
cal network). The community an author belongs to may 

A preliminary version of the paper has been published in Dondi and 
Guzzi (2023).

 * Riccardo Dondi 
 riccardo.dondi@unibg.it

 Pietro Hiram Guzzi 
 hguzzi@unicz.it

 Mohammad Mehdi Hosseinzadeh 
 m.hosseinzadeh@unibg.it

 Marianna Milano 
 m.milano@unicz.it

1 Università degli Studi di Bergamo, Bergamo, Italy
2 Magna Graecia University, Catanzaro, Italy
3 Data Analytics Research Centre, University of Catanzaro, 

Catanzaro, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-023-01136-2&domain=pdf


 Social Network Analysis and Mining (2023) 13:128

1 3

128 Page 2 of 13

vary, as she/he may have new coauthors or may strengthen 
the relations with an existing author (by publishing more 
papers, for example) or again, a relation may be weakened 
over time. On the other hand, an author may change her/his 
research interests over time. For these reasons, considering 
only static graphs is not enough to represent these dynamics, 
but we have to consider how networks/communities change 
over time. Here, we consider two temporal networks (a con-
ceptual and a physical temporal network) that represents 
different information, for example, a conceptual, temporal 
network represents a co-authorship temporal network; a 
physical network research interest.

We present a case study focusing on researchers working 
on algorithms for bioinformatics between 1993 and 2002, 
when this community started to establish (data are extracted 
from DBLP). A physical temporal graph is built based on 
the participation of two authors at the same conference in 
a specific year. This graph represents the relation between 
researchers who share interests (they both attend a same con-
ference) but are not necessarily co-authors. The conceptual 
graph is a co-author temporal graph, which is built consider-
ing the mutual publications.

Another example of an application is the analysis of 
social networks to understand the preferences of users, as 
it may change some interests over time and this may be 
inferred from the context she/he considers on a platform 
and from new relations she/he establishes.

In this paper, we consider the identification of dense sub-
graphs in the context of temporal dual networks. The iden-
tification of cohesive subgraphs is a fundamental problem 
in graph mining since it is related to the identification of 
cohesive groups (Chen and Saad 2010; Galbrun et al. 2016; 
Dondi et al. 2021; Hosseinzadeh 2020; Cinaglia and Can-
nataro 2022). An analysis of the evolution of motifs in tem-
poral networks has been proposed in Braha and Bar-Yam 
(2009) and the identification of dense subgraphs has been 
recently considered for temporal networks (Rozenshtein and 
Gionis 2019; Dondi and Hosseinzadeh 2021; Castelli et al. 
2020).

Figure 1 depicts a toy example of a social network in the 
co-authorship domain, which may be represented as a tem-
poral dual network. The figure shows three different times-
tamps of a temporal dual network. For each timestamp, both 
the physical and conceptual networks are depicted. Each 
node of a physical network represents an author, and the 
edges are the co-authorship relation. Weighted edges of the 
conceptual network model the shared research interests. The 
algorithm we present can detect the subgraph induced by 
Adam, Zhang, and Wang nodes.

We propose a problem for the identification of k densest 
subgraphs that are temporally disjoint in a temporal dual 
network, and we design a heuristic for it. This method is 

based on (1) computing an alignment graph of the concep-
tual and physical graph and (2) finding k densest subgraphs 
in the alignment graph. For this second step, we design 
two algorithms: an exact dynamic programming algorithm, 
which is applicable only for small datasets, and a heuristic. 
This heuristic is based on solving a constrained version of 
the problem via dynamic programming and then applying a 
local search procedure. We present an experimental evalu-
ation of these algorithms on synthetic datasets, generated 
varying the number of timestamps from 70 to 10000 and the 
number of nodes from 70 to 10000. Moreover, we present a 
case study on a real dual temporal network built by extract-
ing data from DBLP.

The paper is organized as follows. First, in Sect. 2, we 
give the definitions that will be useful. We present the dual 
temporal graph model in the remaining part of the paper. 
Then, in Sect. 3, we present the algorithmic contributions of 
the paper, while in Sect. 4, we will present an experimental 
evaluation of our heuristic on synthetic datasets and a real 
dual temporal network. Finally, we conclude the paper with 
some future directions.

2  Definitions

In this section, we start by giving the definitions of temporal 
graphs and dual graphs, and we introduce the temporal dual 
graph model. Then, we present the formal definition of the 
problem we are interested in, that is finding k densest sub-
graphs that are active in disjoint intervals.

We start by introducing a discrete time domain over 
which is defined a temporal graph and a temporal dual graph.

Definition 1 A discrete time domain T = [0, 1,… , tmax] ⊆ ℕ , 
is a sequence of timestamps t ∈ T  . An interval T = [ti, tj] 
over T  , with ti, tj ∈ T  and ti < tj , consists of the timestamps 
between ti and tj.

Two intervals are disjoint if they do not share any times-
tamp. Next, we can present the definition of temporal graph. 
Notice that in the model we consider the set of nodes is not 
changing over time.

Definition 2 G = (V , T,E) is a temporal graph, where V is a 
set of nodes, and E ⊆ V × V × T  is a set of temporal edges.

Given a temporal graph G = (V , T,E) and a temporal 
interval T, we define G[T] = (V ,E[T]) as the active graph 
of G in interval T, where E[T] is the set of active edges at 
interval T, defined as follows:

E[T] = {(u, v, t)|(u, v, t) ∈ E ∧ t ∈ T}.
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Fig. 1  A toy example that 
illustrates the application of the 
proposed method
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A similar definition of active edges can be given for active 
edges at timestamp t ∈ T :

We can now define the concept of episodes, which represent 
the temporal subgraphs we will look for.

