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Abstract
An increasing volume of malicious software exploits information hiding techniques to cloak additional attack stages or bypass 
frameworks enforcing security. This trend has intensified with the growing diffusion of mobile ecosystems, and many threat 
actors now conceal scripts or configuration data within high-resolution icons. Even if machine learning has proven to be 
effective in detecting various hidden payloads, modern mobile scenarios pose further challenges in terms of scalability and 
privacy. In fact, applications can be retrieved from multiple stores or directly from the Web or social media. Therefore, this 
paper introduces an approach based on federated learning to reveal information hidden in high-resolution icons bundled with 
mobile applications. Specifically, multiple nodes are used to mitigate the impact of different privacy regulations, the lack 
of comprehensive datasets, or the computational burden arising from distributed stores and unofficial repositories. Results 
collected through simulations indicate that our approach achieves performances similar to those of centralized blueprints. 
Moreover, federated learning demonstrated its effectiveness in coping with simple “obfuscation” schemes like Base64 encod-
ing and zip compression used by attackers to avoid detection.

Keywords Federated learning · Information hiding · Deep learning · Malware detection · Stegomalware

1 Introduction

Context and Motivations. The ubiquitous diffusion of mobile 
devices is a major driver for the development of new threats. 
For instance, attackers successfully developed techniques to 

eavesdrop unencrypted communications or to steal comput-
ing resources for mining cryptocurrencies (Almaiah et al. 
2021). At the same time, the creation of mechanisms to 
exfiltrate sensitive data has also intensified, especially to 
gather personal details during reconnaissance campaigns 
(Mazurczyk and Caviglione 2021). In this perspective, the 
creation of effective countermeasures to mitigate advanced 
threats targeting mobile devices is mandatory to improve the 
security of the Internet.

Unfortunately, the availability of efficient schemes for 
the static and dynamic analysis of mobile applications 
ignited an “arm race" between defenders and attackers 
(Spreitzenbarth et al. 2013). As an example, mechanisms 
implemented in many stores to bounce unsafe applications 
can be eluded by loading additional code at run time (Poe-
plau et al. 2014). Among the various techniques to distrib-
ute attack routines or extend offensive functionalities, the 
adoption of steganography is becoming very popular among 
threat actors (Caviglione and Mazurczyk 2022). Even if the 
cloaking mechanism may vary, attackers mainly exploit 
digital images, especially owing to their capacity and pop-
ularity (Mazurczyk and Caviglione 2015; Caviglione and 
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Mazurczyk 2022). Steganographic malware then conceals 
additional code or configuration data (e.g., IP addresses to 
contact) within innocent-looking images or icons. Prime evi-
dences of threats using this technique have been observed in 
2014 within applications published on the Google Play Store 
(Suarez-Tangil et al. 2014).

To face such a challenging scenario, security should be 
enforced in a holistic manner, starting from the very early 
phases of the development process until the final delivery 
of the software. Alas, the most popular countermeasures 
(e.g., security-by-design, sandboxing, and code signatures) 
often fail to mitigate threats exploiting information-hiding 
techniques, especially when deployed in mobile ecosystems 
(Cheddad et al. 2010). To this extent, Machine Learning 
(ML) and Artificial Intelligence (AI) are now core tools to 
mitigate the impact of threats leveraging advanced offensive 
schemes (Gibert et al. 2020). For instance, ML demonstrated 
its effectiveness to inspect mobile applications for revealing 
rogue code within software components (Yuan et al. 2016) 
or to detect hidden/obfuscated payloads (Gibert et al. 2020; 
Guarascio et al. 2022).

Objectives. The main goal of this work is to overcome 
some limitations characterizing many machine learning 
approaches used to improve the security of mobile eco-
systems targeted by steganographic threats. In fact, despite 
their effectiveness, AI-based solutions often clash with the 
constraints of production-quality scenarios. For instance, 
resource-intensive computations may not be possible in a 
centralized manner due to scalability issues. Another limita-
tion concerns the lack of appropriate datasets, including the 
need of merging details of a wide range of shared libraries 
and software components (Mylonas et al. 2013; Zhou et al. 
2012). For the case of revealing malicious data hidden in 
mobile applications, the surge of multiple stores to bypass 
national constraints as well as the availability of unofficial 
distribution vectors (e.g., p2p networks) prevent having a 
single, Internet-scale framework. Therefore, this paper intro-
duces a supervised approach exploiting federated learning, 
which can be distributed across multiple cloud replicas or 
edge nodes cooperating for the definition of models. Infor-
mation can be also provided by a local replica of a store, 
crawled from Web pages hosting the software (e.g., .apk), 
or gathered from unofficial stores highly popular in regions 
like Asia (Li et al. 2017). The federated approach may also 
prevent GDPR violations due to processing operations 
hosted in areas with incompatible policies on data confi-
dentiality (Papageorgiou et al. 2018).

