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Abstract
During an epidemic, decision-makers in public health need accurate predictions of the future case numbers, in order to control 
the spread of new cases and allow efficient resource planning for hospital needs and capacities. In particular, considering 
that infectious diseases are spread through human-human transmissions, the analysis of spatio-temporal mobility data can 
play a fundamental role to enable epidemic forecasting. This paper presents the design and implementation of a predictive 
approach, based on spatial analysis and regressive models, to discover spatio-temporal predictive epidemic patterns from 
mobility and infection data. The experimental evaluation, performed on mobility and COVID-19 data collected in the city 
of Chicago, is aimed to assess the effectiveness of the approach in a real-world scenario. 
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1  Introduction

Reference Context. An epidemic is the rapid spread of a 
disease to a large number of people in a given population 
in a short period of time. Usually, it poses a serious threat 
not only to public health but also to healthcare institutions 
and economies as a whole (Schwabe et al. 2021). In the last 
two years, the whole world has experienced huge issues and 
problems due to COVID-19, which, as of March 28, 2022, 
has been responsible for more than 400 million reported 
cases (source data: Johns Hopkins University Center for 
Systems Science and Engineering Dong et al. 2020), thus 
resulting as one of the worst pandemics in history.

To control the spread during an epidemic, decision-
makers in public health need accurate predictions of future 
case numbers. This allows for early interventions and, on top 
of that, is important for near real-time resource planning, 
so that hospital needs can be satisfied without exceeding 
their capacities (Ferguson et al. 2020). To do that, several 

explanatory models have been designed and studied for 
epidemic forecasting, aimed at modeling virus spreading 
dynamics and evolutions.

Motivations and Contributions. As infectious diseases 
are spread through human-human transmissions, spatio-
temporal mobility data can play a fundamental role to enable 
epidemic forecasting. In fact, mobility data can be derived 
from movements among several locations of urban and/or 
sub-urban areas and, differently from static data, have the 
added value of dynamically tracing the underlying trajecto-
ries, providing a more comprehensive description of human-
human interactions. Moreover, there can be some areas, like 
the touristic ones, in which there are more users (tourists) 
prone to produce and share contexts, data and messages by 
social media, so data can be integrated by different sources 
(Cesario et al. 2017). In particular, the underlying hypothesis 
of our work is that human mobility can strongly affect virus 
spreading, thus the extraction of mobility patterns among 
congested areas can enable the prediction of spatio-temporal 
epidemic patterns. More specifically, the identification of 
regions that are both infection hotspots (thus involved in 
high density of infection cases ) and mobility hotspots (thus 
involved in mobility patterns) is a crucial step of the process 
to identify how mobility patterns can also play a role of 
epidemic patterns.
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This paper presents the design and implementation of an 
approach based on spatial analysis and regressive models to 
discover spatio-temporal predictive epidemic models from 
mobility and infection data. The algorithm is composed of 
several steps. First, infection hotspots (urban regions more 
densely affected by infection events with respect to others) 
and mobility hotspots (urban regions more densely visited 
by mobility traces) are detected. Then, mobility patterns 
among mobility hotspots are discovered. On the basis of 
such knowledge, epidemic hotspots (infection hotspots 
whose spatial overlap with mobility hotspots involved in 
mobility patterns is greater than a given threshold) and epi-
demic patterns are generated from the mobility patterns, by 
selecting those that have epidemic hotspots involved as both 
source and destination areas. Finally, the approach extracts a 
specific epidemic forecasting model for each epidemic hot-
spot, analyzing the infection data of the epidemic hotspots 
involved in mobility patterns.

Plan of the Paper. The rest of the paper is organized as fol-
lows. Section 2 reports the most important approaches in the 
virus spread forecasting literature and the most representa-
tive projects in that field of research. Section 3 outlines the 
problem statement and the goals of our analysis. Section 4 
presents the proposed approach, based on spatial analysis 
and regressive models to discover spatio-temporal predictive 
epidemic models from mobility and infection data. Section 5 
describes the experimental evaluation, performed on a real-
world case study concerning the city of Chicago, aimed at 
showing the most significant mobility patterns among hot-
spots, the epidemic hotspots, and effective predictive mod-
els, which can estimate the number of epidemic events that 
are likely to happen in the future. We also performed a com-
parative analysis of our results with respect to a base-line 
approach (i.e., auto-regression algorithm). Finally, Sect. 6 
concludes the paper and plans future research work.

