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Abstract
The Medical Extensible Dynamic Probabilistic Risk Assessment Tool (MEDPRAT), developed by NASA, is an event-based 
risk modeling tool that assesses human health and medical risk during space exploration missions. The Susceptibility Infer-
ence Network (SIN), a sub-element of MEDPRAT, is a prototype model informed with data that represents the probabili-
ties of medical conditions progressing from one to another and the expected quality time lost associated with the disease 
progression for each condition. The work presented in this paper aims to determine which conditions in the SIN have the 
greatest effect on MEDPRAT-predicted medical risk. Here, we propose to measure this expected quality time lost using a 
weighted version of Katz centrality and investigate the effect of the �-parameter on the lengths of walks that significantly 
affect the ranking of nodes. To do this, we introduce a tool to compare different centrality measures in their node rankings. 
This general tool is of independent interest, as it considers that a relative ranking of two nodes by a centrality measure is 
unreliable if their scores are within a margin of error. In particular, we find an upper bound on the lengths of the walks that 
determine the node ranking up to this margin of error. If an application imposes a realistic bound on possible walk lengths, 
this set of tools may help determine a suitable value for �.

Keywords  Network · Centrality · Katz parameter · Ranking

1  Introduction

Networks are structures that naturally appear in every aspect 
of life and are studied in a wide range of disciplines from 
sociology, biology, and engineering (Freeman 2004; Guze 
2014; Newman 2018; Pavlopoulos et al. 2011). One common 
question in network theory is how to rank the nodes accord-
ing to their importance, where importance can have many 
meanings depending on the application (Das et al. 2018). 

Many ranking algorithms are based on a, possibly weighted, 
count of walks in which a node is contained. Examples of 
such centrality measures are degree, betweenness (Freeman 
1977), closeness (Bavelas 1950; Murray 1965; Freeman 
1978), eigenvector (Bonacich 1972, 1987), PageRank (Page 
et al. 1999), the Estrada index (Estrada 2000), and Katz cen-
trality (Katz 1953). We argue that the latter is suitable for 
our application, hence the focus of this paper.

We look at a model component developed by the 
National Aeronautics and Space Administration’s (NASA) 
Human Research Program (HRP) called the Susceptibil-
ity Inference Network (SIN). This network represents the 
probability that simulated medical conditions may occur 
and progress to subsequent, clinically related conditions. 
When integrated with MEDPRAT, these relationships will 
produce results that are a more appropriate analog to the 
real-world medical system than the standing assumption 
that conditions are probabilistically independent. The 
SIN is currently a prototype, as the data used to inform it 
do not have the necessary credibility required by NASA 
standards 7150.2D and 7009A for use in decision sup-
port tools (https://​nodis3.​gsfc.​nasa.​gov/​npg_​img/N_​PR_​
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7150_​002D_/N_​PR_​7150_​002D_.​pdf, https://​stand​ards.​
nasa.​gov/​stand​ard/​nasa/​nasa-​std-​3001-​vol-1). Given the 
time and financial costs associated with evidence collec-
tion at this scale, there is significant motivation to focus 
the direction of those efforts toward conditions, or groups 
of conditions, whose relationships most influence medical 
risk outcomes.

Katz centrality, developed by Leo Katz in 1953 (Katz 
1953), has been used in numerous applications (Fletcher and 
Wennekers 2018; Zhan et al. 2017). The Katz centrality of 
a node is a weighted count of all walks of any length start-
ing at the node. Each walk of length k is weighted by �k , 
where � is called the Katz parameter. We formally define 
Katz centrality in Sect. 1.1. Since the Katz parameter has 
a decaying effect, we can approximate the Katz centrality 
by ignoring the contribution of walks past a given length L. 
In Nathan and Bader (2017) and Nathan et al. (2017), the 
authors numerically explore this type of approximation. In 
Sect. 2, we give a lower bound on this value L (in terms of 
� ) that guarantees a desired level of accuracy in terms of the 
Katz centrality and its node ranking.

This paper is organized as follows. Section 1.1 reviews 
useful graph theory concepts, definitions, and basic results. 
Here, we introduce the notion of �-agreement of two cen-
trality measures, which indicates their agreement regarding 
node rankings given an assumed � margin of error in their 
node centrality scores. Section 1.2 introduces the SIN data 
set, which is the application of interest. In Sect. 2, we bound 
the error generated from approximating the Katz centrality 
by restricting the number of steps allowed in a walk and 
develop a relationship between that number and the Katz 
parameter � . An example of the relationship between � and 
the �-Katz centrality node ranking is given in Sect. 2 and our 
medical application in Sect. 3. Additionally, we assess the 
upper bound given in Sect. 2 to the true length in Sect. 4. 
Finally, the results and future work are addressed in Sect. 5.