Contributions and Improvements. The contributions of 
this paper are twofold. First, it showcases a framework based 
on a federated approach that allows cooperation among dif-
ferent “app stores” or Web sources to reveal applications 
containing steganographic threats. Second, it presents a 
performance evaluation not limited to hiding techniques 

observed in real samples but also considering contents 
obfuscated to prevent detection. Compared to our prelimi-
nary work (Cassavia et al. 2023), this paper has the follow-
ing improvements: it is more focused on applications that 
can be obtained through multiple sources including the Web 
and unofficial stores, and it largely extends the performance 
evaluation campaign, especially by investigating the impact 
of “elusive” schemes exploiting zip compression and Base64 
encoding.

Organization of the paper. The rest of the paper is struc-
tured as follows. Section 2 introduces the attack model and 
the reference scenario, while Sect. 3 deals with the proposed 
framework. Section 4 showcases numerical results obtained 
through simulations, and Sect. 5 reviews past works using 
federated approaches for counteracting malware. Finally, 
Sect. 6 concludes the paper and outlines some possible 
future directions.

2  Attack model and federated approach

The general attack model considered in this work analyzes 
a scenario where a threat actor employs steganography to 
conceal a harmful payload in application icons to evade 
detection. Such a scheme could be exploited to make the 
reverse engineering of the attack chain harder or to distribute 
additional assets (e.g., configuration files, URLs pointing to 
remote servers, or small scripts) without triggering standard 
security mechanisms based on signatures or static analysis of 
software. Each icon is “repacked” within an application and 
then published through a store to make it available to users. 
Moreover, malicious applications could be made available 
through alternative stores, repositories or Web sources (e.g., 
AppChina, Anzhi and F-Droid (Li et al. 2017)). Figure 1 
depicts the reference attack scenario. To hide the malicious 
payload, we consider an attacker using the plain Least Sig-
nificant Bit (LSB) technique, which has been observed in 
various real-world campaigns (Caviglione and Mazurczyk 
2022; Mazurczyk and Caviglione 2015). In essence, LSB 
steganography alters the least significant bit(s) of the color 
components of each pixel of the container image to conceal a 
secret. We point out that the more bits are altered, the higher 
the chance of revealing the presence of the hidden payload 
via visible alterations or artifacts. To mitigate such an attack, 
there is the need to deploy a suitable scheme within the store 
to “reveal” the presence of hidden data and prevent that a 
malicious application is delivered (see, e.g., Cassavia et al. 
(2022) and the references therein for the case of centralized 
distribution pipelines).

To detect the hidden data, in this work, we leverage a 
federated-learning-based approach to learn a global, optimal 
model in a distributed fashion. Figure 2 depicts our reference 
architecture. For the sake of simplicity, we will refer to the 
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centralized store as the server. Similarly, with end nodes, 
we will identify other (groups of) machines located on the 
Internet cooperating toward the distribution of applications 
and the detection process. Specifically, we assume that the 
server contains various mobile applications along with their 
icons, e.g., it can be considered an “app store.” To prevent 
computational or security hazards, the server also contains 
pointers to some applications acting as a sort of “cache,” for 
instance, for the most popular contents.

Instead, the end nodes represent local data centers con-
taining a subset of applications/icons already published in 

the main store and replicated for redundancy. End nodes can 
also contain novel/unseen data collected from third-party 
markets or scraped from Web sources and social media, e.g., 
by retrieving .apk or .ipa bundles directly from reposi-
tories. To spot the presence of an application/icon hiding 
malicious content, end nodes and the server collaborate to 
find the optimal Deep Neural Network (DNN)-based model 
via a federated approach. Such strategies are mainly used to 
avoid moving raw data from end nodes to the server, take 
advantage of each node’s computational capabilities, and 
enforce privacy constraints of local devices or users.

Fig. 1  Reference attack scenario where mobile applications “repacked” with icons cloaking malicious contents are delivered through a store or 
made available via the Web

Fig. 2  Federated approach of 
cooperating stores



 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 4 of 15

Referring again to Fig. 2, we supposed to have a cen-
tralized server denoted as S in the figure. The server con-
tains a “weak” DNN detector model MS trained on an initial 
dataset DS and validated through the validation set Dval . In 
the early stage, the detector is shared across K end nodes, 
which fine-tune their model Mi against the local data Di . To 
make the predictor more robust and to find a global model 
in a distributed manner, a subset of end nodes periodically 
sends updates to the server S containing the weights of each 
layer composing their local DNN. The server S merges the 

information received to obtain an ensemble model, and its 
predictive performances are evaluated against the validation 
set. If the model performs better with respect to the previous 
one, then the server sends back the best parameters to the end 
nodes. This process is iterated until a certain convergence 
criterion is reached. More formally, Algorithm 1 details the 
federated learning algorithm for training the malware clas-
sifier. The procedures to yield the ensemble model and to 
fine-tune both global and local models are fully described 
in Sect. 3.3, and have been named ��������������� and 
�������� , respectively.