2 � Related works

Forecasting virus spread is very important in the public 
health domain, because it can support decision makers 
to anticipate epidemic trends and thus to optimize public 
resources’ allocations. This is undoubtedly a challenging 
task and, since 2019, it has been experiencing a large effort 
of virologists, epidemiologists and data scientists to predict 
COVID-19 diffusion. In this section we briefly review the 
most representative research works in this field, grouped in 
two main categories: mechanistic/stochastic models and AI/
data-driven models. Then, we report a critical comparison 
(on the basis of some specific features) among the method 
we developed and state-of-art solutions.

Mechanistic and stochastic models. Traditionally, the 
models for epidemic forecasting proposed in the literature 
can be distinguished in two categories: mechanistic mod-
els and stochastic models (Schwabe et al. 2021). Mecha-
nistic models explicitly utilize epidemiological theory and 
empirical evidence, while stochastic models mainly rely on 
the predictive power of data. A type of mechanistic model 
is the compartmental model, which has been exploited in 
some research works on COVID-19 (Bertozzi et al. 2020; 
Chang et al. 2021). A compartmental model is based on the 
assumption that each individual belongs to some compart-
ment (e.g., susceptible, infected, recovered) and has a cer-
tain probability of transitioning to another compartment. The 
probability of a transition can be either derived from case 
data or modeled as being dependent on additional predic-
tors. Stochastic models are based on probability distribu-
tions to predict the evolution of the events. In Reinhard and 
Frank (2020) a Gaussian model is used as stochastic model 
to predict the peak of COVID-19 cases, while in Bertozzi 
et al. (2020) an exponential model is exploited to predict the 
disease spread in the early stages.

AI and data-driven models. Recently, artificial intelligence 
(AI) methods and data-driven approaches integrating mobil-
ity, social networks, web search, and air quality data have 
been proposed in literature. Interestingly, in Comito and  
Pizzuti (2022) is provided a comprehensive review of meth-
ods, algorithms, applications, and emerging AI technologies 
that can be utilized for forecasting and diagnosing COVID-
19. In particular, the purpose of this review is to investigate 
and discuss an extensive collection of papers with the aim 
of giving an overview of how AI can help fighting COVID-
19 pandemic. In Yabe et al. (2022) an approach based on 
human mobility trajectories (collected as GPS traces) and 
web search queries (with common user identifiers) has been 
proposed, to predict COVID-19 hotspot locations before-
hand. More specifically, a web search query analysis is 
conducted to identify users with a high risk of COVID-19 
contraction, and social contact analysis was further per-
formed on the mobility patterns of these users to quantify 
the risk of an outbreak. The approach has been empirically 
tested using data collected from users in Tokyo, Japan, to 
predict COVID-19 hotspot locations 1-2 weeks beforehand. 
In Schwabe et al. (2021) a model for epidemic forecasting 
based on mobility data, called mobility marked Hawkes 
model, has been proposed. This model consists of (i) a 
Hawkes process that captures the transmission dynamics of 
infectious diseases, (ii) a Poisson regression model which 
modulates the rate of infections (thus accounting for how 
the reproduction number R varies across space and time), 
and (iii)a correction procedure taking into account new cases 
seeded by people traveling between regions. This model has 
been used to predict the COVID-19 epidemic in Switzerland, 
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over different forecast horizons between 5 and 21 days. The 
paper (Mokhlesur Rahman et al. 2021) presents a review 
study aimed at analyzing interactions among the COVID-
19 pandemic, lockdown measures, human mobility, and air 
quality. In particular, the paper shows that urban form, peo-
ple’s socioeconomic and physical conditions, social cohe-
sion, and social distancing measures significantly affect 
human mobility and COVID-19 transmission. The study also 
noticed that lockdown measures applied during COVID-19 
significantly improved air quality by reducing the concentra-
tion of air pollutants, which in turn improved the COVID-
19 situation by reducing respiratory-related sickness and 
deaths of people. In Ilin et al. (2021) a study is presented 
showing how public available data on human mobility (col-
lected by Google, Facebook, and other providers) can be 
used to evaluate the effectiveness of non-pharmaceutical 
interventions (NPIs) and forecast the spread of COVID-19. 
The approach has been evaluated using local and regional 
data from China, France, Italy, South Korea, and the United 
States, and has been applied to provide 10-day forecasts of 
COVID-19 cases. The paper (Comito 2021) presents a meth-
odology based on Twitter data analysis that combines peak 
detection and clustering techniques to inspect how informa-
tion about the COVID-19 epidemics spread in the US. To 
this purpose, the objectives are to identify the key terms and 
features used in the tweets, the interest in the COVID-19 
topics, together with the evolution of the discussion all over 
the US. Spacetime features are extracted from the tweets and 
modeled as time series. After that, peaks are detected from 
the time series, and peaks of textual features are clustered 
based on the co-occurrence in the tweets.

