
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:89 
https://doi.org/10.1007/s13278-023-01094-9

ORIGINAL ARTICLE

Network structures of urban ride‑pooling problems and their 
properties

Michal Bujak1,2 · Rafal Kucharski1

Received: 10 March 2023 / Revised: 27 April 2023 / Accepted: 5 May 2023 / Published online: 19 May 2023 
© The Author(s) 2023

Abstract
Travellers, when sharing their rides in a so-called ride-pooling system, form complex networks. Despite being the algorithmic 
backbone to the ride-pooling problems, the shareability graphs have not been explicitly analysed yet. Here, we formalise 
them, study their properties and analyse relations between topological properties and expected ride-pooling performance. 
We introduce and formalise two representations at the two crucial stages of pooling analysis. On the NYC dataset, we run 
two simulations with the link generation formulas. One is when we increase discount offered to the travellers for shared 
rides (our control variable) and observe the phase transition. In the second, we replicate the non-deterministic behaviour of 
travellers in ride-pooling. This way, we generate probabilistic, weighted networks. We observed a strong correlation between 
the topological properties of ride-pooling networks and the system performance. Introduced class of networks paves the 
road to applying the network science methods to a variety of ride-pooling problems, like virus spreading, optimal pricing 
or stability analysis.

Keywords  Ride-pooling · Complex networks · Shareability graph · Matching graph · Probabilistic ride-pooling

1  Introduction

An increasingly popular urban mobility alternative is ride-
pooling, where travellers share a vehicle to reach their des-
tination, as illustrated in Fig. 1. By pooling, travellers can 
reduce their travel costs (thanks to discounted fare), mobility 
platforms (like Uber and Lyft) can use their fleets more effi-
ciently, and cities can reduce emissions (via reduce mileage). 
As identified in the seminal work of Santi et al. (2014) and 
Alonso-Mora et al. (2017), travellers who decide to share 
their trips form graph structures. Although the so-called 
shareability networks are central to solving the challenging 
ride-pooling problems, hitherto they have not been explicitly 
analysed.

From a network perspective, ride-pooling can be seen 
as the connection between two or more nodes. The node is 
a traveller, or more precisely, her trip request (her origin, 
destination and request time). The link is established on two 
levels. First, when travellers agree to travel together (in our 
case, this means that the shared trip is attractive to all co-
travellers). Second, when they actually travel together (when 
each traveller is uniquely assigned to a particular trip).

These two interpretations of the links lead to two different 
network structures (the second being a subgraph of the first). 
We will refer to the first representation as shareability, i.e. 
the potential to travel together, and the second as matching, 
i.e. actual travel together. In the former, the link generation 
is on one side driven by the spatio-temporal similarity of 
pooled trips (trips from nearby origins to nearby destina-
tions, close temporary) and on the other, by the behaviour 
(travellers’ willingness-to-share and value-of-time). Share-
ability between two travellers is asymmetrical, i.e. it may be 
attractive for me to travel with you, yet it is not necessarily 
attractive for you to travel with me. Here, we assume that the 
link is formed only when the attractiveness is bidirectional 
(making the graph undirected). While an individual can be 
the part of multiple pooled rides, she can travel only with 
one selected ride. Represented as the matching, a sub-graph 
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of the shareability and the links that remain are part of the 
optimal solution such that each traveller is uniquely assigned 
to a ride and the total cost of rides is minimised (typically 
total distance or time).

Such network representation, despite being meaning-
ful, is ambiguous. For instance, three pairwise connected 
travellers form a triangle on the shareability graph, yet we 
cannot tell if they can form a triple and travel together, or 
not. To this end, we propose an alternative, bipartite formu-
lation. We introduce a new type of node: the trip, which can 
be interpreted as a vehicle trip during which co-travellers 
travel together. In the bipartite network, the links are formed 
between travellers and rides. We will refer to the former as 
simple networks and the latter as bipartite networks.

These two levels of twofold distinction lead to four types 
of networks, which we explore in this paper. We run two 
simulations to understand the significance of those net-
works. To understand how the network properties evolve 
with the control variable, we gradually increase the dis-
count offered for pooled rides. This directly impacts the 
link generation formula in the shareability network, since 
the travellers’ willingness to ride together is incentivised 
at lower costs. We not only observe the transition, but 
also their strong correlations with ride-pooling system 
performance indicators. Then, we explore the stability of 
networks and their properties with non-deterministic ride-
pooling behaviour. In that case, the link generation depends 
on non-deterministic willingness-to-share between two 
travellers. In reality, despite the spatio-temporal similar-
ity of trips, the travellers may be unwilling to share (due 
to their behavioural traits), or vice versa wanting to share 
despite high detours and delays. We incorporate such a 
notion (using recent empirical findings on heterogeneous 
ride-pooling behaviour) and generate the probabilistic, 
weighted version of the shareability graphs.

Such weighted shareability and matching graphs, con-
sistent with the actual travel behaviour, can be useful not 
only for a deeper understand of the still challenging ride-
pooling problems, but also instrumental in the variety 
of practical problems with established network-science 

techniques, like: community detection, discriminative 
pricing, vital nodes or virus spreading in ride-pooling 
networks.

