
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:114
https://doi.org/10.1007/s13278-023-01121-9

ORIGINAL ARTICLE

A federated approach for detecting data hidden in icons of mobile
applications delivered via web and multiple stores

Nunziato Cassavia1 · Luca Caviglione2 · Massimo Guarascio1 · Angelica Liguori1,3 · Giuseppe Manco1 ·
Marco Zuppelli2

Received: 28 February 2023 / Revised: 12 May 2023 / Accepted: 25 August 2023 / Published online: 14 September 2023
© The Author(s) 2023

Abstract
An increasing volume of malicious software exploits information hiding techniques to cloak additional attack stages or bypass
frameworks enforcing security. This trend has intensified with the growing diffusion of mobile ecosystems, and many threat
actors now conceal scripts or configuration data within high-resolution icons. Even if machine learning has proven to be
effective in detecting various hidden payloads, modern mobile scenarios pose further challenges in terms of scalability and
privacy. In fact, applications can be retrieved from multiple stores or directly from the Web or social media. Therefore, this
paper introduces an approach based on federated learning to reveal information hidden in high-resolution icons bundled with
mobile applications. Specifically, multiple nodes are used to mitigate the impact of different privacy regulations, the lack
of comprehensive datasets, or the computational burden arising from distributed stores and unofficial repositories. Results
collected through simulations indicate that our approach achieves performances similar to those of centralized blueprints.
Moreover, federated learning demonstrated its effectiveness in coping with simple “obfuscation” schemes like Base64 encod-
ing and zip compression used by attackers to avoid detection.

Keywords Federated learning · Information hiding · Deep learning · Malware detection · Stegomalware

1 Introduction

Context and Motivations. The ubiquitous diffusion of mobile
devices is a major driver for the development of new threats.
For instance, attackers successfully developed techniques to

eavesdrop unencrypted communications or to steal comput-
ing resources for mining cryptocurrencies (Almaiah et al.
2021). At the same time, the creation of mechanisms to
exfiltrate sensitive data has also intensified, especially to
gather personal details during reconnaissance campaigns
(Mazurczyk and Caviglione 2021). In this perspective, the
creation of effective countermeasures to mitigate advanced
threats targeting mobile devices is mandatory to improve the
security of the Internet.

Unfortunately, the availability of efficient schemes for
the static and dynamic analysis of mobile applications
ignited an “arm race" between defenders and attackers
(Spreitzenbarth et al. 2013). As an example, mechanisms
implemented in many stores to bounce unsafe applications
can be eluded by loading additional code at run time (Poe-
plau et al. 2014). Among the various techniques to distrib-
ute attack routines or extend offensive functionalities, the
adoption of steganography is becoming very popular among
threat actors (Caviglione and Mazurczyk 2022). Even if the
cloaking mechanism may vary, attackers mainly exploit
digital images, especially owing to their capacity and pop-
ularity (Mazurczyk and Caviglione 2015; Caviglione and

 * Angelica Liguori
 angelica.liguori@dimes.unical.it

 Nunziato Cassavia
 nunziato.cassavia@icar.cnr.it

 Luca Caviglione
 luca.caviglione@ge.imati.cnr.it

 Massimo Guarascio
 massimo.guarascio@icar.cnr.it

 Giuseppe Manco
 giuseppe.manco@icar.cnr.it

 Marco Zuppelli
 marco.zuppelli@ge.imati.cnr.it

1 ICAR-CNR, Via Pietro Bucci 8-9/C, 87036 Rende, Italy
2 IMATI-CNR, Via de Marini 6, 16149 Genova, Italy
3 Unical, Via Pietro Bucci, 87036 Rende, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-023-01121-9&domain=pdf

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 2 of 15

Mazurczyk 2022). Steganographic malware then conceals
additional code or configuration data (e.g., IP addresses to
contact) within innocent-looking images or icons. Prime evi-
dences of threats using this technique have been observed in
2014 within applications published on the Google Play Store
(Suarez-Tangil et al. 2014).

To face such a challenging scenario, security should be
enforced in a holistic manner, starting from the very early
phases of the development process until the final delivery
of the software. Alas, the most popular countermeasures
(e.g., security-by-design, sandboxing, and code signatures)
often fail to mitigate threats exploiting information-hiding
techniques, especially when deployed in mobile ecosystems
(Cheddad et al. 2010). To this extent, Machine Learning
(ML) and Artificial Intelligence (AI) are now core tools to
mitigate the impact of threats leveraging advanced offensive
schemes (Gibert et al. 2020). For instance, ML demonstrated
its effectiveness to inspect mobile applications for revealing
rogue code within software components (Yuan et al. 2016)
or to detect hidden/obfuscated payloads (Gibert et al. 2020;
Guarascio et al. 2022).

Objectives. The main goal of this work is to overcome
some limitations characterizing many machine learning
approaches used to improve the security of mobile eco-
systems targeted by steganographic threats. In fact, despite
their effectiveness, AI-based solutions often clash with the
constraints of production-quality scenarios. For instance,
resource-intensive computations may not be possible in a
centralized manner due to scalability issues. Another limita-
tion concerns the lack of appropriate datasets, including the
need of merging details of a wide range of shared libraries
and software components (Mylonas et al. 2013; Zhou et al.
2012). For the case of revealing malicious data hidden in
mobile applications, the surge of multiple stores to bypass
national constraints as well as the availability of unofficial
distribution vectors (e.g., p2p networks) prevent having a
single, Internet-scale framework. Therefore, this paper intro-
duces a supervised approach exploiting federated learning,
which can be distributed across multiple cloud replicas or
edge nodes cooperating for the definition of models. Infor-
mation can be also provided by a local replica of a store,
crawled from Web pages hosting the software (e.g., .apk),
or gathered from unofficial stores highly popular in regions
like Asia (Li et al. 2017). The federated approach may also
prevent GDPR violations due to processing operations
hosted in areas with incompatible policies on data confi-
dentiality (Papageorgiou et al. 2018).