1.1 � Definitions

This section provides basic definitions for the graph-the-
oretical structures and tools used for the results in Sect. 2.

Definition 1  (Weighted, directed network) Let N = (V ,E,w) 
be an edge-weighted, directed network consisting of V, the 
set of n nodes, E ⊆ V × V  , the set of edges, and a weight 
function w ∶ E → ℝ

+.
We represent such a network by an adjacency matrix 

A = A(N) , where the entry Aij is the weight of the edge 
from node i to node j, or Aij = 0 if there is no edge from i 
to j in N. Let W be an n-dimensional vector of non-negative 
node weights. In a setting where edges and/or nodes are 
unweighted, weights in A and W are set to 1.

For example, in our application in Sect. 3, our weighted, 
directed network has nodes that represent medical condi-
tions, and the node weights represent their severity, while 
edge weights represent the probability of one medical condi-
tion progressing to another.

The spectral radius � of N (or A) is the maximum modu-
lus of the eigenvalues of A. A walk of length k from node u 
to v is a sequence of k edges (vi, vi+1) ∈ E , i ∈ [1, k] such that 
v1 = u and vk+1 = v . The distance from u to v is the length 
of a shortest walk from u to v. The k-hop neighborhood of 
a node v ∈ V  is the set of nodes at a distance less than or 
equal to k from v. A centrality measure is a function that 
assigns a real number to each node, to evaluate its relative 
importance to other nodes. Each centrality measure gives a 
(partial) ranking of the nodes, which reflects their relative 
importance.

Our focus is on Katz centrality, a parameterized cen-
trality measure whose parameter � takes in walk length 
considerations.

Definition 2  (Katz centrality) Let N be an edge-weighted, 
directed network with node weights W. Let A = A(N) with 
spectral radius � , and let � ∈ (0, 1∕�) . The �-Katz centrality 
vector (De la Cruz Cabrera et al. 2019; Estrada and Higham 
2010; Katz 1953) is defined as

The �-Katz score of a particular node i can then be expressed 
as

The (�,�)-Katz centrality vector (Acar et al. 2009; Béres 
et al. 2018; Lu et al. 2010) is

and for a particular node i, the (�,�)-Katz score can be writ-
ten as

Both C(�) and C(�,�) measure the downstream influ-
ence of nodes since they are weighted sums over outgoing 
walks. Replacing the matrix A by its transpose AT reverses 
edge directions, taking weighted sums over incoming walks 
instead and measuring the upstream influence (De la Cruz 
Cabrera et al. 2019; Newman 2018).

C(�) =

(
∞∑

k=1

�
kAk

)
⋅W =

(
(I − �A)−1 − I

)
⋅W.

C(�)i =

∞∑

k=1

n∑

j=1

Wj�
k
(
Ak
)
ij
.

C(�,𝓁) =

(
𝓁∑

k=1

�
kAk

)
⋅W

C(�,�)i =

�∑

k=1

n∑

j=1

Wj�
k
(
Ak
)
ij
.

https://nodis3.gsfc.nasa.gov/npg_img/N_PR_7150_002D_/N_PR_7150_002D_.pdf
https://standards.nasa.gov/standard/nasa/nasa-std-3001-vol-1
https://standards.nasa.gov/standard/nasa/nasa-std-3001-vol-1
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Definition 3 provides a tool to compare centrality meas-
ures purely in terms of their relative node rankings. Intui-
tively, we may set a threshold � for a centrality measure C, 
such that |Ci − Cj| ≥ � implies that C provides a relative 
ranking of nodes i and j. If |Ci − Cj| < 𝜖 , we cannot reliably 
recover a ranking from C. For two centrality measures C and 
C′ , we compare their rankings and conclude that they agree 
on a ranking if they agree for every node pair where both 
rankings are reliable.

Definition 3  (�-agreement) Let N be a weighted, directed 
network, 𝜖, 𝜖′ > 0 , and C and C′ be centrality measures. The 
nodes i, j ∈ V(N) are (�, ��)-properly ranked with respect to 
C and C′ if the following holds: 

1.	 |Ci − Cj| < 𝜖 or |C�
i
− C�

j
| < 𝜖

�,

2.	 otherwise, Ci − Cj and C�
i
− C�

j
 have the same sign.