1.1 � Related literature

Shareability networks were introduced in ride-pooling by 
Santi et al. (2014), who used networks to translate spatio-
temporal problems into a graph framework. The graph 
representation was simplified by the algorithm constraint, 
which allowed matching at most two travellers (here we 
allow any ride degree). The network representation was 
further extended by Alonso-Mora et al. (2017) allowing 
for higher degree trips. In their study, nodes were both 
travellers and vehicles linked when they were travelling 
together (similar to our bipartite networks).

Many authors have proposed real-time algorithms to 
solve the ride-pooling problem. Most of them rely on fixed 
time or distance windows (Santi et al. 2014; Ke et al. 2021; 
Shah et al. 2020; Bilali et al. 2020; Wang et al. 2021). 
Pooling passengers are governed with the hard constraints, 
i.e. when the delay and detour are within the given bounds 
travellers are pooled, which can be seen as a link genera-
tion formula of the underlying network. In our study, we 
use the ExMAS algorithm proposed by Kucharski and Cats 
(2020). It is an off-line method applied from the perspec-
tive of the traveller; it uses the behavioural utility-based 
link generation formula and allows finding an exact solu-
tion for real-size ride-pooling problems.

Recent studies reported that attitude towards pooling 
varies among heterogeneous individuals (Krueger et al. 
2016; Lavieri and Bhat 2019; Alonso-González et  al. 
2020). Ranging from with pooling enthusiasts, who prefer 
shared rides due to environmental benefits, up to scep-
tics who are time-sensitive and unwilling to travel in a 
crowded vehicle (Alonso-González et al. 2020). Such an 
approach makes the link generation formula probabilistic, 
dependent on the latent behaviour of individual travel-
lers. To estimate the probabilities of links and nodes, we 
introduce weighted ride-pooling networks, which often 

Fig. 1   Ride-pooling illustrated. Three travellers request to travel 
from their origins (marked with × ) to destinations (marked with a 
∇ ). Apart from offering them three separate solo rides (marked with 
grey), ride-hailing platform (like Uber) offers to pool them together 

and serve with a single trip (red). Such pooled ride can be expressed 
as a network, where nodes are travellers, linked when they travel 
together. As we demonstrate, several meaningful network representa-
tions can arise (Color figure online)
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represent reality better than their unweighted counterparts 
(e.g. Squartini et al. 2011; Aftabuddin and Kundu 2006; 
De Montis et al. 2007). We introduce the probabilistic part 
in the utility formula, remaining consistent with discrete 
choice theory Ortúzar and Willumsen (2011).

Introducing the class of network structures within the 
formulation of ride pooling problem should allow for the 
application of a wide spectrum of complex networks tech-
niques. The exemplary applications are: studies on virus 
spreading mitigation while maintaining the service effec-
tiveness (Zareie and Sakellariou 2022); social network 
interventions which consider topological relationships 
existing between communities (Corcoran et al. 2022); day-
to-day virus spreading via pooling system (Kucharski et al. 
2021); multi-objective optimisation to identify key play-
ers in large social networks which can be applied to find 
crucial travellers for the service performance (Gunasekara 
et al. 2015).

The network structures introduced by Santi et al. (2014) 
and Alonso-Mora et al. (2017) were used in the algorithms, 
but not explicitly analysed. In our study, we formalise 
simple and bipartite representation. We tried to quantify 
the networks with a standard measures; however, certain 
properties, such as the clustering coefficient [introduced 
in Watts and Strogatz (1998)], cannot be calculated in the 
usual way for the bipartite network, as recognised by Lind 
et al. (2005). Hence, we use the approach proposed by 
Zhang et al. (2008).

In this study, we reveal the potential of ride-pooling 
networks towards better understanding the challenges of 
ride-pooling. We formalise the networks and experimen-
tally show not only that they well approximate the key per-
formance indicators of ride-pooling, but also provide rich 
meaningful structures, instrumental for a series of opened 
ride-pooling problems.

2 � Methodology

We start with a brief introduction of the ride-pooling algo-
rithm that we use to generate our networks. We focus on the 
link generation formula, which governs creating the share-
ability networks. Then, we formalise the four network struc-
tures that emerge while solving the ride-pooling problem. 
We introduce the network measures that we find meaningful 
to observe in our simulations. We consider two versions of 
the link-generation formula: deterministic and probabilistic. 
Thus, in the last stage, we formalise the probabilistic link-
generation formula and the resulting estimates of probabil-
istic networks.

2.1 � Ride‑pooling algorithm

Exact matching of attractive shared rides (ExMAS) is a 
utility-based algorithm introduced by Kucharski and Cats 
(2020). It is an offline algorithm that allows finding an opti-
mal solution to the ride-pooling problem. Unlike many real-
time algorithms, the traveller is placed in the middle. We 
do not assume any hard constraints (time window, detour 
length), but we compute whether the trip is attractive to the 
user. To assess whether a shared ride is attractive to the trav-
eller, we compare its perceived utility with the utility of a 
private ride by applying the formulas:

where Us
i,rk

 , Uns
i

 denote, respectively, utility of shared ride 
(for i-th traveller, ride rk ) and utility of non-shared ride (for 
i-th traveller). � stands for price, while �s denotes discount 
for sharing a ride. Both are controlled by the operator, yet in 
the simulations we play only with the discount. �c , � t , �s �d 
are the exogenous behavioural parameters: cost sensitivity, 
value of time, sharing discomfort and delay sensitivity, 
respectively. ti and t̂i stand for travel time of non-shared and 
shared ride, respectively, t̂p

i
 is a pick-up delay associated with 

pooling and � is a random term.
Utility formulas determine the sign of the difference 