Comparative analysis among the approaches. Now, we 
report a critical comparison of the proposed approach and 
some other solutions proposed in the literature. Specifically, 
the comparison of the different approaches has been made 
on the basis of some specific features (i.e., hotspot detection 
approach, hotspot shapes, forecasting approach), as summa-
rized in Table 1 and detailed in the following:

Hotspot detection approach. This feature differentiates 
the algorithms on the basis of the approach used to detect 
spatial (epidemic) hotspots. Our approach uses spatial 

density-based clustering to detect interesting hotspots, while 
the approaches presented in Schwabe et al. (2021); Ilin et al. 
(2021) rely on pre-defined regions (phone cellular grid cells 
and regular square regions, respectively). On the other side, 
the algorithm described in Comito (2021) exploits a topic-
based clustering approach to detect groups of textual features 
on the basis of their co-occurrence in the tweets. Finally, 
the approach presented in Yabe et al. (2022) adopts a web 
search-based approach to identify Covid-19 hotspots, where 
a user is identified as a high risk user if he/she had more 
than k (pre-defined threshold value) COVID-19 related web 
search sessions.

Hotspot shapes. This feature takes into account the shape 
of the detected hotspots, which is relevant to assess the abil-
ity of the detection approach in identifying any possible 
area, regardless of the shape. Our approach is capable of 
detecting regions of any shape (e.g., circular, rectangular, 
irregular), while the works described in Schwabe et al. 
(2021); Ilin et al. (2021) deal with only specific region 
shapes. The algorithm described in Comito (2021) parti-
tions the geographic area according to the US state bor-
ders and performs the analysis at state-granularity shapes. 
Finally, the approach presented in Yabe et al. (2022) pre-
sents the experimental evaluation by splitting the geo-
graphic area in both 1Km × 1Km and 125m × 125m grid cells 
in Tokyo metropolitan region, thus considering hotspots 
with specific square shapes.

Regression approach. This feature classifies the 
approaches on the basis of the regression methodology used 
to forecast new COVID-19 case numbers. Specifically, our 
approach exploits the LSTM method, while the methodolo-
gies described in Schwabe et al. (2021); Ilin et al. (2021) 
exploit Poisson regression and polynomial regression, 
respectively. On the other side, the algorithm described in 
Comito (2021) adopts two forecasting models, one expressed 
as a specific auto-regression problem and the other based 
on a Bayesian approach. Finally, the approach presented in 
Yabe et al. (2022) adopts a social contact index (SCI) and a 
time-lagged cross-correlation analysis to predict the number 
of new cases.

From the above comparative evaluation, we can sum-
marize the main differences the proposed approach exhibits 

Table 1   Comparison of several approaches proposed in literature.

Approaches Hotspot Detection Hotspot Shape Regression approach

The proposed approach density-based clustering any shape LSTM
Reference (Schwabe et al. 2021) phone cellular cells grid cells Poisson
Reference (Ilin et al. 2021) pre-defined square regions square regions polynomial
Reference (Comito 2021) topic-based clustering state borders auto-regression and Naive Bayes
Reference (Yabe et al. 2022) web search-based grid cells SCI (social contact index)
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with respect to the other ones proposed in literature. First, 
it detects infection and mobility hotspots as they emerge 
from real infection and mobility data, without relying on 
predefined static subdivisions of the spatial area (as done 
in Schwabe et al. (2021) and Ilin et al. (2021)), and thus 
enabling the detection of hotspots of any shape. Second, our 
approach relies on mobility data to predict further epidemic 
evolutions among several locations of urban and/or subur-
ban areas. Thus, it is based on a comprehensive data-driven 
spatio-temporal knowledge of human-human interactions, 
rather than exploiting stochastic and probabilistic models to 
forecast future infection cases.

3 � Problem definition and goal

We begin by fixing a proper notation and giving some defini-
tions to be used throughout the paper.