Definition 3 Let G = (V , T,E) be a temporal graph, an epi-
sode, denoted by G[W, T], where W ⊆ V  and T is an interval 
over T  , is a subgraph of G[T] having node set W and tempo-
ral edge set EW , where EW ⊆ E[T] ∩ (W ×W).

Given a weighted temporal graph G = (V , T,E) , an inter-
val I over T  and an edge (u, v) ∈ E , then the average weight 
of (u, v) in E, denoted by wI(u, v) , is defined as follows:

where w(u,  v,  t) is the weight of edge (u,  v) at time t 
( w(u, v, t) = 0 if (u, v, t) is not defined). In the definition of 
average weight, we divide by 

√
�I� and not by |I|, since in 

the latter case this may lead to dense subgraphs defined in 
a single timestamp.1

The weighted density of G in a interval I, denoted by 
w-dens(G, I) , is defined as follows:

Notice that the fact that the temporal graph is weighted 
changes some of the properties of episodes with respect to 
unweighted graphs. For example, while, as discussed in 
Rozenshtein and Gionis (2019), the density of episodes in 
unweighted graphs is a monotone non-decreasing function, 
this property does not hold in the weighted case, as it can be 
seen in the example of Fig. 2, where w[1,2](v1, v2) =

2

2
√
2
 , 

which is approximately equal to 0.707, while 
w[1,3](v1, v2) =

2.1

2
√
3
 , which is approximately equal to 0.404. 

Notice that w[1,1](v1, v2) = w[2,2](v1, v2) =
1

2
= 0.5 ≤ w[1,2](v1, v2)

.
Now, we introduce the definition of dual graph (an exam-

ple is given in Fig. 3).

Definition 4 G = (V ,Ec,Ep,wc) is a dual graph, where V is 
a set of nodes, and Gc = (V ,Ec,wc) , Gp = (V ,Ep) are two 
graphs defined over the same set of nodes V such that:

– Gc = (V ,Ec,wc) is a weighted graph, called conceptual 
graph

E[t] = {(u, v, t)|(u, v, t�) ∈ E ∧ t� = t}.

wI(u, v) =

∑
t∈I w(u, v, t)√

�I�

w-dens(G, I) =

∑
(u,v)∈E wI(u, v)

�V�
.

– Gp = (V ,Ep) is an unweighted graph, called physical 
graph.
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Fig. 2  A temporal weighted graph with three nodes and four times-
tamps [1, 2, 3, 4]. A densest subgraph is induced by nodes v1 and v2 in 
interval [1.2]; it has a density of 2
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Fig. 3  An example of dual temporal graph: a conceptual temporal 
graph Gc (in the upper part) and a temporal physical graph Gp (in the 
lower part). The two graphs are defined over four vertices and three 
timestamps. Notice that Gc is a weighted graph (the label of each tem-
poral edge denotes its weight), while Gp in unweighted

1 Here we use 
√
�I� but other sublinear functions can be considered 

as well.
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Now, we are able to introduce the definition of tempo-
ral dual graph.

Definition 5 G = (V , T,Ec,Ep,wc) is a temporal dual graph 
(TDG), where

– V is a set of nodes
– Gc = (V , T,Ec,wc) is a weighted temporal graph, called 

conceptual temporal graph
– Gp = (V , T,Ep) is an unweighted temporal graph, called 

physical temporal graph.

Now, we are able to define a temporal densest common 
subgraph of a temporal dual graph, which is fundamental 
for the problem we are interested in.

Definition 6 Temporal Common Subgraph.
Given a temporal dual graph G = (V , T,Ec,Ep,wc) asso-

ciated with a conceptual temporal graph Gc and a physical 
temporal graph Gp , a temporal common subgraph of G is a 
pair (W, T) where T ∈ T  is a temporal interval and W ⊆ V  
such that:

– Gp[W, T] is connected
– The weighted density of (W ,   T), denoted by 

w-dens(W, T) , is equal to dens(Gc[W, T]) (that is the 
density in the conceptual temporal graph).

We define the first problem we are interested in.

Problem 1 k-Densest-Episodes in a Temporal Dual Graph
Input: A temporal dual graph G = (V , T,Ec,Ep,wc) , a 

positive integer k ∈ ℕ.
Output: A set S of k temporal common subgraphs 

S = {(Ij,Wj) ∶ 1 ≤ j ≤ k} , where {Ij ∶ 1 ≤ j ≤ k} is a set of 

disjoint intervals, such that 
∑k

j=1
w-dens(Wj, Ij) is maximized.

The k-Densest-Episodes problem is NP-hard, since, 
given a static dual graph (hence a temporal graph with a 
time domain consisting of a single timestamp), it is NP-
hard to find a densest common subgraph in it Wu et al. 
(2016).

In order to solve the problem, we consider the follow-
ing alignment approach: 

1. We first align the conceptual temporal graph and the 
physical temporal graph and we obtain a temporal align-
ment graph

2. Then, we find a set of k episodes in the temporal align-
ment graph

2.1  Graph alignment approach

In this Section, we describe the approach we propose to solve 
the k-Densest-Episodes problem on temporal dual graphs 
by means of adapting a graph alignment approach. The use 
of graph alignment to deal with dual graphs has been con-
sidered previously in the literature (Guzzi et al. 2021, 2020; 
Milano et al. 2020; Guzzi and Milenković 2018). Here, we 
extend the definition to deal with temporal dual graphs and 
we define an alignment for each timestamp t.