Contributions and Improvements. The contributions of
this paper are twofold. First, it showcases a framework based
on a federated approach that allows cooperation among dif-
ferent “app stores” or Web sources to reveal applications
containing steganographic threats. Second, it presents a
performance evaluation not limited to hiding techniques

observed in real samples but also considering contents
obfuscated to prevent detection. Compared to our prelimi-
nary work (Cassavia et al. 2023), this paper has the follow-
ing improvements: it is more focused on applications that
can be obtained through multiple sources including the Web
and unofficial stores, and it largely extends the performance
evaluation campaign, especially by investigating the impact
of “elusive” schemes exploiting zip compression and Base64
encoding.

Organization of the paper. The rest of the paper is struc-
tured as follows. Section 2 introduces the attack model and
the reference scenario, while Sect. 3 deals with the proposed
framework. Section 4 showcases numerical results obtained
through simulations, and Sect. 5 reviews past works using
federated approaches for counteracting malware. Finally,
Sect. 6 concludes the paper and outlines some possible
future directions.

2 Attack model and federated approach

The general attack model considered in this work analyzes
a scenario where a threat actor employs steganography to
conceal a harmful payload in application icons to evade
detection. Such a scheme could be exploited to make the
reverse engineering of the attack chain harder or to distribute
additional assets (e.g., configuration files, URLs pointing to
remote servers, or small scripts) without triggering standard
security mechanisms based on signatures or static analysis of
software. Each icon is “repacked” within an application and
then published through a store to make it available to users.
Moreover, malicious applications could be made available
through alternative stores, repositories or Web sources (e.g.,
AppChina, Anzhi and F-Droid (Li et al. 2017)). Figure 1
depicts the reference attack scenario. To hide the malicious
payload, we consider an attacker using the plain Least Sig-
nificant Bit (LSB) technique, which has been observed in
various real-world campaigns (Caviglione and Mazurczyk
2022; Mazurczyk and Caviglione 2015). In essence, LSB
steganography alters the least significant bit(s) of the color
components of each pixel of the container image to conceal a
secret. We point out that the more bits are altered, the higher
the chance of revealing the presence of the hidden payload
via visible alterations or artifacts. To mitigate such an attack,
there is the need to deploy a suitable scheme within the store
to “reveal” the presence of hidden data and prevent that a
malicious application is delivered (see, e.g., Cassavia et al.
(2022) and the references therein for the case of centralized
distribution pipelines).

To detect the hidden data, in this work, we leverage a
federated-learning-based approach to learn a global, optimal
model in a distributed fashion. Figure 2 depicts our reference
architecture. For the sake of simplicity, we will refer to the

Social Network Analysis and Mining (2023) 13:114

1 3

Page 3 of 15 114

centralized store as the server. Similarly, with end nodes,
we will identify other (groups of) machines located on the
Internet cooperating toward the distribution of applications
and the detection process. Specifically, we assume that the
server contains various mobile applications along with their
icons, e.g., it can be considered an “app store.” To prevent
computational or security hazards, the server also contains
pointers to some applications acting as a sort of “cache,” for
instance, for the most popular contents.

Instead, the end nodes represent local data centers con-
taining a subset of applications/icons already published in

the main store and replicated for redundancy. End nodes can
also contain novel/unseen data collected from third-party
markets or scraped from Web sources and social media, e.g.,
by retrieving .apk or .ipa bundles directly from reposi-
tories. To spot the presence of an application/icon hiding
malicious content, end nodes and the server collaborate to
find the optimal Deep Neural Network (DNN)-based model
via a federated approach. Such strategies are mainly used to
avoid moving raw data from end nodes to the server, take
advantage of each node’s computational capabilities, and
enforce privacy constraints of local devices or users.

Fig. 1 Reference attack scenario where mobile applications “repacked” with icons cloaking malicious contents are delivered through a store or
made available via the Web

Fig. 2 Federated approach of
cooperating stores

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 4 of 15

Referring again to Fig. 2, we supposed to have a cen-
tralized server denoted as S in the figure. The server con-
tains a “weak” DNN detector model MS trained on an initial
dataset DS and validated through the validation set Dval . In
the early stage, the detector is shared across K end nodes,
which fine-tune their model Mi against the local data Di . To
make the predictor more robust and to find a global model
in a distributed manner, a subset of end nodes periodically
sends updates to the server S containing the weights of each
layer composing their local DNN. The server S merges the

information received to obtain an ensemble model, and its
predictive performances are evaluated against the validation
set. If the model performs better with respect to the previous
one, then the server sends back the best parameters to the end
nodes. This process is iterated until a certain convergence
criterion is reached. More formally, Algorithm 1 details the
federated learning algorithm for training the malware clas-
sifier. The procedures to yield the ensemble model and to
fine-tune both global and local models are fully described
in Sect. 3.3, and have been named ��������������� and
�������� , respectively.

Algorithm 1 (Federated) Learning algorithm for training the classifier.
BuildFLModel(S,N ,max iter,eval criterion)
Input : A server node S = {MS , DS , Dval} acting the role of coordinator
List of K peer nodes N =[N1, . . . , Ni, . . . , NK] where Ni = {Mi, Di}
The max number of federated learning iterations max iter
The criterion for measuring the model performances eval criterion
Output: federated learning based model BM

1 MS = InduceNNModel(DS) // build a detector against server data
2 BM = MS // initialize the best federated model BM
3 MN = [] // initialize the list of peer models
4 QBM = ComputePerformances(BM ,Dval, eval criterion)
5 i = 0 // current federated learning iteration
6 k = 0 // index of the current Node
7 foreach k ≤ K do
8 Mk = MS // download server model and initialize local model
9 Mk = FineTune(Mk, Dk) // finetune local model against local data

10 MN
+← Mk // share local model with S and append the k-th model

11 k = k + 1
12 end
13 MS = CreateSoupModel(MN , DS) // create an ensemble model
14 QMS

= ComputePerformances(MS,Dval,eval criterion)
15 if QBM ≤ QMS

then
16 BM = MS

QBM = QMS

17 end
18 if i ≤ max iter then
19 MS = [] // clean the list of peer models
20 i = i+ 1
21 go to line 6
22 end
23 return BM

3 Framework

In this section, we first illustrate the methodology used to
detect and classify compromised images, then we describe
the neural architecture devised to tackle these problems.
Finally, we present the ensemble solution for combining the
different neural models yielded by end nodes.