Timestamp List. Let T =< t1, t2,… , tH > be an ordered 
timestamp list, such that th < th+1,∀0<h<H , and where all th 
are at equal time intervals (e.g., every minute, hour, day).

Infection Data. Let ID be a dataset collecting infection 
data instances, ID = {ID1, ID2,… , IDM} , where each IDi is 
a data tuple < ni, lati, longi, ti > described by the following 
features: ni is the number of infection cases (i.e., number of 
positive cases) detected, lati and longi are the latitude and 
longitude of the place the infection event has occurred, ti 
(with ti ∈ T  ) is the observation timestamp.

Mobility Data. Let MD be a dataset collecting mobil-
i ty  data  instances ,  MD = {MD1,MD2,… ,MDN} , 
where each MDi is a spatio-temporal trajectory instance 
MDi =< (lati1, logi2, t1),… , (latiH , longiH , tH) > ,  w h e r e 
each triple (latih, longih, th) indicates that an object of the 
trajectory MDi is in the position latih, longih at time th (with 
th ∈ T).

Infection Hotspots. Let IH be a set of infection hotspots, 
IH = {IH1, IH2,… , IHN} , where each IHi is an area where 
infection events of a specific disease occur with an higher 
density with respect to other neighbor areas.

Mobility Hotspots. Let MH be a set of mobility hotspots, 
MH = {MH1,MH2,… ,MHN} , where each MHi is an area 
that is more densely visited by the object’s trajectories with 
respect to other areas.

Mobility Patterns. Let MP be a set of (frequent) mobility 
patterns, MP = {MP1,MP2,… ,MPN} , where each MPi is 
a sequential pattern of two mobility hotspots, in the form 

(MH
js
ts
→ MH

jd
td
) with time constraints tr < ts . The block on 

the left MH
js
ts
 is the source hotspot, while the block on the 

right MH
jd
td

 is the destination hotspot of the pattern. Mining 
of sequential patterns consists of mining the set of subse-
quences occurring with a support sup higher than a given 
minimum threshold supmin.

Overlapping infection hotspots. Let oihIH(MHi) be the 
set of infection hotspots IHj having a spatial overlap with 
MHi ∈ MH higher than a given threshold �min , and thus 
oihIH(MH) = {IH ∣ IH ∈ IH ∧ �(IH,MH) ≥ �min} , for all 
MH in MH , and �(⋅, ⋅) being a function computing the spa-
tial overlapping percentage between its parameters.

Epidemic Hotspots. An epidemic hotspot is an infection hot-
spot IHj having a spatial overlap (higher than a given thresh-
old � ) with a mobility hotspot MHk and if MHk , and thus 
EH = {EH ∣ EH ∈ IH ∧ ∃MH ∈ MH ∣ EH ∈ oihIH(MH)}.

Now, let us consider a future temporal horizon, 
S =< tw, tw+1,… > , with w > H . The goal of the analysis 
is to find epidemic spread models for reliably predicting 
the number and location of new infection events at a given 
timestamp tw ∈ S . More specifically, given the infection 
dataset ID and the mobility dataset MD , our analysis aims 
at achieving the following goals: 

1.	 discover  a  set  EH of  epidemic hotspots , 
EH = {EH1,… ,EHK} , where a epidemic hotspot EHk 
is a spatial area both affected by higher density of infec-
tions than other areas and involved in frequent mobility 
patterns (as above described);

2.	 discover a set EP = {EP1,EP2, ...} of epidemic patterns, 
where each EP is a couple (EHs,EHd) , meaning that the 
infection trend of EHs influences the infection trend of 
EHs.

3.	 extract a function Fspreading ∶ S → ⇐EH⇔R⇒ that, 
given a timestamp tw ∈ S , states the number of epidemic 
events (i.e., number of positive cases) N ∈ R that are 
predicted to happen in each epidemic hotspot EHi ∈ EH 
at the timestamp tw.

4 � The proposed approach

This section describes the algorithm that we have designed 
to discover spatio-temporal predictive epidemic models from 
mobility and infection data. Specifically, Sect. 4.1 depicts 
the main steps of the proposed approach and its pseudo-
code, whereas Sects. 4.2, 4.3, and 4.4 describe in details 
the procedures for infection and mobility hotspots detection, 
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mobility patterns extraction and epidemic forecasting mod-
els training, respectively.