Us
i,rk

− Uns
i

 . In the simulation process, in each run, we sample 
the random term (epsilon) hence obtaining a specific utility 
value for each ride for each traveller. If the sign is positive, 
we say that the ride is attractive for the traveller. If a ride is 
attractive for all its participants, we say that the ride is fea-
sible. Notably, from our network’s perspective, the utility-
formula can be interpreted as the link generation formula in 
the shareability graph. We assume that the only endogenous 
variable is the price and discount ( � ’s controlled by the plat-
form provider) and other components are exogenous and not 
directly controlled, including the behavioural traits � s, ran-
dom term � and detour t̂i and delay t̂p

i
 (which depend on the 

particular ride realisation—as illustrated in Fig. 1).
ExMAS first determines the set of feasible rides. The ride 

is defined as any subset of travellers’ trips (including a solo 
ride) with the specific order of pick-ups and drop-offs of co-
travellers. We start by assuming that a private trip is always 
feasible for the traveller. Next, we determine the set of pairs 
(rides comprising two travellers), which already creates the 
shareability graph [which, in the original ExMAS algorithm, 
is a directed-multigraph (Kucharski and Cats 2020)]. From 
the rides in the pair-wise shareability graph, we gradually 
search for rides of higher degree. Potential rides of higher 
degree are identified as cliques and searched recursively. 
Feasible triples are composed of feasible pairs, quadruple 
of triples and so on. This approach allows us to reduce the 

(1)
Uns

i
= 𝛽c𝜆li + 𝛽tti

Us
i,rk

= 𝛽c(1 − 𝜆s)𝜆li + 𝛽t𝛽s(t̂i + 𝛽dt̂
p

i
) + 𝜀,
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search space, and the proposed algorithm remains exhaus-
tive. (All attractive rides are found.)

From the set of all feasible pooled rides, we find the opti-
mal subset that maximises our objective function. Notably, 
the matching is done by the operator. Travellers are already 
satisfied with the potential assignments as the set of the fea-
sible rides comprises only attractive rides and the operator 
is free to identify the optimal matching within the attractive 
rides. In the study, the objective is the total mileage (dis-
tance travelled). By solving the bipartite matching problem, 
we find the optimal subset that satisfies the condition that 
each traveller is served exactly with a single ride. The final 
solution is the set of rides which is referred to as matching.1

2.2 � Shareability networks

The shareability graphs emerging while solving ride-pooling 
problems were introduced already in the seminal paper by 
Santi et al. (2014). Here, we formalise it in more detail. The 
first representation (further denoted as a simple) is a network 
where nodes represent travellers and links represent feasible 
rides. Two nodes are connected if a trip comprising the two 
travellers is attractive to both of them. The network is easy 
to interpret, but the underlying information is ambiguous. 
For example, if three nodes form a triangle, we do not know 
whether the whole triple constitutes a feasible ride of third 
degree, or just all of three connected pairs are feasible. To 
avoid this ambiguity, we propose an alternative represen-
tation. We construct a bipartite network where nodes are 
formed not only with travellers but also with feasible rides. 
Travellers are connected to all feasible trips in which they 
participate. Ride is connected with all the travellers that par-
ticipate in it.

Both formulations of the shareability graph, despite 
meaningful, are unfeasible in practice. Namely, each 
traveller may be part of multiple feasible rides, while in 
practice she can travel only in one of them. The physical 
implementation of ride pooling is a matching graph, which 
contains only links being part of the optimal matching. The 
constraint on bipartite matching is that each traveller is 

uniquely assigned to exactly one ride, and the objective is 
to minimise the total mileage. The optimal matching can be 
formed as a subset of both a simple and bipartite network. 
The resulting four types of networks are summarised in 
Table 1 and visualised for the case study of 147 NYC trip 
requests in Fig. 2.

Mind that while the utility formulas in Eq. 1 can be 
seen as the link generation formula for the graphs, it is not 
straightforward. In the simple shareability network, the link 
between nodes i and j is formed if and only if both i and j 
opt to participate in a shared ride. As the utility formula 
determines the feasibility of rides, in the bipartite match-
ing network, Eq. 1 conditions the existence of (rides) nodes 
among which the optimal matching is selected. Matching 
structures are subsets of the shareability counterparts (hence 
indirectly impacted by the utility formula); however, the sub-
setting process is subject to objective maximisation (mileage 
reduction) and irrespective of the utility values. Nonetheless, 
while we do not derive an explicit link generation formula, 
the utility equations remain the main driver of the ride-pool-
ing networks’ structures.

2.3 � Topological measures

We measure topologies of the networks with the following 
set of state-of-the-practice indicators. We selected mean-
ingful and interpretable indicators which were either cor-
related with performance indicators or evolved nicely along 
the transition of the system.

We start with average node degrees (the averaged number 
of connections that a node has to other nodes in the net-
work), reported in three forms: for travellers in the simple 
networks, for travellers and for rides in the bipartite net-
works. Average degree in simple shareability network rep-
resents the number of feasible rides one passenger has. In 
the simple matching graph, the average degree represents the 
number of assigned co-travellers. In bipartite representation, 
the degree of traveller node denotes the number of feasible 
rides in the shareability network and is, by the definition, 
always equal to 1 in the matching network. Degree of the 
ride node is the number of travellers participating in the ride.