3.1 Solution approach

Figure 3 depicts the general methodology for discovering
images compromised via steganographic methods. In more
detail, digital images represent the input of the proposed
approach and are modeled as matrices with dimensions
X × Y . The pixel is the smallest manageable element of these

Social Network Analysis and Mining (2023) 13:114

1 3

Page 5 of 15 114

matrices and stores information about the color. The color
of each pixel can be decomposed into three main compo-
nents, i.e., Red (R), Green (G), and Blue (B). The values
associated with the RGB components represent the intensity
of the various colors and each value ranges in the interval
[0, 255]. Hereinafter, we denote with N the size of the image
computed as N = X × Y × 3 . In this work, we focus on high-
resolution icons as they offer a sort of “unified playground”
for various threats. At the same time, this does not account
for a loss of generality, as the approach can be applied and
scaled also to address regular-sized images.

Concerning the hiding method, LSB steganography is
considered a prominent approach to hide malicious code or
data in legitimate pictures by changing the value of the (k)
least significant bit(s) of each color composing the pixels
of the image (see, Fig. 3 for the case of k = 1). When only
a limited number of changes are performed, the image will
not exhibit any visible alteration, i.e., pixels will look homo-
geneous compared to the surrounding elements (Zuppelli
et al. 2021). As a consequence, many approaches proposed
in the literature partially fail to detect the presence of hidden

content as they produce weak detection models unable to
discover the slight differences between licit and compro-
mised contents.

To address all these issues, in this work, we devised a
(Federated) Deep Learning approach that processes and ana-
lyzes the k LSBs of the icon under investigation. Basically,
the first block of the proposed neural network is devoted
to yielding a flat representation of the image by extracting
the k least significant bits of each color channel composing
each pixel. Such a representation is then propagated to the
subsequent layers to detect and classify different malicious
contents. The DNN allows for extracting high-level discrimi-
native features to be further combined for producing the final
classification.

3.2 Neural architecture

To mitigate the impact of threats taking advantage of infor-
mation hiding, we designed a supervised neural architecture
for the classification task of image icons. In more detail,
we exploited the deep architecture shown in Fig. 4, which

Fig. 3 Methodological approach for the classification of a stegomalware cloaked in a digital image via LSB steganography

Fig. 4 Neural architecture for hidden content detection and classification

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 6 of 15

permits to produce reliable predictions. Essentially, our neu-
ral architecture is composed of a stack of several blocks.
The first layer acts as a handler for the input provided to
the network (denoted as Input Handler, in the fig-
ure) and propagates the information (i.e., the image) to the
subsequent layers of the DNN for further processing. The
second component (denoted as Low Level Feature
Extraction, in the figure) yields a flat representation of
the image and extracts the raw information by means of a
masking procedure.

The overall DNN is composed of a variable number m
of Building Block (BB) obtained by stacking three
main components: (i) on top, a fully-connected dense layer,
equipped with a Rectified Linear Unit (ReLU) activation
function (Nair and Hinton 2010), is instantiated, (ii) then, a
batch-normalization layer is stacked to the previous one to
improve the stability of the learning phase and to boost the
performances of the model, and (iii) a dropout layer is finally
added to mitigate the risk of overfitting (Hinton et al. 2014).

Figure 4 details the building block architecture for the
first instance of this specific configuration and has been
labeled as BB1 . In more detail, the Batch Normaliza-
tion allows for standardizing the data to be propagated to
the subsequent layers of the DNN w.r.t. the current batch
(by considering the average � and the variance � of each
input). A reset of a random number of neurons in the train-
ing phase is performed via a dropout mechanism. As pin-
pointed in Hinton et al. (2012), the usage of the dropout
method induces in the DNN a behavior similar to an ensem-
ble model. Hence, the overall output of the whole neural
network can be considered as the combination of different
sub-networks resulting from this random masking, which
disables some paths of the neural architecture. In our experi-
ments, the neural model is instantiated with m = 4 building
blocks.

The proposed neural classifier also includes a skip con-
nection to implement a residual block. Essentially, residual
blocks (He et al. 2016) differ from regular ones by the mere
addition (through the skip connection) of an identity func-
tion to their output. Formally, the output of a residual block
is defined as activation (F(��) + �

�) , where F denotes the
function that the residual block is learning to transform the
input �′ of the block itself. A more detailed view of this
subnet is sketched in Fig. 5. The usage of skip connections
induces in the base DNN classifier a behavior similar to
Residual Networks (He et al. 2016), which demonstrated to
be effective solutions to the well-known degradation prob-
lem (i.e., neural networks performing worse at increasing
depth), and capable of ensuring a good trade-off between
convergence rapidity and expressivity/accuracy. Moreover,
the high-level features extracted by the building blocks ��

�

and ��
�
 are concatenated and used to feed the output layer

of the model.
Finally, the Output Layer is instantiated with

C neurons (one for each class) and equipped with a
softmax activation function (Guarascio et al. 2018).
The proposed neural model is trained against a set
D = {(x1, y1), (x2, y2),… , (xD, yD)} , where xi is the matrix
representation of the image and y is the class of the image.
As regards the output, a one-hot encoding based on C classes
is used to model the different labels, each one indicating a
specific malicious payload. As will be detailed later, in our
work we considered C classes representing “clean” image
icons and image icons cloaking JavaScript, HTML, Pow-
erShell, Ethereum wallets, and URL/IP addresses. Finally,
the training stage is responsible for optimizing the network
weights by minimizing the loss function. The categorical
cross-entropy is adopted for the classification task and it is
calculated as follows:

3.3 Ensembling via soup models

As discussed in Sect. 2 (see Algorithm 1), the proposed
federated approach uses a soup model mechanism to merge
the contribution of each model produced by the K peer nodes
(Wortsman et al. 2022). This ensemble approach is inspired
by the work described in Neyshabur et al. (2020), which
demonstrated that models independently fine-tuned from the
same base model fall within the same loss landscape basin.
The authors also suggested that interpolating two solutions

CCE(y, ỹ) = −

|D|∑

i=1

yi log ỹi.