We say that C and C′ (�, ��)-agree on N if every pair of nodes 
in N is (�, ��)-properly ranked with respect to C and C′ . If 
� = �

� , we simply say �-proper ranking and �-agreement.
Definition 4  Let N be a weighted, directed network, 𝜖 > 0 , 
� ∈ (0, 1∕�) . We let

When the parameters are clear from the context, we will let 
L = L

�,�(N).

Proposition 1  Let C and C′ be two centrality measures on 
a network N. If

then C and C′ �-agree.

Proof  Suppose for the sake of contradiction that C and C′ do 
not �-agree. Then, there exists a pair of nodes u, v ∈ V(N) 
that is not �-properly ranked. By part (1) of Definition 3, we 
have |Cu − Cv| > 𝜖 and |C�

u
− C�

v
| > 𝜖 . By part (2), without 

loss of generality, we have Cu − Cv < 0 and C�
u
− C�

v
> 0.

We have

which contradicts that ‖C − C�‖∞ < 𝜖 . 	�  ◻

Proposition 2  Let C and C′ be two centrality measures on 
a network N such that for all v ∈ V(N) , 0 ≤ Cv − C�

v
< 2𝜖 , 

then C and C′ �-agree.

Proof  Suppose for the sake of contradiction that C and C′ do 
not �-agree. Then, there exists a pair of nodes u, v ∈ V(N) 

L
�,�(N) = min{� | C(�) and C(�,�) �-agree on N}.

‖C − C�‖∞ < 𝜖,

C�
u
− Cu = C�

u
− C�

v
���

>𝜖

+C�
v
− Cv

���

>−𝜖

+Cv − Cu
���

>𝜖

> 𝜖,

that is not �-properly ranked. By part (1) of Definition 3, we 
have |Cu − Cv| > 𝜖 and |C�

u
− C�

v
| > 𝜖 . By part (2), without 

loss of generality, we have Cu − Cv < 0 and C�
u
− C�

v
> 0.

We have

which contradicts that Cu − C�
u
≥ 0 . 	�  ◻

In Sect. 2, we use this notion to compare two closely 
related centrality measures, C(�) and C(�,�) , and we there-
fore only use �-proper ranking and �-agreement. However, 
we state the definition here in a more general form. It can 
be used to compare any pair of centrality measures, even if 
their distributions of values differ significantly. The vector 
C(�,�) converges to C(�) as � → ∞ . In Theorem 1, we show 
that this implies that for all 𝜖 > 0 , there exists an L so that 
for any � > L , C(�) and C(�,�) �-agree.

1.2 � Susceptibility Inference Network

The Medical Extensible Dynamic Probabilistic Risk Assess-
ment Tool (MEDPRAT) developed by NASA is an event-
based risk modeling tool that assesses human health and 
medical risk during space exploration missions (McIntyre 
et al. 2020, 2022). One of its key features is the ability to 
represent and simulate the relationships between medical 
events. The Susceptibility Inference Network (SIN) captures 
these relationships in an internal data structure.

The SIN is a directed network where nodes represent 
medical conditions. The data in this network are subject mat-
ter expert informed and are currently a prototype. There is 
an edge from u to v if medical condition u can progress into 
medical condition v. This directed edge (u, v) is weighted 
by the probability that such a progression occurs. Note that 
a medical condition may progress to multiple other condi-
tions simultaneously or to no other conditions. Therefore, 
this matrix is not a transition matrix. The SIN currently has 
99 nodes and 1078 edges. Medical conditions included are, 
for example, acute radiation syndrome, which has many out-
going edges toward other medical conditions. On the other 
hand, anxiety has many incoming edges.

This expert-informed data do not contain information 
about the time it takes for progressions to occur. As a sim-
plified model, we view the SIN as a Dynamic Bayesian Net-
work (Dagum et al. 1992). Each node in the SIN has an 
associated weight that evaluates the severity of the condition 
regardless of the progression from or to that condition. This 
severity of a condition is quantified by Quality Time Lost 
(QTL), which we call primary QTL of that condition. The 
primary QTL measures the productive time a crew member 
is expected to lose and is equal to the ith entry Wi of the 

Cu − C�
u
= Cu − Cv
���

<−𝜖

+Cv − C�
v

���

<2𝜖

+C�
v
− C�

u
���

<−𝜖

< 0,
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weight vector W. Primary QTL is a measure in days of the 
time astronauts cannot perform tasks due to being afflicted 
by medical conditions and is one of the model outputs from 
MEDPRAT; the data set informing the model is an evidence-
based collection of condition incidence and outcome data.