Definition 7 Starting from two input graphs, a weighted 
graph Ga = (Va,Ea) (where Ea is a set of weighted edges) 
and an unweighted graph Gb = (Vb,Eb) , (where Eb is a set of 
unweighted edges), a graph alignment of Ga and Gb is a map-
ping A from Va to Vb . In our scenario, we consider, without 
lack of generality, that graphs have the same node set and 
two different edge sets.

More in depth, we consider local alignment which is 
defined as a partial injective mapping A from Va to Vb . In 
our case, the mapping (hence the alignment) of two graphs is 
implicitly defined by their identifiers, that is two correspond-
ing vertices in the networks have the same identifier both 
in Va and in Vb . The output of the alignment is a so-called 
alignment graph, which is a weighted graph Gal = (Val,Eal) , 
defined as follows.

Definition 8 Given a weighted graph Ga = (Va,Ea,wa) and 
an unweighted graph Gb = (Vb,Eb) , an alignment graph 
Gal = (Val,Eal,wal) , between Ga and Gb is defined as follows:

– The vertex set Val = {ci ∶ (vai, vbi) ∈ A}

– The edge set Eal is defined based on two possible cases, 
match and mismatch, and depends on a parameter � . We 
set � =3 in the experiments we made. For each set {ci, cj} 
of two vertices ci, cj ∈ Val corresponding to pairs (vai, vbi)
,(vaj, vbj) , respectively, then: 

1. If both (vai, vaj) ∈ Ea , and (vbi, vbj) ∈ Eb , then 
(ci, cj) ∈ Eal with weight wal(ci, cj) = wa(vai, vaj)

2. If (vai, vaj) ∈ Ea , and (vbi, vbj) ∉ Eb , where vbi , vbj are 
at distance lower than � in Gb , then (ci, cj) ∈ Eal with 
weight wal(ci,wj) defined as the average weight of 
the edges of the path connecting vbi , vbj in Gb (mis-
match 1 case)

3. If (vai, vaj) ∈ Ea , and (vbi, vbj) ∉ Eb , where vbi , vbj are 
at distance at least � in Gb , then (ci, cj) ∉ Eal (mis-
match 2 case)

4. If (vai, vaj) ∉ Ea , then (ci, cj) ∉ Eal.
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The output of the alignment is a new graph Gal = (Val,Eal) , 
called alignment graph. Figure 4 presents the possible cases, 
where we draw Ga with black vertices/edges and Gb with 
gray vertices/edges.

Definition 9 Timestamp Alignment Graph. Given a tem-
poral dual graph G = (V , T,Ec,Ep,wc) , for each timestamp 
t ∈ T  , a Timestamp Alignment Graph GA[t] is an alignment 
graph of the conceptual graph Gc[t] and the physical graph 
Gp[t] of the same timestamp t. A temporal alignment graph 
GA = (V , T,EA,wA) is a collection of timestamp alignment 
graphs, one for each timestamp, that is

2.2  Finding episodes in the alignment graphs

Once the temporal alignment graph is computed, we con-
sider the problem of finding a set of (weighted) episodes in 
it, as defined in the following problem.

Problem 2 k-Densest-Alignment-Episodes
Input: A temporal alignment graph GA = (V , T,EA,wA) , 

a positive natural k ∈ ℕ.
Output: A set S of k temporal densest subgraphs 

S = {(Ij,Wj) ∶ 1 ≤ j ≤ k} , where {Ij ∶ 1 ≤ j ≤ k} is a set of 

disjoint intervals, such that 
∑k

j=1
w-dens(Wj, Ij) is maximized.

We consider also a variant of the problem, called 
k-�-Densest-Alignment-Episodes, that we intro-
duce as an intermediate problem to design a heu-
r ist ic for k-Densest-Al ignment-Episodes .  In 

GA =

tmax⋃

t=0

GA[t]

k-�-Densest-Alignment-Episodes the episodes are con-
strained to happen in a bounded length interval.

Problem 3 k-�-Densest-Alignment-Episodes
Input: A temporal alignment graph GA = (V , T,EA,wA) , 

two positive naturals �, k ∈ ℕ , with � ≤ tmax.
Output: A set S of k temporal densest subgraphs 

S = {(Ij,Wj)} ∶ 1 ≤ j ≤ k} , where {Ij ∶ 1 ≤ j ≤ k} is a set 
of disjoint intervals each one of length at most � , such that ∑k

j=1
w-dens(Wj, Ij) is maximized.

We will show in Sect. 3 that, unlike the k-Densest-Epi-
sodes problem, k-Densest-Alignment-Episodes and k-�
-Densest-Alignment-Episodes can be solved in polyno-
mial time.

2.3  The densest subgraph problem

The approach we propose for solving the k-Densest-
Alignment-Episodes and the k-�-Densest-Alignment-
Episodes problem is based on the computation of a solution 
of the Densest Subgraph problem on static (weighted) 
graphs. Given a graph the Densest Subgraph problem 
asks for a subgraph of maximum weighted density. The 
problem can be solved in polynomial-time (Goldberg 1984) 
with Goldberg’s algorithm, which is based on a reduction 
to a series of min-cut computation. The time complexity 
of the Goldberg’s algorithm is O(mn log n) (also in O(n3) 
time for unweighted graphs (Kawase and Miyauchi 2018)). 
Furthermore, the Densest Subgraph problem can be approxi-
mated within factor 1

2
 by a greedy algorithm of time com-

plexity O(n + m) for unweighted graphs and O(m + n log n) 
for weighted graphs (Charikar 2000). In what follows, we 
denote by tdensest the time required to compute a densest sub-
graph in a static graphs.