For both networks, we report the coverage of the largest 
component, i.e. the fraction of nodes that forms the largest 
connected subnetwork. Formally, given the graph with n 
nodes, we find its largest connected component, which has 

Table 1   Four networks of ride 
pooling. Simple and bipartite 
representations at the two 
levels: all the feasible rides 
(shareability) and the optimal 
solution (matching)

Network Nodes Links

Simple shareability Travellers Attractive pooling (between travellers)
Simple matching Travellers Optimal matching (between travellers)
Bipartite shareability Travellers and rides Attractive pooling (between travellers and rides)
Bipartite matching Travellers and rides Optimal matching (between travellers and rides)

1  Full algorithmic details on the algorithm are provided by Kuchar-
ski and Cats (2020) and the open-source Python code is available at 
https://​github.​com/​Rafal​Kucha​rskiPK/​ExMAS.

https://github.com/RafalKucharskiPK/ExMAS
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m nodes ( m <= n ). Hence, we define coverage of the largest 
component as the fraction m/n. While the relative size (cover-
age) of the largest component has no direct physical interpre-
tation, it demonstrates network connectivity and the values 
significantly differ between the simple and bipartite network 
representations.

To understand how many travellers cannot share any ride, 
we compute either number of isolate nodes (node of degree 
0 in the simple graphs) or the number of isolated links (pair 
traveller-ride in the bipartite networks, where both nodes are 
of degree 1).

Finally, we report various forms of clustering coefficients. 
We define clustering coefficient cv of a node v as

where T(v) denotes number of triangles through the node 
v, and deg(v) is the degree of the node v. For the simple 
network the classic method is applicable, yet not for the 
bipartite network. Therefore, we use the formula suggested 
by Zhang et al. (2008):

where C4(v) is the square clustering of the node v, kv is its degree, 
qv(u,w) is the number of common neighbours of u and w, 
av(u,w) = ku − (1 + qv(u,w) + �uv) + kw − (1 + qv(u,w) + �u,w)  , 
where �u,w is a binary variable indicating whether u and w are 

(2)cv =
2T(v)

deg(v)(deg(v) − 1)
,

(3)C4(v) =

∑kv
u=1

∑kv
w=u+1

qv(u,w)

∑kv
u=1

∑kv
w=u+1

[av(u,w) + qv(u,w)]
,

Fig. 2   Four representations of networks of the ride-pooling prob-
lem solved for the case of 147 pooling travellers in NYC (detailed in 
the results). The shareability network (a) is highly connected, many 
nodes (travellers) are linked with multiple other potential co-travel-
lers. However, when travellers are uniquely assigned to vehicles in 
the matching network (b) the structure becomes dramatically more 
sparse. The bipartite forms of those two networks have similar struc-

tures. Travellers (top) are linked with rides (bottom). Among multi-
ple potentially feasible links (c), only a few remain the part of actual 
matching (d). For illustration, we highlighted a single traveller with 
red for all the structures. One sample traveller can share a ride with 
10 other travellers (a); in 23 different shared rides and a single solo 
ride (c). She is matched to the ride of degree 3 (b) which is uniquely 
represented in the lower side of the bipartite matching network (d)
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connected. We report average clustering coefficients for two 
sides of nodes in bipartite networks of nodes: travellers and 
rides. We also distinguish between nodes corresponding to 
shared rides (or travellers who can share) and solo rides (or 
travellers who are restricted to private rides only). Cluster-
ing coefficient of a node in the simple network represents a 
probability that two neighbours of the node are connected. 
Square clustering coefficient of a node in the bipartite network 
denotes probability that for the two neighbours of the node, 
there is another common neighbour.

2.4 � Non‑deterministic link generation formula

Despite the random term � in the link generation formula 
(Eq. 1), we hitherto assumed the resulting networks are 
deterministic ( � = 0 ). Yet, recent empirical findings Alonso-
González et al. (2020) suggest that attitudes towards pool-
ing vary across the population. To account for the fact, we 
have adopted a probabilistic model with utility composed 
of two parts: deterministic and the random term � follow-
ing the normal distribution. The formulation yields the so-
called probit model [detailed, e.g. in Ortúzar and Willumsen 
(2011)]. Determining whether a traveller accepts a shared 
ride (and forms a link in the shareability network) is now 
probabilistic. According to the probit formulation, we can 
say that the probability that the traveller i chooses to partici-
pate in the shared ride rj is given by:

where Φ0,� is the cumulative distribution function (CDF) of 
the normal distribution with mean 0 and standard deviation 
� and Ûs

i,rj
 is the deterministic part of Us

i,rj
.

For the simulation purposes, from the formulation 
P(Ûs

i,rj
− Uns

i
> −𝜀) in Eq. 4 and symmetry of � in 0, we can 

notice that the problem is equivalent to setting a normally 
distributed threshold Ti such that, if for deterministic Ûs

i,rj
 , 

Ûs
i,rj

− Uns
i
> Ti , the ride rj is attractive to the i-th traveller. 

We assume the traveller has a consistent attitude. It means 
that the threshold Ti is fixed for the i-th traveller in a single 
replication of the random process.