Fig. 5 Residual block subnet architecture

Social Network Analysis and Mining (2023) 13:114

1 3

Page 7 of 15 114

(e.g., combining DNN weights) may yield a result that falls
closer to the basin’s center. The main benefit of the Soup
Model is hence to extract robust and reliable classification
models by simply averaging the weights without requiring
additional memory or inference time. In our framework, the
idea consists in using this ensemble method to average (per
layer) the DNN weights yielded by the peer models. Specifi-
cally, this strategy is known as Uniform Soup. Although in
the literature other Soup strategies have been proposed to
combine different models (e.g., Greedy Soups and Learned
Soup (Wortsman et al. 2022)), we adopted the Uniform
Soup to make the proposed approach as much as possible
lightweight.

Formally, let be f(x, �) a neural network with input data
x and parameters � ∈ R

D . Let be � = ��������(�0, x) the
parameters obtained by fine-tuning the pre-trained initiali-
zation �0 against data x. Let be �i = ��������(�0, xi) the
parameters obtained by fine-tuning �0 against xi , i.e., data of
the node Ni . Model soup f (x, �T) is computed as an average
�i , i.e., �T =

1

K

∑K

i=1
�i.

4 Experimental results

In this section, we first present the dataset modeling realis-
tic images used in mobile applications containing stegano-
graphic threats as well as the parameters and metrics adopted
in our trials. Then, we will discuss numerical results.

4.1 Dataset and parameters

Our federated approach is evaluated on the “Stego-Images-
Dataset”1 described in Cassavia et al. (2022). It contains
48, 000 icons of 512 × 512 pixels hiding different realistic
malicious payloads, i.e., JavaScript, HTML, PowerShell,
URLs, and Ethereum addresses, embedded via the LSB steg-
anography technique. The payloads allow for modeling a
wide range of threats, such as malicious scripts and routines,
links to additional configuration files or lists of commands,
and wallets collecting the outcome of crypto jacking and
ransomware campaigns. The dataset is split into 16, 000,
8, 000, and 8, 000 icons corresponding to the training, the
validation, and the test set, respectively. The training set is
further divided among the server and the end nodes compos-
ing our architecture. In more detail, the 25% of the training
set (4, 000 icons) is used to train the model on the server
S, whereas the remaining 75% is assigned to the K = 5 end
nodes, i.e., 15% images (2, 400 icons) for each node. Instead,
the validation set is used in its entirety to validate the ensem-
ble model of the server and partially to validate the models

of the end nodes. Finally, the dataset contains three different
test sets (each one composed of 8, 000 icons) to model an
attacker unaware/aware of the countermeasure and trying to
elude the detection via obfuscation approaches. In particular,
the first is generated considering “plain” payloads, i.e., the
attacker is completely unaware of the detection mechanism,
whereas the others consider payloads encoded in Base64
and compressed with a zip method. Such datasets model an
attacker performing a sort of “lateral movement” to bypass
security checks.

We implemented the proposed model using the PyTorch
framework (Paszke et al. 2019). Basically, it consists of
4 Building Block BB in which the fully-connected
dense layers, stacked on the top of each of them, include
64 neurons, except for the first BB that is instantiated with
128 neurons. The dropout rate is set to 0.1. The Output
Layer includes 6 neurons. The model has been trained over
35 epochs with a batch size of 256. The best model has been
chosen according to the F1-Score. We decide to use 5 clients
representing the end nodes and 1 server. For the initializa-
tion stage, the server model is trained over 10 epochs, and
the best model that maximizes the F1-Score on the whole
validation set is selected. Each client model is trained over 6
epochs, and the best model is chosen again according to the
F1-Score. The number of iterations is set to 10. The AdamW
(Loshchilov and Hutter 2019) with a learning rate equal to
0.0001 is adopted as the optimizer.

4.2 Evaluation metrics

To evaluate our approach, we relied upon the following
metrics2:

• F1-Score: it summarizes the overall system perfor-
mances, and it is defined as the harmonic mean of the
precision and recall. Specifically, the precision is calcu-
lated as TP

TP+FP
 , whereas the recall is calculated as TP

TP+FN
;

• Area Under the Curve (AUC): it is the area under the
Receiver Operating Characteristic (ROC) curve, obtained
by plotting the ratio between the false-positive rate and
the true-positive rate (i.e., the recall) for different class
probability values;

• AUC-PR: it is the area under the Precision-Recall curve,
obtained by plotting the precision and recall for different
class probability values.

1 https:// www. kaggle. com/ datas ets/ marco zuppe lli/ stego image sdata set

2 TP is the number of positive cases correctly classified, FP is the
number of negative cases incorrectly classified, FN is the number of
positive cases incorrectly classified, and TN is the number of negative
cases correctly classified.

https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 8 of 15

4.3 Numerical results

The first round of tests aims at evaluating the effectiveness
of our federated-learning-based approach in detecting mali-
cious payloads hidden within images. Tables 1, 2 and 3
summarize the obtained results and show how the perfor-
mances of the end nodes (i.e., peers) improve over 10 itera-
tions of the algorithm for plain text, Base64-encoded and
zip-encoded test sets, respectively. As reported in Table 1,
for the plain text, the average AUC of the peers improves
from 94.3% in the 1-st iteration to a maximum value of
96.5% when the max_iter , i.e., the number of iterations
defined in Algorithm 1, is reached. Also, the AUC-PR and
F1-Score exhibit the same behavior: both metrics improve
up to 82.9% and 81.1% , respectively. As a consequence, the
performances of the server improve as well, i.e., from an
AUC of 92.6% to 97.1% . A similar trend can be observed
for the other metrics. Analogous results can be observed for
the zip compression (Table 3), where the average AUC of
the end nodes improves from 80.8% in the 1-st iteration to
83.5% in the 3-rd iteration. Moreover, a better result can be
observed on the server performances where the AUC and the
AUC-PR improve in the last round from 76.9% to 85.6% and
from 40.3% to 49.8% , respectively. With regard to the results
using the Base64 test set (Table 2), the improvement on the
metrics for the peers is slightly less limited (e.g., the average