3  Algorithms 
for k‑Densest‑Alignment‑Episodes and k‑�
‑Densest‑Alignment‑Episodes

In this section, we present our algorithmic methods. We start 
by presenting the dynamic programming polynomial-time 
algorithms for k-Densest-Alignment-Episodes (an algo-
rithm called DP) and k-�-Densest-Alignment-Episodes 
(an algorithm called L-DP), then we present a heuristic 
approach applied on an optimal solution of k-�-Densest-
Alignment-Episodes in order to compute a (possibly sub-
optimal) solution of k-Densest-Alignment-Episodes.

Match: edge Mismatch 1 Mismatch 2 Match: no edge

Distance less thanδ Distance greater than δ

Fig. 4  The possible cases of the graph alignment. The figure shows 
four pairs of edges. The two input graphs are highlighted with two 
different colors, black and gray. From the left we show a match and 
a mismatch case 1 (when the distance of the nodes in graph 2 is less 
than � ), a mismatch case 2 (when the distance of the nodes in graph 2 
is greater than � ), and the absence of connection in the graphs
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3.1  Polynomial‑time algorithms 
for k‑Densest‑Alignment‑Episodes and k‑�
‑Densest‑Alignment‑Episodes

First, we present the DP algorithm for k-Densest-Align-
ment-Episodes. Given an alignment graph GA over the time 
interval [1, j], with j ≤ tmax , we consider the function D[j, h], 
with h ≤ k and 0 ≤ j ≤ tmax , that is equal to the density of h 
densest episodes in GA[1, j].

Given two timestamps i and j, with 1 ≤ i ≤ j ≤ tmax , we 
denote by Dens(GA[i, j]) the density of a densest subgraph 
in GA[i, j] , where the subgraph must be defined in times-
tamp j (not necessarily in i). Assume that Dens(GA[i, j]) 
has already been computed for all values 1 ≤ i ≤ j ≤ tmax , 
function D(j, h), 1 ≤ i ≤ j ≤ tmax , 1 ≤ h ≤ k , can be com-
puted as follows:

For h ≥ 2 and j ≥ 2:

For h = 1 and j ≥ 2:

For j = 1:

Next, we prove the correctness of Eqs. 1, 2, and 3.

Lemma 1 D(j, h) = q if and only if there exist h episodes in 
GA[1, j] of overall density q.

Proof We prove the lemma by induction on h and on j.
If h = 1 , we prove the correctness of Eqs. 2 and 3 by 

induction on j ≥ 1 . In the base case, when j = 1 , then 
D(1, 1) = q if and only if there exists a densest subgraph in 
timestamp 1 having density q, thus proving the correctness 
of Eq. 3.

Now, we show the correctness for j ≥ 2 , assuming the 
correctness for j − 1 . Consider one episode of maximum 
density contained in interval [1, j], then either it is defined 
in timestamp j, hence it has density equal to an episode in 
GA[i, j] , for some i with 1 ≤ i ≤ j , or it is not defined in posi-
tion j and by induction hypothesis it has density equal to 
D(j − 1, 1).

A s s u m e  n o w  t h a t  D(j, 1) = q  .  I f 
D(j, 1) = max1≤i≤j Dens(GA[i, j]) ,  t hen  there  ex is t s 
one episode defined in [i,  j] of density q. Assume that 

(1)

D(j, h) = max

{
max2≤i≤j D(i − 1, h − 1) + Dens(GA[i, j]) with j ≥ 2

D(j − 1, h)

(2)D(j, 1) = max
1≤i≤j

{
Dens(GA[i, j])

D(j − 1, 1)

(3)D(1, h) =

{
−∞ if h ≥ 2

Dens(GA[1, 1]) if h = 1

D(j, 1) = D(j − 1, 1) = q , then by induction hypothesis it 
holds that there exists an episode of density q in interval 
[1, j − 1] . We can thus conclude that for h = 1 the lemma 
holds.

Assume now that the lemma is correct for h − 1 ≥ 1 , 
we show that it holds for h. More precisely, we prove that 
Eqs. 1 and 3 hold by induction on j ≥ 1 . In the base case, 
when j = 1 , then clearly D(1, h) = −∞ as it is not possible 
to define h ≥ 2 episodes in a single timestamp, thus proving 
the correctness of Eq. 3.

Consider the case j ≥ 2 . Assume that there is a set S 
of h disjoint episodes defined in interval [1,  j], where 
the last episode in S is defined over interval [i + 1, z] , 
with i ≤ z ≤ j and it has density q1 . If z < j , then it holds 
that D(j, h) = D(j − 1, h) , and by induction hypothesis 
D(j − 1, h) = q . If z = j , then S contains h − 1 disjoint epi-
sodes defined in interval [1, i], hence by induction hypoth-
esis D(i, h − 1) = q − q1 and, since Dens(GA[i + 1, j]) = q1 , 
it follows that D(j, h) = q.