2.5 � Non‑deterministic shareability networks

Introducing the random element into the utility formula 
(Eq. 1) enriches the underlying network structures. In gen-
eral, the networks become probabilistic and those described 
in Sect. 2.2 are barely a single realisation of the random 
process. With the probabilistic nature of the link-generating 

(4)
P(ti ∈ rj) =P(Us

i,rj
− Uns

i
> 0) = P(Ûs

i,rj
+ 𝜀 − Uns

i
> 0)

=P(Ûs
i,rj

− Uns
i
> −𝜀) = Φ0,𝜎(Û

s
i,rj

− Uns
i
),

formula, we can propose a new representation of ride-pool-
ing networks.

Unfortunately, the analytic derivation of probabilistic 
networks is impossible, since long tails of normal distribu-
tion will make the shareability networks complete (each ride 
has a positive probability of being feasible, no matter how 
small). While adopting a probabilistic model to pairwise 
shareability may still remain feasible for practical problems, 
it becomes impossible for greater degrees. We would have to 
consider the power set of travellers, as well as the permuta-
tion of the order of pick-ups from origins and the permuta-
tion of the order of drop-offs at destinations (Fielbaum et al. 
2022). Enumerating all the potential rides and finding the 
optimal (probabilistic) solution in such space is computa-
tionally unfeasible.

Thus, we resort to reproducing the networks experimen-
tally, via replications. We replicate the sampling to obtain a 
sufficient number of realisations of the variables and in this 
way approximate the true, probabilistic results. We propose 
weighted networks, where nodes and links are the union of 
all nodes and links that appeared in graphs across replica-
tions. Each link is assigned a weight reflecting the number 
of replications in which it occurred and further loosely inter-
preted as an estimate of its probability.

Network structures vary across replications due to the 
probabilistic link-generating formula. In the simple net-
works, the nodes remain intact (travellers and their requests 
are assumed fixed), yet links are formed probabilistically. 
For bipartite networks, the traveller nodes do not change 
compared to deterministic representation, but the set of fea-
sible rides (ride nodes) changes across replications.

3 � Results

3.1 � Simulation design

We experiment with the dataset of trips actually requested 
within half an hour in New York City in January 2016.2 Each 
of the 147 requests links an origin with a destination at a 
given time (illustrated in Fig. 3).

We solve the ride-pooling problem for that demand 
with ExMAS, specifically we solve the off-line version 
of the ride-pooling problem (demand is assumed to be 
known in advance), do not explicitly handle individual 
vehicles and focus on the shareability between travellers 
instead. We assumed a realistic parametrisation of utility 

2  Dataset from which we drew the batch is publicly available at 
Zenodo as a Python pickle object (https://​doi.​org/​10.​5281/​zenodo.​
74377​68) and the reproducible code for simulations is available at 
https://​github.​com/​Rafal​Kucha​rskiPK/​ExMAS/​blob/​proba​bilis​tic_​
topol​ogical/​Utils/​Proba​bilis​tic_​ExMAS_​wrapp​er.​py.

https://doi.org/10.5281/zenodo.7437768
https://doi.org/10.5281/zenodo.7437768
https://github.com/RafalKucharskiPK/ExMAS/blob/probabilistic_topological/Utils/Probabilistic_ExMAS_wrapper.py
https://github.com/RafalKucharskiPK/ExMAS/blob/probabilistic_topological/Utils/Probabilistic_ExMAS_wrapper.py
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formula (Eq. 1) with fare � of 1.5 $/km [consistent with 
NYC Taxi & Limousine Commission (2022)], a sharing 
discount �s of 30% [in the range suggested by Shaheen and 
Cohen (2019)], a time value of �t = 16.56$∕h , willingness 
to share �s = 1.148 [which is the weighted averages of the 
mean values reported in the empirical study of Alonso-
González et al. (2020)] and we set no additional penalty 
for delay, i.e. �d = 1.

We run two simulations for analyses. First when we 
trace the transition in the shareability graph by increasing 
the probability in link generation formula (via the dis-
count �s offered for sharing in Eq. 1) and second when 
we assume link-generation formula is probabilistic and 
we replicate the ride-polling problem solutions to obtain 
weighted probabilistic networks. (Link is generated with 
a probability given with Eq. 4.)

In the former, we gradually increase the discount from 
0 to 50% with the fixed demand structure. In the latter, we 
assume that � in Eq. 1 follows the standard normal distri-
bution (mean of 0, variance of 1) and is once drawn per 
replication for each traveller. We replicate the sampling 

1000 times to obtain a meaningful approximation of link 
probabilities.

3.2 � Transition via increasing ride‑pooling discount

System settings, along with demand structure, determine the 
topology of the ride-pooling networks. We investigate the 
relation between the sharing discount and network charac-
teristics. From the traveller’s perspective, sharing discount 
constitutes the positive side of ride-pooling. The discomfort 
associated with sharing and the extension of the total travel 
time (which we do not control) must be sufficiently com-
pensated, with a discount (which we control) in the utility 
formula (Eq. 1).

Figure 4 demonstrates the impact of the sharing discount 
on the structure of the shareability graphs and on the effi-
ciency of the system.