In our condition progression networks, each edge (i, j) is 
weighted by Aij , which is the probability that condition j is 
present at time t + 1 given that condition i is present at time 
t. Then, this edge contributes AijWj to �[QTL i] . We assume 
that progressions occur independently, and therefore a path 
of length two from i to j via a node k contributes AikAkjWj to 
�[QTL i] . Under the assumption of uninterrupted progres-
sions, we have, in general,

Note that Wi is the primary QTL of node i and C(1)i the sub-
sequent QTL under the assumption of uninterrupted progres-
sion. We highlight a few subtleties in this model. Note that 
we allow two types of cycles in our network: There may be 
multiple directed paths from a condition i to a condition j, in 
which case j contributes multiple times to the total expected 
QTL of i. There may also be directed cycles, wherein a con-
dition i contributes multiple ways to its total expected QTL. 
We motivate this in terms of the application later. First, we 
consider an illustration. Table 1 contains examples of small 
condition progression networks.

To make this estimate more realistic, we consider that 
the progression of conditions will likely be interrupted by 
medical interventions and time constraints on the mission. 
The parameter � provides a damping factor that decreases 
the weight of walks as they get longer. This application, 
therefore, illustrates the importance of using realistic walk 

�[QTL i] =

∞∑

k=0

n∑

j=1

Wj

(
Ak
)
ij
= Wi + C(1)i.

lengths to guide the choice of � . We provide a theoretic 
foundation for this in Sect. 2. In Sect. 3, we discuss how 
different values of � produce different rankings for the SIN 
due to subsequent QTL.

2 � The Katz parameter and walk length

This section describes the relationship between maximum 
walk lengths � and the parameter � . In Theorem 1, we find 
a lower bound on � that guarantees that C(�) and C(�,�) �
-agree. This sheds light on the length of walks that decide 
the ranking provided by C(�) . We provide a small, illustra-
tive example of the effect of � on node rankings.

Lemma  1 gives an upper bound on the difference 
between values in C(�) and C(�,�).

Lemma 1  (Absolute Error Tolerance) Let p ∈ {1, 2,∞} and 
� ∈ (0, 1∕�) . Then

Proof  First, note that ‖V‖∞ ≤ ‖V‖2 ≤ ‖V‖1 for all vectors 
V. Furthermore, the p-norm is sub-multiplicative. We have

‖C(�) − C(�,�)‖∞ ≤
�
�‖A‖p

��‖C(�)‖p ∶= �
�
.

Table 1   Three networks with 
the expected QTL of node i 
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	�  ◻

In Lemma 2, we show that there exists an L so that for 
all � > L , the difference between the scores in C(�) and 
C(�,�) is small.

Lemma 2  (Error Tolerance Guarantee) Let p ∈ {1, 2,∞} , 
� ∈ (0, 1∕‖A‖p) and 𝜖 > 0 . If

then ‖C(𝛼) − C(𝛼,�)‖∞ < 2𝜖.

Proof  Note that 𝛼 < 1∕‖A‖p ≤ 1∕𝜌 . By Lemma 1, it suffices 
to show that 𝜖

�
< 2𝜖 when � > Lup . We have

	�  ◻

Lemma  2 bounds the difference between C(�) and 
C(�,�) when � is large enough. Theorem 1 shows that this 
also ensures that C(�) and C(�,�) �-agree.

Theorem 1  Let p ∈ {1, 2,∞} , � ∈ (0, 1∕‖A‖p) , 𝜖 > 0 and 
Lup be as in Lemma 2. If � > Lup then C(�) and C(�,�) �
-agree.

Proof  By Lemma 2 we have that ‖C(𝛼) − C(𝛼,�)‖∞ < 2𝜖 . 
Therefore, by Proposition 2, we have that C(�) and C(�,�) �
-agree. 	�  ◻

‖C(�) − C(�,𝓁)‖∞ ≤ ‖C(�) − C(�,𝓁)‖p

=

������

�
∞�

k=𝓁+1

�
kAk

�
⋅W

������p

=

������
�
𝓁A𝓁

�
∞�

k=1

�
kAk

�
⋅W

������p

≤ �
𝓁‖A𝓁‖p

������

�
∞�

k=1

�
kAk

�
⋅W

������p
≤
�
�‖A‖p

�𝓁‖C(�)‖p.