Assume that D(j, h) = q . Since h > 1 , by the defini-
tion of the recurrence (Eq.  1) D(j, h) = D(j − 1, h) or 
D(j, h) = D(i, h − 1) + Dens(GA[i + 1, j]) . In the first case, by 
induction hypothesis on j there exists a set of h disjoint epi-
sodes of density q defined in interval [1, j − 1] , thus also in 
[1, j]. In the second case, there exists a value i, with 1 ≤ i < j , 
such that D(i, h − 1) = q − q1 and Dens(GA[i + 1, j]) = q1 . 
Then, by induction hypothesis there exists a set of h − 1 dis-
joint episodes of density q − q1 defined interval [1, i] and an 
episode in [i + 1, j] of density q1 . Hence, there exist h disjoint 
episodes in [1, j] of overall density q, thus concluding the 
proof.   ◻

The previous lemma leads to the following result.

Theorem 1 k-Densest-Alignment-Episodes can be solved 
in O(t2

max
k tdensest) time.

Proof We prove that the recurrence described in Eq. 1, Eq. 2 
and Eq. 3 can be computed in time O(t2

max
k tdensest) . Notice 

that the correctness of recurrence follows from Lemma 1 
and from the fact that an optimal solution of k-Densest-
Alignment-Episodes corresponds to the entry D(tmax, k).

The number of entries of D(j, h) is O(tmaxk) . Each entry 
D(j, h) can be computed in O(tmax) time, once the values 
Dens(GA[i, j]) have been computed. Hence, D(j, h) can be 
computed in O(t2

max
k) time, once the values Dens(GA[i, j]) 

have been computed. Finally, Dens(GA[i, j]) , for each i and j 
with 1 ≤ i ≤ j ≤ tmax , can be computed in O(t2

max
tdensest) time, 

thus concluding the proof.   ◻
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Next, we present the polynomial-time algorithm, called 
L-DP, for k-�-Densest-Alignment-Episodes. We recall 
that an �-constrained episode is an episode defined on an 
interval of length at most � . Similarly to k-Densest-Align-
ment-Episodes, given an alignment graph GA over the time 
interval [1, j], with j ≤ tmax , we define the function Dc[j, h] , 
with h ≤ k and 1 ≤ j ≤ tmax , that is equal to the density of h 
densest �-constrained episodes in GA[1, j].

Recall that, given an alignment graph GA[i, j] , 
Dens(GA[i, j]) denotes a densest subgraph in GA[i, j] , that 
it is defined on an interval that must include timestamp j.

The recurrence to compute Dc(j, h) ,  for each 
j ∈ {1, 2,… , tmax} is defined as follows:

For h ≥ 2 and j ≥ 2:

For h = 1 and j ≥ 2:

For j = 1:

Similarly to k-Densest-Alignment-Episodes, we can 
prove the correctness of the recurrence described in Eqs. 4, 
5 and 6.

Lemma 2 Dc(j, h) = q if and only if there exist h �-con-
strained episodes in GA[1, j] of overall density q.

Proof We prove the lemma by induction on h and on j.
If h = 1 , then we prove the correctness of Eqs. 5 and 6 

by induction on j ≥ 1 . In the base case, when j = 1 , then 
Dc(1, 1) = q if and only if there exists a densest subgraph 
defined in timestamp 1 of density q. Now, we consider the 
case j ≥ 1 and we prove that it is correct, assuming the 
correctness of Eqs. 5 and 6 for j − 1 . Consider one �-con-
strained episodes of maximum density in [1, j], then either 
it is defined in timestamp j, hence it has density equal to 
max1≤i≤j Dens(GA[i, j]) such that j − i + 1 ≤ � , or it is not 
defined in position j and then by induction hypothesis has 
density equal to Dc(j − 1, 1).

Assume that Dc(j, 1) = q .  If it  is defined as 
Dc(j, 1) = max1≤i≤j Dens(GA[i, j]) = q , with j − i + 1 ≤ � , 
then there exist one �-constrained episode defined in [i, j] 
of density q. Assume that Dc(j, 1) = Dc(j − 1, 1) = q , then 
by induction hypothesis it holds that there exists an �-con-
strained episode of density q in GA[1, j − 1].

(4)Dc(j, h) = max
⎧

⎪

⎨

⎪

⎩

max2≤i≤j Dc(i − 1, h − 1) + Dens(GA[i, j]) ,
withj − i + 1 ≤ �

Dc(j − 1, h)

(5)Dc(j, 1) = max
1≤i≤j

{
Dens(GA[i, j]) with j − i + 1 ≤ �

Dc(j − 1, 1)

(6)Dc(1, h) =

{
−∞ if h ≥ 2

Dens(GA[1, 1]) if h = 1

Assume that the lemma holds for h − 1 ≥ 1 , we show that 
it holds for h. We prove that Eqs. 4 and 6 hold by induc-
tion on j ≥ 1 . In the base case, when j = 1 , then clearly 
Dc(0, h) = −∞ as it is not possible to define more than one 
episode in a single timestamp.

Consider a set S of h disjoint �-constrained episodes in 
GA[1, j] , where the last episode in S is defined over interval 
[i, z], with i ≤ z ≤ j and z − i + 1 ≤ � , and it has density q1 . 
If z < j , it holds that Dc(j, h) = Dc(j − 1, h) , and by induction 
hypothesis it holds that Dc(j − 1, h) = q . If z = j , then there 
exists h − 1 �-constrained episodes of density q − q1 , hence, 
by induction hypothesis, it holds that Dc(i, h − 1) = q − q1 
and since Dens(GA[i + 1, j]) = q1 , it follows that Dc(j, h) = q.