When no discount is offered, travellers do not share rides, 
the network composed of isolated nodes. When the discount 
is high, the number of feasible rides increases sharply, shift-
ing towards a connected regime (when most pairs of travel-
lers would be happy to share a ride). Increasing the sharing 

Fig. 3   Demand dataset for 
simulations: 147 trip requests 
from Jan 2016 in Manhattan, 
NYC. Green dots represent 
origins, orange—destinations 
(Color figure online)

Fig. 4   Transition in the graph structures induced by increasing ride-
pooling discount. The average node degree of both travellers and 
rides increases as the network becomes more densely connected with 
greater discount (Fig. 4a); however, the shapes and values are differ-
ent, the number of trips to which a traveller can be matched (green) 
increases exponentially and reaches several hundred feasible rides. 
The average degree of rides (blue) increases linearly and reaches an 
average degree of 3.5. Clustering coefficient in the bipartite network 
starts increasing both for travellers and rides for discounts greater 
than 20% (Fig. 4b). Figure 4c demonstrates, for the simple network, 

the average degree (green), which denotes with how many other 
co-travellers one can share a ride and the average clustering coeffi-
cient (blue) denotes the probability that your neighbours are also 
connected. Figure  4d depicts the impact of the sharing discount on 
two economical properties: the profitability of the ride-pooling sys-
tem and the number of rides. The profitability represents how the 
discounted fares (reduced profits) are compensated with the reduced 
costs (lower mileage). It is positive when the mileage reduction is 
greater the fare discount
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discount makes shared rides more attractive and, in the net-
work interpretation, new links appear. In the bipartite struc-
ture (Fig. 4a), the degree of a traveller node is the number of 
different rides he is willing to participate in. The degree of 
a ride is the number of travellers assigned to it. Hence, the 
average degree of the ride node is the expected occupancy 
of a ride. In Fig. 4a, we can see that the 10% discount level 
marks the critical point. In the subcritical regime, below 
this level, none of the shared rides is feasible (node degree 
equal to 1). For discount higher than 10%, complex rides 
(high degree rides) appear and passengers become more 
flexible. The space of feasible rides grows rapidly (about 
16000 feasible rides for sharing discounts at the level of 
50% ), transitioning the networks towards the supercritical 
regime. The growth indicates a great increase in computa-
tional complexity, as was observed in computation times of 
ride-pooling problem under high discounts.

We did not observe the fully connected regime, where 
all nodes are part of the largest component. Some trip pairs 
remained incompatible regardless of the high discount, since 
they would require detours and delays which cannot be com-
pensated even with 50% discounts. As we observed, rides 
which require high discounts to appear in the shareability 
graphs are rarely part of the optimal solution (matching), as 
they induce high detours.

Figure 4b demonstrates the distribution of the average 
square clustering coefficient. The coefficient calculated for 
shared rides represents the probability that there is an alter-
native trip for two of its participants. For the traveller, it 
demonstrates the probability that two of his feasible rides 
are shared with another passenger (the same co-traveller for 
both). The square clustering coefficient remains zero when 
the first trips of the second degree appear. Notably, this 
measure increases later, only when discount exceeds 15% 
and reaches 0.13 for travellers and 0.09 for rides.

The topological properties of the simple shareability net-
work are shown in Fig. 4c. Here, the degree is the number 
of feasible co-travellers and the clustering coefficient is the 
probability that, for the given node, two of its neighbours 

can share a ride. For a regular discount of 30% , the average 
node degree is 6.5, while for a discount of 50% it reaches 
over 20. The clustering coefficient initially grows relatively 
faster than the degree. Later, the growth of the degree is 
more pronounced, which could suggest linking between 
communities. At the maximum discount level, the average 
probability for a node that two of its neighbours are con-
nected reaches 0.5.

In Fig.  4d, we plot the pooling profitability and the 
number of rides. For the lowest values of sharing discount 
( ≤ 10% ), none of the shared rides is feasible. Feasible rides 
which appear for the low sharing discount (10–20%) are 
highly profitable. Travellers who jointly recognise such com-
binations attractive are highly compatible. In the simulation 
settings, the most profitable system was obtained for the dis-
count at the level of 0.18. As expected, with increasing shar-
ing discount travellers become more flexible and are easier 
to pool in shared rides (decrease in the number of rides). 
However, the saved mileage does not sufficiently compensate 
for the income reduction associated with increased discount, 
and thus, for high discount levels ( > 20% ), the generated 
benefits are outbalanced by the reduced profits.

3.3 � Shareability graph as a proxy to key 
performance indicators

Here, we verify if the shareability network properties cor-
relate with ride-pooling performance. In Table 2, we show 
correlation between network properties and pooling per-
formance obtained for discount levels increasing gradually 
to 50%. We selected three performance indicators for the 
ride-pooling system. The operator’s and environmental’s 
perspective is reported as a reduction in vehicle mileage 
(lower total distance due to pooling). From the user’s per-
spective, we measure aggregated satisfaction gain (improved 
utility of pooling, as in Eq. 1). The last indicator is a frac-
tion of travellers who effectively share a ride in the system 

Table 2   Correlation between 
topological properties of the 
bipartite shareability graph and 
performance indicators of the 
ride-pooling system. Obtained 
for gradually increasing 
discount levels between 0 and 
50%. Mileage reduction is 
best described with average 
clustering of shared rides, utility 
gains with average degree of 
rides and fraction of shared 
rides with isolated nodes

Mileage reduction Utility gain Fraction of 
shared rides

Average node degree  0.952  0.995  0.918
Av. degree rides  0.959  0.997  0.928
Av. degree travellers  0.646  0.817  0.600
Coverage of the largest component  0.962  0.870  0.97
Fraction of isolated travellers − 0.980 − 0.884 − 0.992
Av. clustering rides  0.947  0.977  0.912
Av. clustering rides (shared only)  0.969  0.969  0.942
Av. clustering travellers  0.920  0.985  0.878
Av. clustering travellers (shared only)  0.951  0.984  0.918
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(effectiveness). We see how well they correlate with the nine 
selected network properties, as described in Sect. 2.3.