Table 1 Performance of the federated approach

Plain text test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.926 0.745 0.699
1 peeravg 0.943 0.775 0.737

server 0.926 0.745 0.699
2 peeravg 0.955 0.805 0.770

server 0.959 0.819 0.763
3 peeravg 0.955 0.804 0.768

server 0.959 0.819 0.763
4 peeravg 0.960 0.816 0.779

server 0.959 0.819 0.763
5 peeravg 0.960 0.816 0.782

server 0.959 0.819 0.763
6 peeravg 0.959 0.813 0.774

server 0.959 0.819 0.763
7 peeravg 0.960 0.820 0.783

server 0.962 0.826 0.641
8 peeravg 0.965 0.829 0.797

server 0.971 0.845 0.744
9 peeravg 0.959 0.818 0.783

server 0.971 0.845 0.744
10 peeravg 0.965 0.829 0.811

server 0.970 0.842 0.817

Table 2 Performance of the federated approach

Base64 test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.855 0.536 0.533
1 peeravg 0.895 0.599 0.571

server 0.855 0.536 0.533
2 peeravg 0.896 0.603 0.588

server 0.925 0.642 0.578
3 peeravg 0.906 0.613 0.587

server 0.925 0.642 0.578
4 peeravg 0.895 0.602 0.582

server 0.925 0.642 0.578
5 peeravg 0.908 0.611 0.599

server 0.925 0.642 0.578
6 peeravg 0.885 0.592 0.589

server 0.925 0.642 0.578
7 peeravg 0.895 0.606 0.585

server 0.915 0.631 0.485
8 peeravg 0.889 0.606 0.589

server 0.910 0.645 0.472
9 peeravg 0.906 0.618 0.589

server 0.910 0.645 0.472
10 peeravg 0.898 0.613 0.597

server 0.893 0.594 0.614

Table 3 Performance of the federated approach

Zip test set. Best values are reported in bold

Iteration Model AUC AUC-PR F1-Score

Initialization server 0.769 0.403 0.349
1 peeravg 0.808 0.443 0.356

server 0.769 0.403 0.349
2 peeravg 0.807 0.436 0.352

server 0.826 0.457 0.354
3 peeravg 0.835 0.477 0.391

server 0.826 0.457 0.354
4 peeravg 0.800 0.430 0.335

server 0.826 0.457 0.354
5 peeravg 0.833 0.475 0.391

server 0.826 0.457 0.354
6 peeravg 0.785 0.417 0.328

server 0.826 0.457 0.354
7 peeravg 0.798 0.424 0.350

server 0.867 0.500 0.304
8 peeravg 0.783 0.410 0.337

server 0.843 0.471 0.344
9 peeravg 0.801 0.454 0.396

server 0.843 0.471 0.344
10 peeravg 0.799 0.421 0.331

server 0.856 0.498 0.363

Social Network Analysis and Mining (2023) 13:114

1 3

Page 9 of 15 114

AUC improves from 89.5% for the 1-st iteration to 90.8% in
the 5-th iteration), whereas we can observe better results
for the server performances. Specifically, the average AUC
and AUC-PR improve up to 89.3% and 59.4% , respectively.

We also quantify the prediction capabilities of the model
showing its performance w.r.t. each class. To this end, we
plotted the ROC curves for each test set. Figure 6 shows
the ROC curves for all classes when the malicious payload
is embedded in plain text with no additional encoding. In
this case, although the classifier gets good results, we can
observe some misclassification for URL/IP addresses and
Ethereum addresses with AUC equal to 0.89 in both cases.
This could be because both Ethereum addresses and URLs
are composed of few and similar alphanumeric characters,
making the classification more difficult. The ROC curves
for Base64-encoded test set are depicted in Fig. 7, where
we can observe a small degradation of the performances for
each class except for the legitimate images. Like the plain
text test, there is again a similar misclassification for URL/
IP and Ethereum addresses classes with AUC equal to 0.88
and 0.89, respectively. Moreover, the PowerShell class tends
to be misclassified with JavaScript probably due to the pres-
ence of similar statements like if-then-else, for, and
type declarations. Finally, in Fig. 8 the ROC curves for the
zip compression are shown. In this case, the system is still
able to distinguish between compromised and legitimate
images, but different payloads are misclassified from each
other, e.g., the AUC for PowerShell is equal to 0.70. An
explanation for this behavior could be that zip compression
reduces the differences between different payloads as well
as introduces new metadata, which may be similar for all
classes.

The second round of tests aimed at comparing the feder-
ated approach against a “centralized” blueprint, i.e., when all
the data are stored in the node S. Moreover, we also evalu-
ated the different approaches when dealing with payloads
obfuscated by the attacker, i.e., via Base64 encoding and
zip compression. Table 4 showcases the results. Concern-
ing plain and Base64-encoded payloads, the differences
between the approaches are minimal. Instead, in the case of
compressed zip payloads the federated solution achieves an
improvement of ∼10% in terms of AUC and AUC-PR w.r.t.
the centralized approach.

Summing up, the above results demonstrate that federated
learning can be effectively used to reveal the presence of con-
cealed contents while guaranteeing privacy and scalability
constraints. In more detail, the federated solution achieves
comparable performances with a fully centralized method
without the necessity of moving data toward a single node.
In this way, our approach can also be used in resource-con-
strained scenarios, e.g., IoT ecosystems.