Assume that Dc(j, h) = q . Since h > 1 , by the defi-
nition of the recur rence Dc(j, h) = Dc(j − 1, h) or 
Dc(j, h) = max2≤i≤� Dc(i, h − 1) + Dens(GA[i + 1, j]) , where 
j − i + 1 ≤ � . In the first case, by induction hypothesis on 
j there exists a set of h disjoint �-constrained episodes of 
density q in GA[1, j − 1] . In the second case, it holds that 
Dc(i, h − 1) = q − q1 and Dens(GA[i + 1, j]) = q1 . Then, by 
induction hypothesis there exists a set of h − 1 disjoint �
-constrained episodes of density q − q1 and an �-constrained 
episode in [i + 1, j] of density q1 (the episode is �-constrained 
since j − i + 1 ≤ � ). Hence, there exist h disjoint episodes 
in [1, j] of overall density q, thus concluding the proof.  
 ◻

Theorem  2 k-�-Densest-Alignment-Episodes can be 
solved in O(tmax �k tdensest).

Proof The correctness of the recurrence follows from 
Lemma 2 and from the fact that an optimal solution of 
k-Densest-Episodes corresponds to the entry Dc(tmax, k).

Equations 4, 5 and 6 can be computed in O(tmax� k tdensest) 
time. Indeed, the number of entries of Dc(j, h) is O(tmaxk) . 
Each entry Dc(j, h) can be computed in O(�) time, once 
the values Dens(GA[i, j]) have been computed. Hence, 
Dc(j, h) can be computed in O(tmax� k) time, once the values 
Dens(GA[i, j]) have been computed.

Finally, consider the time-complexity to compute 
Dens(GA[i, j]) . Similarly to Theorem 1, Dens(GA[i, j]) , for 
each i and j with 1 ≤ i ≤ j ≤ tmax and j − i ≤ � , can be com-
puted in O(tmax� tdensest) time, thus concluding the proof.  
 ◻

3.2  A Heuristic for k‑Densest‑Alignment‑Episodes

The time complexity of the dynamic programming to solve 
k-Densest-Alignment-Episodes makes it non-practical 
even for medium size temporal graphs. Hence, we propose 
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a heuristic for k-Densest-Alignment-Episodes, which 
consists of two phases: 

1. The L-DP algorithm solves k-�-Densest-Alignment-
Episodes, with � = log2(tmax) , hence having time com-
plexity O(tmax log2 tmax k tdensest)

2. We apply a local search procedure, called LocExt that, 
that starts from a solution returned in the first phase, and 
it aims at improving its density by local modifications 
(described later)

Next, we describe the LocExt phase. LocExt starts from 
a solution S of k-�-Densest-Alignment-Episodes and 
applies a procedure to possibly improve its density. Notice 
that an interval I of T  is said to be uncovered by a solution 
S if there is no subgraph of S that contains a timestamp in I. 
LocExt looks for an improvement of S by greedily applying 
the following procedure:

– It considers two temporal subgraphs (Ij,Wj) and 
(Ij+1,Wj+1) in S, and merge them in a temporal graph 
(I�,W �) (notice that there may be no episode defined in 
an interval between Ij and Ij+1)

– It applies the dynamic programming algorithm described 
in Sect. 3 for k-Densest-Alignment-Episodes to an 
uncovered interval in T  ; let (Ic,Wc) be the subgraph 
computed

– If it holds that dens(Ic,Wc) + dens(I�,W �) > dens(Ij,Wj)

+dens(Ij+1,Wj+1) , then it replaces (Ij,Wj) and (Ij+1,Wj+1) 
with (Ic,Wc) and (I�,W �).

We apply also the following post-processing procedure. If 
a subgraph returned by the algorithm consists of more than 
one connected component, then we replace the subgraph 
with its connected component that has largest density.

4  Experimental analysis

In this section, we provide an experimental evaluation of 
the heuristic on synthetic and we provide a case study on a 
real network.

4.1  Synthetic networks

In the first part of our experimental analysis, we describe 
the synthetic datasets that we have produced for analysis.

4.1.1  Datasets

The synthetic temporal graphs consist of a set of k cliques 
planted communities and a complementary background 

graph. These k communities are planted over distinct and 
non-overlapping intervals with each community existing 
on a mutually exclusive set of vertices. Additionally, the 
weight of each edge within the planted communities is 
set to a uniform value of 10. The background graph cov-
ers all the vertices that are a part of the planted communi-
ties over a discrete time domain T  and is generated using 
the Erdős–Rényi model that employs parameters such as 
p = 1∕|V| , p = 3∕|V| , and p = 5∕|V| . The edges of the 
background graph are uniformly defined in the timestamps 
of the time domain. Moreover, the weight of each edge in 
the background graph is randomly assigned from a uniform 
distribution in interval [0, 4].

To perform our analysis, we generated three sets of syn-
thetic networks: Synthetic-small, Synthetic1, and Synthetic2. 
In each of these sets, we varied the time domain, number 
of communities, and number of vertices/edges in both the 
background graph and the communities. The Synthetic-small 
dataset is generated specifically for comparison with opti-
mal solutions. Each graph in this set includes a background 
graph with 70 vertices and a time domain of 70 timestamps 
with k equal to 4. Additionally, each community in the graph 
has 12 vertices. For the Synthetic1 set, the background graph 
includes 1000 vertices and is defined in a time domain of 
1000 timestamps. The value of k is equal to 20, and each 
community in the graph has 25 vertices. Finally, in the Syn-
thetic2 set, we create a background graph with 10000 ver-
tices over a time domain of 10000 timestamps. In this set, 
k is equal to 40, and each community in the graph has 50 
vertices.