Algorithm 1 (Federated) Learning algorithm for training the classifier.
BuildFLModel(S,N ,max iter,eval criterion)
Input : A server node S = {MS , DS , Dval} acting the role of coordinator
List of K peer nodes N =[N1, . . . , Ni, . . . , NK ] where Ni = {Mi, Di}
The max number of federated learning iterations max iter
The criterion for measuring the model performances eval criterion
Output: federated learning based model BM

1 MS = InduceNNModel(DS) // build a detector against server data
2 BM = MS // initialize the best federated model BM
3 MN = [ ] // initialize the list of peer models
4 QBM = ComputePerformances(BM ,Dval, eval criterion)
5 i = 0 // current federated learning iteration
6 k = 0 // index of the current Node
7 foreach k ≤ K do
8 Mk = MS // download server model and initialize local model
9 Mk = FineTune(Mk, Dk) // finetune local model against local data

10 MN
+← Mk // share local model with S and append the k-th model

11 k = k + 1
12 end
13 MS = CreateSoupModel(MN , DS) // create an ensemble model
14 QMS

= ComputePerformances(MS,Dval,eval criterion)
15 if QBM ≤ QMS

then
16 BM = MS

QBM = QMS

17 end
18 if i ≤ max iter then
19 MS = [ ] // clean the list of peer models
20 i = i+ 1
21 go to line 6
22 end
23 return BM

3  Framework

In this section, we first illustrate the methodology used to 
detect and classify compromised images, then we describe 
the neural architecture devised to tackle these problems. 
Finally, we present the ensemble solution for combining the 
different neural models yielded by end nodes.

3.1  Solution approach

Figure 3 depicts the general methodology for discovering 
images compromised via steganographic methods. In more 
detail, digital images represent the input of the proposed 
approach and are modeled as matrices with dimensions 
X × Y . The pixel is the smallest manageable element of these 
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matrices and stores information about the color. The color 
of each pixel can be decomposed into three main compo-
nents, i.e., Red (R), Green (G), and Blue (B). The values 
associated with the RGB components represent the intensity 
of the various colors and each value ranges in the interval 
[0, 255]. Hereinafter, we denote with N the size of the image 
computed as N = X × Y × 3 . In this work, we focus on high-
resolution icons as they offer a sort of “unified playground” 
for various threats. At the same time, this does not account 
for a loss of generality, as the approach can be applied and 
scaled also to address regular-sized images.

Concerning the hiding method, LSB steganography is 
considered a prominent approach to hide malicious code or 
data in legitimate pictures by changing the value of the (k) 
least significant bit(s) of each color composing the pixels 
of the image (see, Fig. 3 for the case of k = 1 ). When only 
a limited number of changes are performed, the image will 
not exhibit any visible alteration, i.e., pixels will look homo-
geneous compared to the surrounding elements (Zuppelli 
et al. 2021). As a consequence, many approaches proposed 
in the literature partially fail to detect the presence of hidden 

content as they produce weak detection models unable to 
discover the slight differences between licit and compro-
mised contents.

To address all these issues, in this work, we devised a 
(Federated) Deep Learning approach that processes and ana-
lyzes the k LSBs of the icon under investigation. Basically, 
the first block of the proposed neural network is devoted 
to yielding a flat representation of the image by extracting 
the k least significant bits of each color channel composing 
each pixel. Such a representation is then propagated to the 
subsequent layers to detect and classify different malicious 
contents. The DNN allows for extracting high-level discrimi-
native features to be further combined for producing the final 
classification.

3.2  Neural architecture

To mitigate the impact of threats taking advantage of infor-
mation hiding, we designed a supervised neural architecture 
for the classification task of image icons. In more detail, 
we exploited the deep architecture shown in Fig. 4, which 

Fig. 3  Methodological approach for the classification of a stegomalware cloaked in a digital image via LSB steganography

Fig. 4  Neural architecture for hidden content detection and classification
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permits to produce reliable predictions. Essentially, our neu-
ral architecture is composed of a stack of several blocks. 
The first layer acts as a handler for the input provided to 
the network (denoted as Input Handler, in the fig-
ure) and propagates the information (i.e., the image) to the 
subsequent layers of the DNN for further processing. The 
second component (denoted as Low Level Feature 
Extraction, in the figure) yields a flat representation of 
the image and extracts the raw information by means of a 
masking procedure.