In most of the cases, the correlation coefficient exceeds 
0.9, suggesting a close to linear relation. This is an indica-
tion that the topological properties of the shareability graph 
can be used as a proxy to estimate the pooling performance.

To further explore the shape of those strong relations, 
we investigate shapes of the selected regression plots in 
Fig. 5. The high correlation coefficients shown in Table 2 
are expressed in a very clear trend. With linear to loga-
rithmic trend in the subfigures in the first row, where the 
average degree of ride node represents the mean number of 
travellers in a feasible ride and three respective ride-pool-
ing indicators are shown in the columns. The mean value 
of the traveller node degree in the second row informs how 
many feasible assignments one traveller has on average. 
We see the values grow strongly in the beginning. Later, 

however, the trend becomes weaker. Above a certain dis-
count level, travellers are willing to share a trip under very 
unfavourable conditions, which are usually also not attrac-
tive from the perspective of mileage reduction. As a result, 
additional feasible trips are often discarded at the matching 
stage, which well explains the non-linearities in the second 
row of Fig. 2.

3.4 � Variability introduced by the random term

In the second simulation, we want to understand stability of 
the shareability networks under fixed settings, yet with the 
probabilistic link generation formula. We assume the ran-
dom term � in Eq. 1 is normally distributed and replicate the 
ride-pooling problem 1000 times for the same demand set.

We first look at the properties of the ride-pooling net-
works and their stability across replications in Table 3. Some 

Fig. 5   Relation between topological properties of the bipartite share-
ability graph (average degree of ride nodes in the first row and aver-
age degree of traveller nodes in the second row) and system’s per-
formance indicators (mileage reduction, sharing ratio and utility gain 
in columns, respectively). Each graph contains 51 points obtained for 

increasing discounts (marked with colour). Each relation is strong 
and can be well approximated with linear, exponential or logarith-
mic trends—which offers a variety of strong predictors (Color figure 
online)

Table 3   General properties and their variability in 1000 replications (standard deviation in brackets) for the four introduced graph structures

Nodes Edges Degree Deg.rides Deg.travellers largest component

Shareability 147 (0) 431 (44) 5.866 (0.603) 0.732 (0.034)
Matching 147 (0) 64 (6) 0.866 (0.08) 0.031 (0.004)
Bipartite shareability 1192 (175) 2449 (539) 4.068 (0.295) 2.324 (0.124) 16.663 (3.669) 0.931 (0.015)
Bipartite matching 249 (3) 147 (0) 1.18 (0.145) 1 (0) 1.438 (0.043) 0.022 (0.002)
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properties of the networks remain constant by definition. 
For example, the number of nodes in the simple networks is 
equal to the number of travellers. Similarly, the number of 
links in bipartite matching. However, examining different 
structural properties reveals interesting patterns.

For the simple networks, we can see that there is a sig-
nificant deviation in the number of edges in the shareability 
graph. This finding highlights the significance of the random 
term at the early stage of the pooling algorithm (finding fea-
sible pairs). The matching networks (mirroring the pooling 
realisation) are significantly less variable and much more 
stable. The matching network results from the optimisation, 
which is deterministic; thus, the random link generation has 
a limited impact. The matching changes only when the link 
being part of the optimal solution is not generated. The aver-
age degree of the traveller node in the bipartite shareability 

network, corresponding to the number of feasible trips, has 
a notable deviation. It highlights the significance of the ran-
dom term in finding feasible rides of a higher degree.

For better understanding of this random process, let us 
consider the two tails of the underlying process: favourable 
(when travellers are willing to share) and unfavourable (the 
opposite). Under unfavourable pooling conditions, travellers 
either travel alone or match into rides of low degree. How-
ever, connectivity in the simple network can already reach 
high levels as it is based only on pairwise relation. Rides 
of degree three and higher do not impact the shareability 
graph structure. Conversely, the major part of the bipartite 
network corresponds to complex, high degree rides. Hence, 
the size of the largest component greater in the bipartite 
network than in the simple network indicates that there are 
many complex rides present within the largest component.

Fig. 6   Weighted network structures. Simple form in the first row, exact in the second. Shareability networks in the first column, matching net-
works in the second. Link thickness denotes the link probability (share of occurrences across the replications)
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3.5 � Weighted shareability networks

Probabilistic approach gives a rise to more complex net-
work structures. We visualise the weighted graphs as 
the generalisation of their deterministic counterparts, in 
Fig. 6. The weight of the link (thickness) is an indicator of 
its probability. Highly probable links can be interpreted as 
stable matches, such links are present even if the sampled 
attitude towards pooling ( � ) is unfavourable. Low weight 
links represent trips that only occur in favourable outcome 
of the probabilistic process, when their participants are 
pooling enthusiasts.

Figure 6 demonstrates the proposed four weighted net-
work structures. Shareability networks (Fig. 6a, c) aggre-
gate feasible connections from all replications, while 
matching networks (Fig.  6b, d) physical realisations. 
Simple networks (Fig. 6a, b) allow to easily asses travel-
lers’ compatibility and network density, while bipartite 
networks (Fig. 6c, d) reveal complete information, which 
becomes illegible for such dense network wirings.