5 Related works

In recent years, the impact of threat actors taking advantage
of information hiding techniques and steganography to make
their attack chains more complex and stealthier has also been
extended to the Web and its services. For instance, cloaking
techniques can be used to juxtapose an additional layer for
managing contents of the “hidden Web”, i.e., a portion of the
Web only accessible via suitable search interfaces via known
keywords (Ntoulas et al. 2005). At the same time, the surge
of social media services offers a fertile playground for a
variety of scams and malicious activities that can be cloaked
in the bulk of data. Among the others, notable examples are
the use of text-based steganography for abusing contents of
online social networks (e.g., Twitter) to orchestrate bots and
implement command & control communications (Gurunath
et al. 2021). Another relevant scenario is the exploitation of
images and metadata used in Facebook to enrich the overall
user experience (Hiney et al. 2015). Owing to its double-
edged nature, hiding mechanisms can also be considered
effective tools to enforce copyright or track Web resources.
For example, XML contents can be “marked” by embedding
empty elements or patterns of white spaces in tags (Inoue
et al. 2001).

Unfortunately, both the Web and ad-hoc distribution
channels (e.g., application stores or software repositories)
are characterized by an almost infinite set of digital assets
that can be exploited for cloaking data. In particular, exe-
cutables, such as .exe, .apk, and .ipa, can be retrieved
almost everywhere on the Internet, thus making it impos-
sible to outline a precise attack surface. Data can then be
cloaked in executable code through the manipulation of
specific redundancies, such as the injection of uncommon
instructions or the alteration of the relative frequency of
jumps (see, e.g., Anckaert et al. (2005) for IA-32 code).

For the specific case of enforcing the security of mobile
applications, the most popular frameworks typically rely
upon a variety of techniques (e.g., static binary analysis,
anomaly-based detection, and definition of access control

Table 4 Comparison of centralized and federated approaches with
different test sets

Best values are reported in bold

Approach Coding AUC AUC-PR F1-Score

Centralized Plain 0.972 0.851 0.835
Base64 0.899 0.605 0.589
zip 0.776 0.397 0.344

Federated Plain 0.970 0.842 0.817
Base64 0.893 0.594 0.614
zip 0.856 0.498 0.363

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 10 of 15

policies in end nodes). Alas, this requires a strict cooperation
among developers, users, and administrators of application
stores (He et al. 2015). In general, the current trend is to
exploit ML or AI to analyze behaviors of software, mainly
to search for existent attack signatures or unexpected interac-
tions among software components.3 Such tools have proven

to be effective also to mitigate attacks based on information
hiding targeting digital media (Monika and Eswari 2022;
Cassavia et al. 2022). Unfortunately, the deployment of AI-
capable techniques might clash with practical constraints.
First, the inspection of bundled assets and copyrighted mate-
rial should respect privacy-enforcing regulations requiring
architectures to not process any personal information (Paw-
licka et al. 2020). Second, the continuous growth of mobile
ecosystems is leading to millions of samples to verify. Appli-
cations can also be made available via different store replicas

Fig. 6 All classes ROC curves, plain text test set

3 Cloud-based protection mechanisms at the basis of the Google Play
Protect framework: https:// devel opers. google. com/ andro id/ play- prote
ct/ cloud- based- prote ctions

https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections

Social Network Analysis and Mining (2023) 13:114

1 3

Page 11 of 15 114

for performance purposes, through unofficial channels (e.g.,
alternative stores (Guarascio et al. 2018) or via sideloading
(Li et al. 2017)) as well as in Web or ad-hoc social media
channels, thus rendering the creation of comprehensive data-
sets a hard task (Wang et al. 2019). To partially cope with
challenges to improve the security of mobile ecosystems,
federated approaches are becoming a precious tool (Rahman
et al. 2020).

As regards the goal of spotting contents cloaked in digital
images via distributed or cloud-native frameworks, Yang

et al. (2020) exploits federated transfer learning to improve
the performance of image steganalysis tasks while preserv-
ing the privacy of users. Even if this work has a similar
goal, there are some major differences with our idea. First,
it considers (user) end nodes instead of app-stores and does
not focus on real malware samples. As a consequence,
authors investigated the performance when in the presence
of advanced steganographic methods acting on the spatial
domain (i.e., WOW, S-UNIWARD, and HILL), which have
never been observed in real attacks due to their complexity

Fig. 7 All classes ROC curves, Base64 test set

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 12 of 15

(Mazurczyk and Caviglione 2015; Caviglione and Mazurc-
zyk 2022). Despite the work concentrates on digital images
similar to those used for the creation of Android/iOS icons
(i.e., cropped pictures of 512 × 512 pixels), experiments only
bear with greyscale images, which are seldom used in mod-
ern mobile applications. Rather, greyscale or B &W images
are used for UI widgets, but their steganographic capacity
could be very limited and the detection of massive tamper-
ing of assets bundled within a mobile application could be

effectively done without the need for AI (see, e.g., Faruki
et al. (2013)).

Considering different use cases, the literature offers vari-
ous works dealing with the adoption of federated learning
to tame realistic threats. As an example, Jiang et al. (2022)
shows a framework for enabling end nodes running Android
to classify several types of malware, including ransomware
and spyware but not steganographic threats. The problem
of classifying malicious samples is also addressed in Lin
and Huang (2020), but it focuses on a generic scenario not

Fig. 8 All classes ROC curves, zip test set

Social Network Analysis and Mining (2023) 13:114

1 3

Page 13 of 15 114

related to the security of mobile applications. Instead, Sha-
mili et al. (2010) concentrates on the problem of detecting
malware but for an OS no longer used (i.e., Symbian S60).