The overall DNN is composed of a variable number m 
of Building Block (BB) obtained by stacking three 
main components: (i) on top, a fully-connected dense layer, 
equipped with a Rectified Linear Unit (ReLU) activation 
function (Nair and Hinton 2010), is instantiated, (ii) then, a 
batch-normalization layer is stacked to the previous one to 
improve the stability of the learning phase and to boost the 
performances of the model, and (iii) a dropout layer is finally 
added to mitigate the risk of overfitting (Hinton et al. 2014).

Figure 4 details the building block architecture for the 
first instance of this specific configuration and has been 
labeled as BB1 . In more detail, the Batch Normaliza-
tion allows for standardizing the data to be propagated to 
the subsequent layers of the DNN w.r.t. the current batch 
(by considering the average � and the variance � of each 
input). A reset of a random number of neurons in the train-
ing phase is performed via a dropout mechanism. As pin-
pointed in Hinton et al. (2012), the usage of the dropout 
method induces in the DNN a behavior similar to an ensem-
ble model. Hence, the overall output of the whole neural 
network can be considered as the combination of different 
sub-networks resulting from this random masking, which 
disables some paths of the neural architecture. In our experi-
ments, the neural model is instantiated with m = 4 building 
blocks.

The proposed neural classifier also includes a skip con-
nection to implement a residual block. Essentially, residual 
blocks (He et al. 2016) differ from regular ones by the mere 
addition (through the skip connection) of an identity func-
tion to their output. Formally, the output of a residual block 
is defined as activation (F(��) + �

�) , where F denotes the 
function that the residual block is learning to transform the 
input �′ of the block itself. A more detailed view of this 
subnet is sketched in Fig. 5. The usage of skip connections 
induces in the base DNN classifier a behavior similar to 
Residual Networks (He et al. 2016), which demonstrated to 
be effective solutions to the well-known degradation prob-
lem (i.e., neural networks performing worse at increasing 
depth), and capable of ensuring a good trade-off between 
convergence rapidity and expressivity/accuracy. Moreover, 
the high-level features extracted by the building blocks ��

�
 

and ��
�
 are concatenated and used to feed the output layer 

of the model.
Finally, the Output Layer  is instantiated with 

C neurons (one for each class) and equipped with a 
softmax activation function (Guarascio et  al. 2018). 
The proposed neural model is trained against a set 
D = {(x1, y1), (x2, y2),… , (xD, yD)} , where xi is the matrix 
representation of the image and y is the class of the image. 
As regards the output, a one-hot encoding based on C classes 
is used to model the different labels, each one indicating a 
specific malicious payload. As will be detailed later, in our 
work we considered C classes representing “clean” image 
icons and image icons cloaking JavaScript, HTML, Pow-
erShell, Ethereum wallets, and URL/IP addresses. Finally, 
the training stage is responsible for optimizing the network 
weights by minimizing the loss function. The categorical 
cross-entropy is adopted for the classification task and it is 
calculated as follows:

3.3  Ensembling via soup models

As discussed in Sect. 2 (see Algorithm  1), the proposed 
federated approach uses a soup model mechanism to merge 
the contribution of each model produced by the K peer nodes 
(Wortsman et al. 2022). This ensemble approach is inspired 
by the work described in Neyshabur et al. (2020), which 
demonstrated that models independently fine-tuned from the 
same base model fall within the same loss landscape basin. 
The authors also suggested that interpolating two solutions 

CCE(y, ỹ) = −

|D|∑

i=1

yi log ỹi.

Fig. 5  Residual block subnet architecture
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(e.g., combining DNN weights) may yield a result that falls 
closer to the basin’s center. The main benefit of the Soup 
Model is hence to extract robust and reliable classification 
models by simply averaging the weights without requiring 
additional memory or inference time. In our framework, the 
idea consists in using this ensemble method to average (per 
layer) the DNN weights yielded by the peer models. Specifi-
cally, this strategy is known as Uniform Soup. Although in 
the literature other Soup strategies have been proposed to 
combine different models (e.g., Greedy Soups and Learned 
Soup (Wortsman et al. 2022)), we adopted the Uniform 
Soup to make the proposed approach as much as possible 
lightweight.

Formally, let be f(x, � ) a neural network with input data 
x and parameters � ∈ R

D . Let be � = ��������(�0, x) the 
parameters obtained by fine-tuning the pre-trained initiali-
zation �0 against data x. Let be �i = ��������(�0, xi) the 
parameters obtained by fine-tuning �0 against xi , i.e., data of 
the node Ni . Model soup f (x, �T ) is computed as an average 
�i , i.e., �T =

1

K

∑K

i=1
�i.