� > log
𝛼‖A‖p

�
2𝜖

‖C(𝛼)‖p

�
∶= Lup

𝜖
�
= ‖C(𝛼)‖p

�
𝛼‖A‖p

��

< ‖C(𝛼)‖p
�
𝛼‖A‖p

�Lup

= ‖C(𝛼)‖p
�
𝛼‖A‖p

�log
𝛼‖A‖p

�
2𝜖

‖C(𝛼)‖p

�

= ‖C(𝛼)‖p
2𝜖

‖C(𝛼)‖p
= 2𝜖.

We choose � so that two nodes with Katz scores within 
� of each other can be considered equivalent in terms of 
ranking. Of course, such a value must be chosen relative 
to the Katz scores. In Corollary 1, we suggest letting � be 
some fraction of ‖C(�)‖p , and � a fraction of 1∕‖A‖p for 
p ∈ {1, 2,∞}.

Corollary 1  (Relative Error) Let p ∈ {1, 2,∞} and 
�0, �0 ∈ (0, 1) . For � = �0∕‖A‖p , and � = �0‖C(�)‖p , if 
� > log

𝛼0
(𝜖0) = Lup then C(�) and C(�,�) �-agree.

We present a small example illustrating the effect of � on 
node rankings. Consider the edge-weighted directed network 
N in Fig. 1a. Let �1 be the positive solution to C(�)b = C(�)c , 
let �2 be the positive solution to C(�)a = C(�)c , and let �3 
be the positive solution to C(�)a = C(�)b . When � is small, 
the walks of length 1 determine the ranking. As � increases, 
walks of length 2 and later walks of length 3 become more 
important. Node c has the most walks of length 1, node b the 
most of length 2, and node a the most of length 3, and they 
are each ranked on top for different ranges of �.

Figure 1b also shows the value of L = L
�,�(N) as a func-

tion of � . For example, at �1 , the walks of length 2 become 
significant enough for node b to overtake node c in the rank-
ing. Therefore, L switches from 1 to 2. This switch happens 
at a value of � slightly greater than �1 , once the difference 
in scores of b and c has exceeded � . Note that the ranking 
switch of node a and c at �2 is also due to paths of length 2 
gaining significance and does not cause a change in L.

3 � Application to the Susceptibility Inference 
Network

We use �-Katz centrality to rank medical conditions in the 
SIN by their expected subsequent QTL. We run a systematic 
sensitivity analysis on � by comparing the top 10 condi-
tions given by �-Katz centrality for � ∈ (0, 1.75) in Fig. 2. 
We inspect the distribution of the differences between Katz 
scores of nodes and set � so that 5% of the differences are 
less than the chosen � . This implies that at least 95% of the 
pairs are ranked correctly. The values � = 1 and � = 0.4 are 
of particular interest as the � - and (�,�)-Katz centrality �
-agree at realistic condition progression lengths. For � = 1 , 
(�,�)-Katz centrality and �-Katz centrality �-agree when 
� ≥ 5 , and for � = 0.4 , (�,�)-Katz centrality and �-Katz 
centrality �-agree when � ≥ 3 . For more on how to choose 
� , � , and � to suit a particular application, please see Sect. 5. 
Figure 4 illustrates the subnetwork of the SIN containing the 
12 conditions that appear in Fig. 2. The thickness of each 
arrow pointing outward in Fig. 4 represents the sum of the 
edges weights leaving that node.
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We note that one significant change in the ranking as � 
decreases from 1 to 0.4 is the one that swaps the positions 

of nodes i and j. Figure 3 plots the contributions of walks 
of length � to the Katz scores of these two nodes. When 
� = 1 , the contribution of walks of lengths 2 and 3 contrib-
utes enough to the score of node i to place it above j. When 
� = 0.4 these longer walks contribute significantly less, low-
ering the ranking of node i to fall below that of j. There is no 
universal optimal value of � . The choice of � should depend 
on path lengths considered most important. For example, in 
our application, length of the missions and available medical 
interventions affect how realistic any number of progressions 
of medical conditions is.

4 � Testing the upper bound on simulated 
data

We would like to better understand for which values of � 
that C(�) and C(�,�) �-agree. Theorem 1 gives an upper 
bound on L

�,�(N) . In Fig. 5, we compare the upper bound 
Lup to L

�,�(N) on two families of undirected graphs. At each 
instance of �0 in Fig. 5a, b, we sample 10 graphs from each 

Fig. 1   The relationship between 
the Katz parameter � and the 
node ranking in a directed, 
edge-weighted example network

(a) An example of a weighted
directed network.

(b) The node rankings from the Katz scores of the net-
work in Figure 1a.