By varying the parameters in these three sets of synthetic 
networks, we hope to gain insight into the behavior of the 
heuristic under different conditions.

4.1.2  Outcome

We present now the performance of the proposed heuristic in 
synthetic networks. The evaluation criteria used in this study 
include density, running time, and the quality of identified 
intervals and communities.

The F-measure2 is used to evaluate the accuracy of the 
heuristic in finding the planted communities and intervals, 
and the results are reported for the two phases of the heuris-
tic: L-DP for k-Densest-Alignment-Episodes and LocExt.

Table 1 provides information on the outcomes and run-
ning time of both the optimal dynamic programming algo-
rithm (DP) for k-�-Densest-Alignment-Episodes and 
our heuristic approach. Due to the time complexity of the 
optimal dynamic programming algorithm, the comparison 
is performed only on the Synthetic-small dataset. Table 1 
shows that the proposed heuristic is able to compute 

2 F-measure is the fraction of recall and precision.
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solutions of density approximately 75% of the optimal den-
sity for all values of p. For the interval quality (that is the 
timestamps in the planted intervals that are correctly iden-
tified by the heuristic), the average F-measure is between 
64 and 66% , showing that the heuristic is able to identify 
correctly most of the timestamps in the planted intervals. 
Similarly, for subgraphs quality, the average F-measure is 
between 93 and 95% , showing that the heuristic is able to 
identify correctly a large part of the nodes in the planted 
communities.

The experimental results show that LocExt is capable 
of improving the detected solution of the first phase of 
the heuristic (L-DP) on the Synthetic-small dataset in a 
reasonable amount of time. Specifically, even in the worst-
case scenario where p = 3∕|V| , LocExt only requires 20% 
of the L-DP running time. Additionally, LocExt is able 
to improve the density of L-DP by a minimum of 5.6% 

(for p = 5∕|V| ) and up to 7.5% (for p = 3∕|V| ). In terms 
of interval and subgraph quality, LocExt improves the 
F-measure compared to the solution provided by L-DP. 
The F-measure of interval quality is improved by at 
least 23% (for p = 5∕|V| ) and up to 32% (for p = 3∕|V| ), 
while the F-measure of subgraph quality is improved by 
a minimum of 12% (for p = 5∕|V| ) and up to 17.5% (for 
p = 3∕|V| ). Lastly, the running time of the heuristic on 
the Synthetic-small dataset is much faster than DP, with 
a maximum speedup of 708 times (for p = 1∕|V| ) and a 
minimum of 641 times (for p = 3∕|V|).

On the Synthetic1 dataset, the results of Table 2 show that 
LocExt improves the density of solutions generated by L-DP 
for k-�-Densest-Alignment-Episodes by at least 12.9% 
(for p = 1∕|V| ) and at most 16.9% (for p = 5∕|V| ), while 
improving the F-measure of interval and subgraph quality by 
at least 50% (for both p = 1∕|V| and p = 3∕|V| ) and at most 

Table 1  Density, running time and quality of the interval and subgraphs solutions (F-measure) on Synthetic-small dataset with parameter 
p = 1∕|V| , p = 3∕|V| , and p = 5∕|V| for two phases (L-DP and LocExt) of the heuristic and DP

Running time is in seconds and the results are averaged over 100 examples for each value of p

Time Density Intervals Subgraphs
F-measure F-measure

p = 1∕|V|
DP 304.45 127.08 1 1
L-DP 0.37 89.90 0.52 0.84
LocExt 0.06 94.98 0.65 0.95
p = 3∕|V|
DP 339.90 127.12 1 1
L-DP 0.44 89.96 0.50 0.80
LocExt 0.09 96.69 0.66 0.94
p = 5∕|V|
DP 392.76 127.18 1 1
L-DP 0.49 90.05 0.52 0.83
LocExt 0.07 95.13 0.64

Table 2  Density, running time and quality of the interval and subgraphs solutions (F-measure) on Synthetic1 dataset with parameter p = 1∕|V| , 
p = 3∕|V| , and p = 5∕|V| for two phases (L-DP and LocExt) of the heuristic

Running time is in seconds and the results are averaged over 100 examples for each value of p

Time Density Intervals Subgraphs
F-measure F-measure

p = 1∕|V|
L-DP 24.97 607.17 0.36 0.66
LocExt 10.35 685.4 0.54 0.77
p = 3∕|V|
L-DP 24.99 607.17 0.38 0.70
LocExt 9.38 689.51 0.57 0.82
p = 5∕|V|
L-DP 32.89 607.18 0.41 0.75
LocExt 13.70 709.89 0.63 0.89
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54% (for p = 5∕|V| ), and by at least 16.7% (for p = 1∕|V| ) 
and at most 18.7% (for p = 5∕|V| ), respectively. The running 
time of LocExt is also reasonable, being only 37–42% of 
L-DP running time for k-�-Densest-Alignment-Episodes, 
depending on the value of parameter p.