To face the multifaceted cybersecurity challenges of
modern deployments, a possible “meet in the middle” blue-
print should offload end nodes toward edge entities placed
at the border of the network, and cooperating stores could be
adopted to implement such an architecture. To this extent,
the literature does not offer prior attempts based on edge
computing to reveal the presence of threats endowed with
information hiding or image steganography capabilities.
In fact, this paradigm, jointly with federated techniques,
has been largely used in IoT scenarios often composed of
resource-constrained nodes (Tian et al. 2021). Besides,
for the specific case of mobile security, edge/federated
approaches have been mainly adopted to guarantee privacy
constraints. A notable exception is Hsu et al. (2020), which
demonstrates how to detect malware without exposing sensi-
tive information of end users, such as configuration details
or how various application program interfaces are invoked.

6 Conclusions and future works

In this paper, we have presented a federated framework for
the detection of malicious assets cloaked in icon images
bundled or repackaged within applications. Our approach
demonstrated its effectiveness in handling applications made
available through multiple (un)official stores or directly from
Web and social media. The federated framework also show-
cased good performances with threat actors trying to avoid
detection via elusive schemes, e.g., when the secret data is
encoded in Base64 or compressed with the zip algorithm to
have an “obfuscating envelope”.

As shown, the federated blueprint should be considered
of particular value to enforce the security of scenarios where
applications could also be distributed outside classic pipe-
lines. For instance, this is the case of software made directly
available in public repositories, social media, or Web pages.
A federated scheme can prevent constraints and bottlenecks
characterizing single-point architectures, e.g., scalability
issues and lack of comprehensive snapshots for training
the models. Even if implementing such a vision is almost
straightforward for single-vendor deployments, federating
stores owned by different entities could be unfeasible, or
require additional engineering. Another limitation concerns
the ability of a threat actor running a malicious repository
to join the federation and inject incorrect information to
improve its undetectability. Lastly, crawling large sources
to gather the required data could be time-consuming or dif-
ficult. As an example, some websites prevent scraping, and
many social media services limit the rate at which informa-
tion can be requested.

Therefore, future works aim at removing the aforemen-
tioned weaknesses. For instance, a suitable communication
mechanism (e.g., a specific set of protocols endowed with
security guarantees) could promote cooperation among vari-
ous stores while mitigating the risk of attacks. Another rel-
evant aim of our future research is devoted to extending the
proposed approach to detect other types of steganographic
threats, especially malicious information cloaked in network
traffic. In more detail, we are interested in evaluating if the
benefits of the federated approach can also be leveraged to
monitor large-scale networks or microservice-based archi-
tectures. As an example, traffic can be collected in multiple
points placed at the border of a network/datacenter so as
to enforce scalability properties and avoid the necessity of
moving sensitive/confidential data.

Acknowledgements This work was partially supported by project
SERICS (PE00000014) under the NRRP MUR program funded by
the EU-NGEU.

Funding Open access funding provided by Università della Calabria
within the CRUI-CARE Agreement.

Data availability Data used in this work are available at link https://
www. kaggle. com/ datas ets/ marco zuppe lli/ stego image sdata set

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Almaiah MA, Al-Zahrani A, Almomani O, Alhwaitat AK (2021) Clas-
sification of cyber security threats on mobile devices and applica-
tions, pp 107–123. Springer, Cham

Anckaert B, De Sutter B, Chanet D, De Bosschere K (2005) Steg-
anography for executables and code transformation signatures.
In: Information security and cryptology–ICISC 2004: 7th inter-
national conference, Seoul, Korea, December 2–3, 2004, Revised
Selected Papers 7, pp 425–439. Springer

Cassavia N, Caviglione L, Guarascio M, Manco G, Zuppelli M (2022)
Detection of steganographic threats targeting digital images in
heterogeneous ecosystems through machine learning. J Wireless
Mobile Netw Ubiquit Comput Depend Appl 13:50–67

https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset
https://www.kaggle.com/datasets/marcozuppelli/stegoimagesdataset
http://creativecommons.org/licenses/by/4.0/

 Social Network Analysis and Mining (2023) 13:114

1 3

114 Page 14 of 15

Cassavia N, Caviglione L, Guarascio M, Liguori A, Surace G., Zup-
pelli, M (2023) Federated learning for the efficient detection
of steganographic threats hidden in image icons. In: Pervasive
knowledge and collective intelligence on web and social media,
pp 83–95. Springer, Cham

Caviglione L, Mazurczyk W (2022) Never mind the malware, here’s the
stegomalware. IEEE Security Privacy 20(5):101–106

Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image
steganography: survey and analysis of current methods. Signal
Process 90(3):727–752

Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A (2013) Andro-
Similar: robust statistical feature signature for Android malware
detection. In: Proceedings of the 6th international conference on
security of information and networks, pp 152–159

Gibert D, Mateu C, Planes J (2020) The rise of machine learning for
detection and classification of malware: research developments,
trends and challenges. J Netw Comput Appl 153:102526

Guarascio M, Manco G, Ritacco E (2018) Deep learning. Encyclopedia
of Bioinf Comput Biol ABC Bioinf 1–3:634–647

Guarascio M, Ritacco E, Biondo D, Mammoliti R, Toma A (2018)
Integrating a framework for discovering alternative app stores in
a mobile app monitoring platform. In: New frontiers in mining
complex patterns, pp 107–121. Springer, Cham

Guarascio M, Zuppelli M, Cassavia N, Caviglione L, Manco G (2022)
Revealing MageCart-like threats in favicons via artificial intel-
ligence. In: Proceedings of the 17th international conference on
availability, reliability and security, pp 1–7

Gurunath R, Klaib MFJ, Samanta D, Khan MZ (2021) Social media
and steganography: use, risks and current status. IEEE Access
9:153656–153665

He D, Chan S, Guizani M (2015) Mobile application security: malware
threats and defenses. IEEE Wireless Commun 22(1):138–144

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pp 770–778

Hiney J, Dakve T, Szczypiorski K, Gaj K (2015) Using facebook for
image steganography. In: 2015 10th international conference on
availability, reliability and security, pp 442–447. IEEE

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov
RR (2012) Improving neural networks by preventing co-adapta-
tion of feature detectors. arXiv preprint arXiv: 1207. 0580