Fig. 2   The effect of the Katz parameter � on the ranking of �-Katz 
centrality in the Susceptibility Inference Network (SIN)

Fig. 3   Contribution of walks of 
length � to the scores of nodes 
i and j in 1-Katz centrality (a) 
and 0.4-Katz centrality (b). The 
centrality of j relies on short 
paths and i on long paths, and 
the specific length depends on 
which value of � is used

(a) α = 1 (b) α = 0.4
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specified graph family and plot the average upper bound and 
average L

�,�(N) across the samples.
In Fig.  5a, we sample from the Erdős–Rényi model 

G(n, p) where n = 1000 and p = 0.008 . In Fig. 5b we sam-
ple from the Chung-Lu model, which takes a list of node 
degrees as input. To create this list, we individually sample 
1000 numbers from the negative binomial distribution. This 
distribution takes a probability p of success and a number 
n of desired successes. We use p = 0.1 as the probability of 
success and n = 3 as the number of desired successes.

The Chung–Lu model, as described here, produces graphs 
with a longer-tailed degree distribution than graphs sampled 
from the Erdős–Rényi model. In Fig. 5, the value for � that 
we use is calculated using the same technique as in Sect. 3 
for each iteration. We create a list of pairwise differences 
between the Katz scores and set � so that 5% of the differ-
ences are less than it.

5 � Discussion and conclusions

This paper introduces a tool to help compare different cen-
trality measures. We apply this to � - and (�,�)-Katz central-
ity to help better understand the effect of the �-parameter on 
the walk lengths considered when it comes to the ranking 
of nodes. For a given � , we provide an upper bound on the 
walk length L so that when � > L , the Katz scores in � - and 
(�,�)-Katz centrality are within 2� of each other. We show 
that two nodes with both centrality measures differing by at 
least � are in the same order in both rankings when � > L.

The goal is to find a minimal value of L such that �-
Katz and (�,�)-Katz centrality �-agree for all � ≥ L ,  and 
Theorem 1 provides an upper bound. The value � reflects the 
precision of the centrality scores in a given application. If 
two values are within � of each other, they are not relatively 
ranked reliably and should be considered equivalent. The 
choice of � should therefore depend on the application and 
its distribution of scores. We inspect the distribution of the 
differences between Katz scores of nodes and set � so that 
5% of the differences are less than the chosen � . Theorem 1 
can guide the choice of � , by relating, together with � , to 
the maximum walk lengths L of interest. One can find a 
stronger upper bound by iteratively increasing L until for 
all � ≥ L , ‖C(𝛼) − C(𝛼,�)‖ < 2𝜖 . This guarantees �-agree-
ment, although �-agreement may still happen sooner, so care 
should be taken when interpreting these bounds.

All of the results in this paper require � to be in 
(0, 1∕‖A‖2) , a subset of the possible values that can be used 
as a Katz parameter. It may be possible to extend these 
results to all Katz parameters, namely, values in (0, 1∕�) . 
These ranges match for undirected graphs, so this extension 
only applies to directed, edge-weighted graphs. The analy-
sis done in this paper might be applied in a similar way to 
address upstream and downstream influence together, as well 
as other centrality measures such as eigenvector centrality 
and the Estrada index.

We show the effect of changing the � parameter in the 
Susceptibility Inference Network. In this case, changes in 
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Fig. 4   Subnetwork of the SIN with the 12 most influential conditions 
and the weighted edges connecting them. The thickness of the edges 
that point outward illustrates the total outgoing edge weight toward 
nodes in the remainder of the network

Fig. 5   Comparing the upper 
bound to L

�,�
(N) using 

the Erdős–Rényi model 
G(1000, 0.008) in (a) and the 
Chung-Lu model with degrees 
sampled from the negative bino-
mial distribution in (b)

.iynéR-sődrE)a( (b) Chung-Lu.
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the ranking were visible even among the top 10 nodes, and 
they may have significant implications for decision-making. 
It is, therefore, important that the choice of � is made care-
fully and tailored to each application. This also holds for �.

The work presented in this paper will be leveraged to 
identify subsets of the prototype SIN that are expected to 
produce the largest effect in MEDPRAT and therefore to 
act as a scalable road map for future work, which will be 
focused on collecting and validating higher credibility clini-
cal evidence. Given the significant cost associated with evi-
dence collection, it is critical to narrow the scope and focus 
the effort where it will be most valuable, which is to say 
where interactions between conditions produce the largest 
change in spaceflight medical risk.
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