4  Experimental results

In this section, we first present the dataset modeling realis-
tic images used in mobile applications containing stegano-
graphic threats as well as the parameters and metrics adopted 
in our trials. Then, we will discuss numerical results.

4.1  Dataset and parameters

Our federated approach is evaluated on the “Stego-Images-
Dataset”1 described in Cassavia et al. (2022). It contains 
48, 000 icons of 512 × 512 pixels hiding different realistic 
malicious payloads, i.e., JavaScript, HTML, PowerShell, 
URLs, and Ethereum addresses, embedded via the LSB steg-
anography technique. The payloads allow for modeling a 
wide range of threats, such as malicious scripts and routines, 
links to additional configuration files or lists of commands, 
and wallets collecting the outcome of crypto jacking and 
ransomware campaigns. The dataset is split into 16, 000, 
8, 000, and 8, 000 icons corresponding to the training, the 
validation, and the test set, respectively. The training set is 
further divided among the server and the end nodes compos-
ing our architecture. In more detail, the 25% of the training 
set (4, 000 icons) is used to train the model on the server 
S, whereas the remaining 75% is assigned to the K = 5 end 
nodes, i.e., 15% images (2, 400 icons) for each node. Instead, 
the validation set is used in its entirety to validate the ensem-
ble model of the server and partially to validate the models 

of the end nodes. Finally, the dataset contains three different 
test sets (each one composed of 8, 000 icons) to model an 
attacker unaware/aware of the countermeasure and trying to 
elude the detection via obfuscation approaches. In particular, 
the first is generated considering “plain” payloads, i.e., the 
attacker is completely unaware of the detection mechanism, 
whereas the others consider payloads encoded in Base64 
and compressed with a zip method. Such datasets model an 
attacker performing a sort of “lateral movement” to bypass 
security checks.

We implemented the proposed model using the PyTorch 
framework (Paszke et al. 2019). Basically, it consists of 
4 Building Block BB in which the fully-connected 
dense layers, stacked on the top of each of them, include 
64 neurons, except for the first BB that is instantiated with 
128 neurons. The dropout rate is set to 0.1. The Output 
Layer includes 6 neurons. The model has been trained over 
35 epochs with a batch size of 256. The best model has been 
chosen according to the F1-Score. We decide to use 5 clients 
representing the end nodes and 1 server. For the initializa-
tion stage, the server model is trained over 10 epochs, and 
the best model that maximizes the F1-Score on the whole 
validation set is selected. Each client model is trained over 6 
epochs, and the best model is chosen again according to the 
F1-Score. The number of iterations is set to 10. The AdamW 
(Loshchilov and Hutter 2019) with a learning rate equal to 
0.0001 is adopted as the optimizer.

4.2  Evaluation metrics

To evaluate our approach, we relied upon the following 
metrics2:

• F1-Score: it summarizes the overall system perfor-
mances, and it is defined as the harmonic mean of the 
precision and recall. Specifically, the precision is calcu-
lated as TP

TP+FP
 , whereas the recall is calculated as TP

TP+FN
;

• Area Under the Curve (AUC): it is the area under the 
Receiver Operating Characteristic (ROC) curve, obtained 
by plotting the ratio between the false-positive rate and 
the true-positive rate (i.e., the recall) for different class 
probability values;

• AUC-PR: it is the area under the Precision-Recall curve, 
obtained by plotting the precision and recall for different 
class probability values.

1 https:// www. kaggle. com/ datas ets/ marco zuppe lli/ stego image sdata set

2 TP is the number of positive cases correctly classified, FP is the 
number of negative cases incorrectly classified, FN is the number of 
positive cases incorrectly classified, and TN is the number of negative 
cases correctly classified.

https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset
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4.3  Numerical results

The first round of tests aims at evaluating the effectiveness 
of our federated-learning-based approach in detecting mali-
cious payloads hidden within images. Tables 1, 2 and 3 
summarize the obtained results and show how the perfor-
mances of the end nodes (i.e., peers) improve over 10 itera-
tions of the algorithm for plain text, Base64-encoded and 
zip-encoded test sets, respectively. As reported in Table 1, 
for the plain text, the average AUC of the peers improves 
from 94.3% in the 1-st iteration to a maximum value of 
96.5% when the max_iter , i.e., the number of iterations 
defined in Algorithm 1, is reached. Also, the AUC-PR and 
F1-Score exhibit the same behavior: both metrics improve 
up to 82.9% and 81.1% , respectively. As a consequence, the 
performances of the server improve as well, i.e., from an 
AUC of 92.6% to 97.1% . A similar trend can be observed 
for the other metrics. Analogous results can be observed for 
the zip compression (Table  3), where the average AUC of 
the end nodes improves from 80.8% in the 1-st iteration to 
83.5% in the 3-rd iteration. Moreover, a better result can be 
observed on the server performances where the AUC and the 
AUC-PR improve in the last round from 76.9% to 85.6% and 
from 40.3% to 49.8% , respectively. With regard to the results 
using the Base64 test set (Table 2), the improvement on the 
metrics for the peers is slightly less limited (e.g., the average 