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15:1929–1958

Hsu R-H, Wang Y-C, Fan C-I, Sun B, Ban T, Takahashi T, Wu T-W,
Kao S-W (2020) A privacy-preserving federated learning system
for Android malware detection based on edge computing. In:
15th Asia joint conference on information security (AsiaJCIS),
pp 128–136. IEEE

Inoue S, Makino K, Murase I, Takizawa O, Matsumoto T, Nakagawa
H (2001) A proposal on information hiding methods using XML.
In: The 1st workshop on NLP and XML, pp 707–710

Jiang C, Yin K, Xia C, Huang W (2022) Fedhgcdroid: an adaptive
multi-dimensional federated learning for privacy-preserving
Android malware classification. Entropy 24(7):919

Li L, Li D, Bissyandé TF, Klein J, Le Traon Y, Lo D, Cavallaro L
(2017) Understanding Android app piggybacking: a systematic
study of malicious code grafting. IEEE Trans Inf Forensics Secu-
rity 12(6):1269–1284

Lin K-Y, Huang W-R (2020) Using federated learning on malware
classification. In: 2020 22nd International conference on advanced
communication technology (ICACT), pp 585–589. IEEE

Loshchilov I, Hutter, F (2019) Decoupled weight decay regularization.
In: International conference on learning representations

Mazurczyk W, Caviglione L (2015) Information hiding as a challenge
for malware detection. IEEE Security Privacy 13(2):89–93

Mazurczyk W, Caviglione L (2021) Cyber reconnaissance techniques.
Commun ACM 64(3):86–95

Monika A, Eswari R (2022) Prevention of hidden information secu-
rity attacks by neutralizing stego-malware. Comput Electrical Eng
101:107990

Mylonas A, Kastania A, Gritzalis D (2013) Delegate the smartphone
user? Security awareness in smartphone platforms. Comput Secu-
rity 34:47–66

Nair V, Hinton GE (2010) Rectified linear units improve restricted
Boltzmann machines. In: Proceedings of the 27th international
conference on international conference on machine learning
(ICML), Haifa, Israel, pp 807–814

Neyshabur B, Sedghi H, Zhang C (2020) What is being transferred in
transfer learning? In: Adv Neural Inf Process Syst 33:512–523

Ntoulas A, Zerfos P, Cho J (2005) Downloading textual hidden web
content through keyword queries. In: Proceedings of the 5th
ACM/IEEE-CS joint conference on digital libraries, pp 100–109

Papageorgiou A, Strigkos M, Politou E, Alepis E, Solanas A, Patsakis
C (2018) Security and privacy analysis of mobile health applica-
tions: the alarming state of practice. IEEE Access 6:9390–9403

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen
T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E,
DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang
L, Bai J, Chintala S (2019) PyTorch: an imperative style. High-
Performance Deep Learning Library. Curran Associates Inc., Red
Hook, NY, USA

Pawlicka A, Jaroszewska-Choras D, Choras M, Pawlicki M (2020)
Guidelines for stego/malware detection tools: achieving GDPR
compliance. IEEE Technol Soc Mag 39(4):60–70

Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G (2014) Exe-
cute this! analyzing unsafe and malicious dynamic code loading
in android applications. NDSS 14:23–26

Rahman SA, Tout H, Talhi C, Mourad A (2020) Internet of Things
intrusion detection: Centralized, on-device, or federated learning?
IEEE Network 34(6):310–317

Shamili AS, Bauckhage C, Alpcan T (2010) Malware detection on
mobile devices using distributed machine learning. In: 20th inter-
national conference on pattern recognition, pp 4348–4351. IEEE

Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J (2013)
Mobile-sandbox: having a deeper look into android applications.
In: Proceedings of the 28th annual ACM symposium on applied
computing, pp 1808–1815

Suarez-Tangil G, Tapiador JE, Peris-Lopez P (2014) Stegomalware:
Playing hide and seek with malicious components in smartphone
apps. In: Proceedings of the 10th international conference on
information security and cryptology (ICISC), Beijing, China, vol
8957, pp 496–515. Springer

Tian P, Chen Z, Yu W, Liao W (2021) Towards asynchronous federated
learning based threat detection: a DC-Adam approach. Comput
Security 108:102344

Wang H, Li H, Guo Y (2019) Understanding the evolution of mobile
app ecosystems: a longitudinal measurement study of Google
Play. In: The World Wide Web conference, pp 1988–1999

Wortsman M, Ilharco G, Gadre SY, Roelofs R, Gontijo-Lopes R, Mor-
cos AS, Namkoong H, Farhadi A, Carmon Y, Kornblith S, et al.
(2022) Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time. In:
International conference on machine learning, pp 23965–23998.
PMLR

Yang H, He H, Zhang W, Cao X (2020) Fedsteg: a federated transfer
learning framework for secure image steganalysis. IEEE Trans
Netw Sci Eng 8(2):1084–1094

Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware charac-
terization and detection using deep learning. Tsinghua Sci Tech-
nol 21(1):114–123

http://arxiv.org/abs/1207.0580

Social Network Analysis and Mining (2023) 13:114

1 3

Page 15 of 15 114

Zhou W, Zhou Y, Jiang X, Ning P (2012) Detecting repackaged smart-
phone applications in third-party android marketplaces. In: Pro-
ceedings of the second ACM conference on data and application
security and privacy, pp 317–326

Zuppelli M, Manco G, Caviglione L, Guarascio M (2021) Sanitiza-
tion of images containing stegomalware via machine learning

approaches. In: Proceedings of the Italian conference on cyberse-
curity (ITASEC), Online, vol 2940, pp 374–386

	A federated approach for detecting data hidden in icons of mobile applications delivered via web and multiple stores
	Abstract
	1 Introduction
	2 Attack model and federated approach
	3 Framework
	3.1 Solution approach
	3.2 Neural architecture
	3.3 Ensembling via soup models

	4 Experimental results
	4.1 Dataset and parameters
	4.2 Evaluation metrics
	4.3 Numerical results

	5 Related works
	6 Conclusions and future works
	Acknowledgements
	References