Table 3 displays the results of the heuristic on the larger 
Synthetic2 dataset, which indicates that LocExt improves 
the density of the solutions produced by L-DP by a mini-
mum of 22.6% (for p = 5∕|V| ) and a maximum of 25.4% (for 
p = 1∕|V| ). Additionally, LocExt improves the F-measure of 
interval and subgraph quality by at least 95% (for p = 5∕|V| ) 
and up to 128% (for p = 1∕|V| ), at least 18% (for p = 5∕|V| ) 
and at most 27% (for p = 1∕|V| ), respectively. The running 
time of LocExt is also reasonable, being only 40–67% of 
L-DP running time, depending on the value of parameter p.

Overall, the results on the synthetic datasets show that 
LocExt is able to improve the quality of solutions returned 
by the L-DP heuristic for k-�-Densest-Alignment-Epi-
sodes. However, further analysis of the proposed method 
using a real-world dataset is presented in the next part of 
the experimental.

4.2  Real network

In the second phase of our experimental analysis, we test the 
heuristic using a real dual network dataset.

4.2.1  Dataset

DBLP-network. We build a DBLP-network dataset extract-
ing a list of research papers available in the DBLP computer 

science bibliography. We focus our analysis on the commu-
nity of researchers on algorithms for bioinformatics between 
1993 and 2002, a period when this community started to 
establish. The dataset is build starting from a well-known 
author in this community, “Dan Gusfield," then consider-
ing his co-authors and the co-authors of the co-authors. The 
dataset is built considering ten timestamps, one for each year 
between 1993 and 2002.

We constructed a conceptual graph in each timestamp as 
a co-authorship-weighted edge network, that is two authors 
are joined by an edge when they published at least one paper 
together in that year.

The edge weights are determined considering the num-
ber of shared publications between two authors and then 
by applying the logistic regression function with parame-
ter c = 0.6 , in order to obtain standardized values between 
0 and 1.

The physical graph is built by defining an edge that con-
nects two authors when they participate a same conference 
(i.e., they both published a paper in the conference) in a 
specific year. Informally, this graph represents the relation 
between researchers who share interests but are not neces-
sarily co-authors.

Then, the aligned graph is built by aligning the concep-
tual and physical graph in each timestamp. Table 4 reports 
number of nodes, overall temporal edges and timestamps 
of the alignment network.

Table 3  Density, running time and quality of the interval and subgraphs solutions (F-measure) on Synthetic2 dataset with parameter p = 1∕|V| , 
p = 3∕|V| , and p = 5∕|V| for two phases (L-DP and LocExt) of the heuristic

Running time is in seconds and the results are averaged over 100 examples for each value of p

Time Density Intervals Subgraphs
F-measure F-measure

p = 1∕|V|
L-DP 738.07 1413.38 0.18 0.45
LocExt 491.28 1772.62 0.41 0.57
p = 3∕|V|
L-DP 843.30 1413.38 0.18 0.47
LocExt 521.10 1755.78 0.40 0.57
p = 5∕|V|
L-DP 960.78 1413.38 0.21 0.54
LocExt 382.40 1733.23 0.41 0.64

Table 4  Properties of the alignment network

Graph Representa-
tion

Nodes Temporal 
edges

Timestamps

DBLP-net-
work

co-authorship 188 339 10
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4.2.2  Outcome

We consider a modest value of k, that is, k = 2 , because the 
real-network dataset we investigate is defined over a short 
number of timestamps (i.e., 10). Table 5 reports the densi-
ties and intervals of the solutions returned by LocExt, as 
well as the LocExt’s running time. Moreover, the subgraphs 
discovered by LocExt on the DBLP dataset are displayed 
in Fig. 5. In this dataset, the LocExt found a temporal sub-
graph of six nodes with a density of 1.96 over a three-year 
interval (1996–1998); then a temporal subgraph of fourteen 
nodes with a density of 1.61 on interval of one timestamp 
(1999). Notice that these two subgraphs share two nodes, 
“Karp” and “Jiang,” two well-known and active researchers 
in algorithms for bioinformatics community. Notice also that 
the 1999 subgraph contain a bridge between “Karp” and 
“Jiang,” and hence its removal disconnects this subgraph. 
Furthermore, each node, except “Karp” and “Jiang,” have 
degree one. The 1996–1998 subgraph has a different struc-
ture and all the nodes have degree at least two.

5  Conclusion

We presented a novel network model called temporal dual 
networks, which addresses the challenge of modeling inter-
actions that change over time and integrates information 
from two different networks. We tackled a fundamental 
problem in graph mining by finding densest subgraphs in 
the new proposed model through network alignment and 
dynamic programming. However, due to the computational 
complexity of dynamic programming, we introduced a heu-
ristic approach that constraints the interval lengths of the 
temporal subgraphs we look for and furthermore exploits 
a local search procedure. We provided experimental results 
that demonstrated the effectiveness of our method on syn-
thetic datasets, even for temporal graphs with 10000 vertices 
and 10000 timestamps. Finally, we presented a case study on 
a real case obtained by extracting data from DBLP.

Future works include an extension of the experiments, 
particularly considering more real cases to investigate. 
Another interesting future direction is providing paral-
lel implementations of our methods, particularly for the 
exact dynamic programming algorithm, to deal with larger 
datasets.

Author contributions All the authors contributed equally to this work

Funding Open access funding provided by Università degli studi di 
Bergamo within the CRUI-CARE Agreement.

Data availability Code and data are available upon request

Table 5  Densities, intervals and running time (in seconds) on real 
network dataset of the LocExt

Dataset k = 2

DBLP-network Interval (1996,1998) (1999,1999)
Density 1.96 1.61
Time 0.068

Fig. 5  Subgraphs detected in 
the temporal network of BDLP 
by our heuristic with k = 2
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