Table 1  Performance of the federated approach

Plain text test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.926 0.745 0.699
1 peeravg 0.943 0.775 0.737

server 0.926 0.745 0.699
2 peeravg 0.955 0.805 0.770

server 0.959 0.819 0.763
3 peeravg 0.955 0.804 0.768

server 0.959 0.819 0.763
4 peeravg 0.960 0.816 0.779

server 0.959 0.819 0.763
5 peeravg 0.960 0.816 0.782

server 0.959 0.819 0.763
6 peeravg 0.959 0.813 0.774

server 0.959 0.819 0.763
7 peeravg 0.960 0.820 0.783

server 0.962 0.826 0.641
8 peeravg 0.965 0.829 0.797

server 0.971 0.845 0.744
9 peeravg 0.959 0.818 0.783

server 0.971 0.845 0.744
10 peeravg 0.965 0.829 0.811

server 0.970 0.842 0.817

Table 2  Performance of the federated approach

Base64 test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.855 0.536 0.533
1 peeravg 0.895 0.599 0.571

server 0.855 0.536 0.533
2 peeravg 0.896 0.603 0.588

server 0.925 0.642 0.578
3 peeravg 0.906 0.613 0.587

server 0.925 0.642 0.578
4 peeravg 0.895 0.602 0.582

server 0.925 0.642 0.578
5 peeravg 0.908 0.611 0.599

server 0.925 0.642 0.578
6 peeravg 0.885 0.592 0.589

server 0.925 0.642 0.578
7 peeravg 0.895 0.606 0.585

server 0.915 0.631 0.485
8 peeravg 0.889 0.606 0.589

server 0.910 0.645 0.472
9 peeravg 0.906 0.618 0.589

server 0.910 0.645 0.472
10 peeravg 0.898 0.613 0.597

server 0.893 0.594 0.614

Table 3  Performance of the federated approach

Zip test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.769 0.403 0.349
1 peeravg 0.808 0.443 0.356

server 0.769 0.403 0.349
2 peeravg 0.807 0.436 0.352

server 0.826 0.457 0.354
3 peeravg 0.835 0.477 0.391

server 0.826 0.457 0.354
4 peeravg 0.800 0.430 0.335

server 0.826 0.457 0.354
5 peeravg 0.833 0.475 0.391

server 0.826 0.457 0.354
6 peeravg 0.785 0.417 0.328

server 0.826 0.457 0.354
7 peeravg 0.798 0.424 0.350

server 0.867 0.500 0.304
8 peeravg 0.783 0.410 0.337

server 0.843 0.471 0.344
9 peeravg 0.801 0.454 0.396

server 0.843 0.471 0.344
10 peeravg 0.799 0.421 0.331

server 0.856 0.498 0.363
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AUC improves from 89.5% for the 1-st iteration to 90.8% in 
the 5-th iteration), whereas we can observe better results 
for the server performances. Specifically, the average AUC 
and AUC-PR improve up to 89.3% and 59.4% , respectively.

We also quantify the prediction capabilities of the model 
showing its performance w.r.t. each class. To this end, we 
plotted the ROC curves for each test set. Figure 6 shows 
the ROC curves for all classes when the malicious payload 
is embedded in plain text with no additional encoding. In 
this case, although the classifier gets good results, we can 
observe some misclassification for URL/IP addresses and 
Ethereum addresses with AUC equal to 0.89 in both cases. 
This could be because both Ethereum addresses and URLs 
are composed of few and similar alphanumeric characters, 
making the classification more difficult. The ROC curves 
for Base64-encoded test set are depicted in Fig. 7, where 
we can observe a small degradation of the performances for 
each class except for the legitimate images. Like the plain 
text test, there is again a similar misclassification for URL/
IP and Ethereum addresses classes with AUC equal to 0.88 
and 0.89, respectively. Moreover, the PowerShell class tends 
to be misclassified with JavaScript probably due to the pres-
ence of similar statements like if-then-else, for, and 
type declarations. Finally, in Fig. 8 the ROC curves for the 
zip compression are shown. In this case, the system is still 
able to distinguish between compromised and legitimate 
images, but different payloads are misclassified from each 
other, e.g., the AUC for PowerShell is equal to 0.70. An 
explanation for this behavior could be that zip compression 
reduces the differences between different payloads as well 
as introduces new metadata, which may be similar for all 
classes.