Weighted network structures allow us to investigate 
connectiveness and stability of links. We can determine 
whether passengers’ temporal and spatial positioning coor-
dinates well with others. In the simple matching network, 
we find 13 isolated nodes. Those correspond to travel-
lers who rejected all possible shared rides, regardless 
of the sampled � . In contrast, we find a single traveller 
who always shared a ride. He participates in 90 different 
shared rides during the simulation. Other passengers either 
formed shared rides frequently or only under favourable 
conditions. The most stable pooled ride occurred in 567 
replications. We find that 48% of travellers effectively 
shared a ride in at least half of the replications. These 
results highlight the sensitivity of the pooling system to 
the individual preferences.

3.6 � Evolution of probabilistic ride‑pooling 
networks

Here, we report how the graph structures evolve across the 
replications. We analyse how the average degree and size 
of the greatest component change when the ride-pooling 
problem is replicated. The weighted structures accumu-
late all previous replications. Therefore, they are (weakly) 
growing networks. (New links and nodes may appear in 
consecutive replications.) Here, we report on this growth.

The evolution of the two measures with replications 
is shown in Fig. 7. The stabilising trend of the greatest 
component (blue) suggests that 1000 replications are suf-
ficient, yet the average degree (green) increases even in 
the latter replications.

To determine stability of the higher-order rides, we con-
sider the exact, bipartite network representation. Figure 8 
demonstrates the evolution of the bipartite matching net-
works, snapshot after 1, 5, 10, 100 and 900 replications. 
Number of rides increased twofold (from 732 to 1512) 
between 100-th and 900-th step indicating a high sensi-
tivity of the pooling system. This, combined with results 
from the previous figure, suggests that final matches are 
not stable and new rides appear even after sufficiently high 
number of replications.

4 � Conclusions and discussion

In our study, we formalise and explicitly analyse network 
structures of ride-pooling. First, the network is constructed 
at the stage of finding feasible rides; second, at the stage of 
identifying the optimal solution. At both stages, we distin-
guish between simple and exact representations. We first 
consider deterministic networks (where link generation 
function is deterministic), which we further extend to the 
probabilistic cases where networks become probabilistic and 
the number of occurrences in replications is interpreted as 
the link probability. All four network structures have signifi-
cantly different properties and interpretations, jointly cre-
ating a complex insights into ride-pooling problems. The 
already different properties of the networks have different 
variabilities when the networks become probabilistic.

We run two simulations with the implicit link genera-
tion formula, to better understand the network properties. 
First, we keep the demand fixed and incrementally increase 
the sharing discount (which makes the network evolve from 
sparse, disconnected towards fully wired) and observe tran-
sition in the topology. We find a high correlation between 

Fig. 7   Evolution of the topological properties of the simple matching 
graph in respective replications
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the topological properties and the ride-pooling system per-
formance. Correlations above 0.9 are observed, indicating 
a close to linear relation. Our results suggest that the share-
ability networks itself can be a powerful proxy for estimat-
ing pooling performance, which has a great potential, e.g. 
for large-scale problems for which solving the ride-pooling 
problem becomes computationally expensive or impossible.

We investigated properties of probabilistic networks 
when uncertainty at the traveller level was introduced into 
our model. Random variable represents different attitudes 
towards pooling across travellers. We find that a relatively 
small random terms in link generation formulas have a sig-
nificant impact on networks and pooling performance. Next, 
we introduce weighted networks obtained via different reali-
sations of the variables, where links are no longer binary 
(present or absent), but also have a weight (corresponding 
to the probability of their occurrence). We study not only 
the shareability structures, which represent an algorith-
mic step but also the matching structures representing the 
actual realisation of the pooling. We analyse the evolution 
of the weighted networks and the stability of certain links, 
observing on one hand huge numbers of low-probability 
links (number of rides increased twofold between 100-th 
and 900-th replication), and on the other the stable links with 
high probability (the most frequently occurring shared ride 
appeared in 56% of the replications).

Strong correlation between graph properties and ride-
pooling performance indicators is an important highlight 
with the variety of applications, including, e.g. machine 
learning techniques. For the purpose of training, one should 
define an easily computable function. While the exact 

solution is time-requiring, simple approximations based on 
graph topology could be a valuable proxy to this complex 
problem.

Formalising a class of networks allows for a broad spec-
trum of graph theory methods to be applied in the context. 
Different representations of the underlying network struc-
tures facilitate spreading analyses. One can use it, e.g. in the 
graph decomposition problems, involving deep graph neural 
networks, such that the pooling performance (measurable 
on the matching network) is not hindered and simultane-
ously communities become isolated reducing virus spread-
ing (measurable on the shareability network).

The stochastic approach in the utility formulation, result-
ing in the proposed weighted networks, leads to novel assess-
ment methods. Edges can be now assigned a probability of 
their occurrence in the system, which allows to apply rich 
methodology on weighted probabilistic networks, e.g. to bet-
ter estimate the expected ride-pooling performance.

In the future, this analysis shall be extended to better 
reflect the heterogeneity of ride-pooling behaviour reported 
in recent studies. Also, this analysis was performed on a sin-
gle demand pattern, which is not necessarily generalisable 
for other demand levels and spatio-temporal distributions 
of trip requests.
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