The second round of tests aimed at comparing the feder-
ated approach against a “centralized” blueprint, i.e., when all 
the data are stored in the node S. Moreover, we also evalu-
ated the different approaches when dealing with payloads 
obfuscated by the attacker, i.e., via Base64 encoding and 
zip compression. Table 4 showcases the results. Concern-
ing plain and Base64-encoded payloads, the differences 
between the approaches are minimal. Instead, in the case of 
compressed zip payloads the federated solution achieves an 
improvement of ∼10% in terms of AUC and AUC-PR w.r.t. 
the centralized approach.

Summing up, the above results demonstrate that federated 
learning can be effectively used to reveal the presence of con-
cealed contents while guaranteeing privacy and scalability 
constraints. In more detail, the federated solution achieves 
comparable performances with a fully centralized method 
without the necessity of moving data toward a single node. 
In this way, our approach can also be used in resource-con-
strained scenarios, e.g., IoT ecosystems.

5  Related works

In recent years, the impact of threat actors taking advantage 
of information hiding techniques and steganography to make 
their attack chains more complex and stealthier has also been 
extended to the Web and its services. For instance, cloaking 
techniques can be used to juxtapose an additional layer for 
managing contents of the “hidden Web”, i.e., a portion of the 
Web only accessible via suitable search interfaces via known 
keywords (Ntoulas et al. 2005). At the same time, the surge 
of social media services offers a fertile playground for a 
variety of scams and malicious activities that can be cloaked 
in the bulk of data. Among the others, notable examples are 
the use of text-based steganography for abusing contents of 
online social networks (e.g., Twitter) to orchestrate bots and 
implement command & control communications (Gurunath 
et al. 2021). Another relevant scenario is the exploitation of 
images and metadata used in Facebook to enrich the overall 
user experience (Hiney et al. 2015). Owing to its double-
edged nature, hiding mechanisms can also be considered 
effective tools to enforce copyright or track Web resources. 
For example, XML contents can be “marked” by embedding 
empty elements or patterns of white spaces in tags (Inoue 
et al. 2001).

Unfortunately, both the Web and ad-hoc distribution 
channels (e.g., application stores or software repositories) 
are characterized by an almost infinite set of digital assets 
that can be exploited for cloaking data. In particular, exe-
cutables, such as .exe, .apk, and .ipa, can be retrieved 
almost everywhere on the Internet, thus making it impos-
sible to outline a precise attack surface. Data can then be 
cloaked in executable code through the manipulation of 
specific redundancies, such as the injection of uncommon 
instructions or the alteration of the relative frequency of 
jumps (see, e.g., Anckaert et al. (2005) for IA-32 code).

For the specific case of enforcing the security of mobile 
applications, the most popular frameworks typically rely 
upon a variety of techniques (e.g., static binary analysis, 
anomaly-based detection, and definition of access control 

Table 4  Comparison of centralized and federated approaches with 
different test sets

Best values are reported in bold

Approach Coding AUC AUC-PR F1-Score

Centralized Plain 0.972 0.851 0.835
Base64 0.899 0.605 0.589
zip 0.776 0.397 0.344

Federated Plain 0.970 0.842 0.817
Base64 0.893 0.594 0.614
zip 0.856 0.498 0.363
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policies in end nodes). Alas, this requires a strict cooperation 
among developers, users, and administrators of application 
stores (He et al. 2015). In general, the current trend is to 
exploit ML or AI to analyze behaviors of software, mainly 
to search for existent attack signatures or unexpected interac-
tions among software components.3 Such tools have proven 

to be effective also to mitigate attacks based on information 
hiding targeting digital media (Monika and Eswari 2022; 
Cassavia et al. 2022). Unfortunately, the deployment of AI-
capable techniques might clash with practical constraints. 
First, the inspection of bundled assets and copyrighted mate-
rial should respect privacy-enforcing regulations requiring 
architectures to not process any personal information (Paw-
licka et al. 2020). Second, the continuous growth of mobile 
ecosystems is leading to millions of samples to verify. Appli-
cations can also be made available via different store replicas 

Fig. 6  All classes ROC curves, plain text test set

3 Cloud-based protection mechanisms at the basis of the Google Play 
Protect framework: https:// devel opers. google. com/ andro id/ play- prote 
ct/ cloud- based- prote ctions

https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections
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for performance purposes, through unofficial channels (e.g., 
alternative stores (Guarascio et al. 2018) or via sideloading 
(Li et al. 2017)) as well as in Web or ad-hoc social media 
channels, thus rendering the creation of comprehensive data-
sets a hard task (Wang et al. 2019). To partially cope with 
challenges to improve the security of mobile ecosystems, 
federated approaches are becoming a precious tool (Rahman 
et al. 2020).

As regards the goal of spotting contents cloaked in digital 
images via distributed or cloud-native frameworks, Yang 

et al. (2020) exploits federated transfer learning to improve 
the performance of image steganalysis tasks while preserv-
ing the privacy of users. Even if this work has a similar 
goal, there are some major differences with our idea. First, 
it considers (user) end nodes instead of app-stores and does 
not focus on real malware samples. As a consequence, 
authors investigated the performance when in the presence 
of advanced steganographic methods acting on the spatial 
domain (i.e., WOW, S-UNIWARD, and HILL), which have 
never been observed in real attacks due to their complexity 

Fig. 7  All classes ROC curves, Base64 test set
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(Mazurczyk and Caviglione 2015; Caviglione and Mazurc-
zyk 2022). Despite the work concentrates on digital images 
similar to those used for the creation of Android/iOS icons 
(i.e., cropped pictures of 512 × 512 pixels), experiments only 
bear with greyscale images, which are seldom used in mod-
ern mobile applications. Rather, greyscale or B &W images 
are used for UI widgets, but their steganographic capacity 
could be very limited and the detection of massive tamper-
ing of assets bundled within a mobile application could be 

effectively done without the need for AI (see, e.g., Faruki 
et al. (2013)).

Considering different use cases, the literature offers vari-
ous works dealing with the adoption of federated learning 
to tame realistic threats. As an example, Jiang et al. (2022) 
shows a framework for enabling end nodes running Android 
to classify several types of malware, including ransomware 
and spyware but not steganographic threats. The problem 
of classifying malicious samples is also addressed in Lin 
and Huang (2020), but it focuses on a generic scenario not 

Fig. 8  All classes ROC curves, zip test set



Social Network Analysis and Mining (2023) 13:114 

1 3

Page 13 of 15 114

related to the security of mobile applications. Instead, Sha-
mili et al. (2010) concentrates on the problem of detecting 
malware but for an OS no longer used (i.e., Symbian S60).

To face the multifaceted cybersecurity challenges of 
modern deployments, a possible “meet in the middle” blue-
print should offload end nodes toward edge entities placed 
at the border of the network, and cooperating stores could be 
adopted to implement such an architecture. To this extent, 
the literature does not offer prior attempts based on edge 
computing to reveal the presence of threats endowed with 
information hiding or image steganography capabilities. 
In fact, this paradigm, jointly with federated techniques, 
has been largely used in IoT scenarios often composed of 
resource-constrained nodes (Tian et  al. 2021). Besides, 
for the specific case of mobile security, edge/federated 
approaches have been mainly adopted to guarantee privacy 
constraints. A notable exception is Hsu et al. (2020), which 
demonstrates how to detect malware without exposing sensi-
tive information of end users, such as configuration details 
or how various application program interfaces are invoked.

6  Conclusions and future works

In this paper, we have presented a federated framework for 
the detection of malicious assets cloaked in icon images 
bundled or repackaged within applications. Our approach 
demonstrated its effectiveness in handling applications made 
available through multiple (un)official stores or directly from 
Web and social media. The federated framework also show-
cased good performances with threat actors trying to avoid 
detection via elusive schemes, e.g., when the secret data is 
encoded in Base64 or compressed with the zip algorithm to 
have an “obfuscating envelope”.

As shown, the federated blueprint should be considered 
of particular value to enforce the security of scenarios where 
applications could also be distributed outside classic pipe-
lines. For instance, this is the case of software made directly 
available in public repositories, social media, or Web pages. 
A federated scheme can prevent constraints and bottlenecks 
characterizing single-point architectures, e.g., scalability 
issues and lack of comprehensive snapshots for training 
the models. Even if implementing such a vision is almost 
straightforward for single-vendor deployments, federating 
stores owned by different entities could be unfeasible, or 
require additional engineering. Another limitation concerns 
the ability of a threat actor running a malicious repository 
to join the federation and inject incorrect information to 
improve its undetectability. Lastly, crawling large sources 
to gather the required data could be time-consuming or dif-
ficult. As an example, some websites prevent scraping, and 
many social media services limit the rate at which informa-
tion can be requested.

Therefore, future works aim at removing the aforemen-
tioned weaknesses. For instance, a suitable communication 
mechanism (e.g., a specific set of protocols endowed with 
security guarantees) could promote cooperation among vari-
ous stores while mitigating the risk of attacks. Another rel-
evant aim of our future research is devoted to extending the 
proposed approach to detect other types of steganographic 
threats, especially malicious information cloaked in network 
traffic. In more detail, we are interested in evaluating if the 
benefits of the federated approach can also be leveraged to 
monitor large-scale networks or microservice-based archi-
tectures. As an example, traffic can be collected in multiple 
points placed at the border of a network/datacenter so as 
to enforce scalability properties and avoid the necessity of 
moving sensitive/confidential data.
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