4.1 � Algorithm’s wokflow and pseudo‑code

The main workflow of the proposed approach is shown in 
Fig. 1, while the pseudo-code is reported in Algorithm 1. For 
the reader’s convenience, Table 2 reports the meaning of the 
main symbols used throughout the code.

The algorithm receives in input the infection and the 
mobility datasets (represented in the previously format 
described in Sect. 3), and returns a set of epidemic hot-
spots, epidemic patterns and epidemic regression models. 
The workflow is composed of six steps (see Fig. 1 and Algo-
rithm 1), as described in the following.

Fig. 1   The Approach Workflow

Table 2   Meaning of the main symbols used

Symbol Meaning

T = {t1, t2,… , tH} Timestamp list
ID = {ID1, ID2,… , IDM} Infection data
MD = {MD1,MD2,… ,MDN} Mobility data
IH = {IH1, IH2,… , IHV} Infection hotspots
MH = {MH1,MH2,… ,MHW} Mobility hotspots
MP = {MP1,MP2,… ,MPZ} Mobility patterns
oih[MP] Set of the infection 

hotspots overlapping 
MPz ∈ MP

EH = {EH1,EH2,… ,EHK} Epidemic hotspots
EP = {EP1,EP2,… ,EPL} Epidemic patterns
ETS = {ETS1,ETS2,… ,ETSK} Epidemic Time Series
SEH = {SEH1, SEH2,… , SEHK} Source epidemic hotspots
Fspreading = {F1,F2,… ,FK} Regression functions, 

one for each EH ∈ EH
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Step 1 and 2: Infection and Mobility Hotspots Detec-
tion.  These two steps are aimed at detecting Infection and 
Mobility Hotspots from Infection and Mobility datasets, 
respectively. More specifically, Infection Hotspots are 
urban regions more densely affected by infection events 
with respect to others (thus, of interest for the further 
analysis), while Mobility Hotspots are urban regions more 
densely visited by mobility traces. This is done by run-
ning density-based clustering algorithm instances whose 
final result consists of N and M clusters (each correspond-
ing to a detected dense region). The detected hotspots, 
whose number is automatically detected by the algorithm, 
can have different shapes and sizes. These two steps are 
performed by the DiscoverHotspots method on the 
Infection and Mobility datasets, respectively (lines 1 and 
2, Algorithm 1).

Step 3: Frequent Mobility Patterns Extraction.  During 
this step a sequential pattern extraction algorithm on the 
detected mobility hotspots is executed, to discover frequent 
mobility patterns from them. The final mining model is a set 
of rules describing mobility relations between the movement 
of the users under investigation. For the sake of clarity, in 
this work we represent mobility patterns composed of one 
source and one destination hotspots. This is done by run-
ning the ExtractMobilityPatterns method (line 3, 
Algorithm 1).

Step 4: Overlapping Infection-Mobility Hotspots 
Detection.  This step is aimed at detecting epidemic hot-
spots, that is, infection hotspots whose spatial overlap 
with mobility hotspots involved in mobility patterns is 
higher than a given threshold �min . Since our hypothesis is 
that mobility can strongly affect the infection spreading, 
then the identification of regions which are both infec-
tion hotspots (thus involved in high density of infection 
cases ) and mobility hotspots (thus involved in mobility 

patterns) is a crucial step of the process. The spatial 
overlap is calculated as the percentage of the overlap-
ping area between the identified infection and mobility 
hotspots. In Algorithm 1 this step is implemented by the 
lines 4-11.

Step 5: Epidemic Hotspots and Patterns Detection.  On 
the basis of the overlapped hotspots detected, this step is 
aimed at detecting (i)epidemic hotspots and (ii)epidemic 
patterns. In particular, an epidemic hotspot is an infec-
tion hotspot that has a reasonable spatial overlap with a 
mobility hotspot involved in a mobility pattern. As epi-
demic hotspots are detected, epidemic patterns are gener-
ated from the mobility patterns, by selecting those having 
epidemic hotspots involved as both source and destination 
areas. The computation of the Epidemic Hotspots EH and 
the Epidemic Patterns EP is done by the lines 12-21 of 
Algorithm 1.

Step 6: Epidemic Spread Forecasting.  This step is aimed 
at extracting a specific epidemic forecasting model for each 
epidemic hotspot that is a destination of an epidemic pat-
tern, by exploiting data from its sources. The training of the 
epidemic forecasting models is done by the lines 22-31 of 
the Algorithm 1.

In particular, for each epidemic hotspot EHi , an 
Epidemic Time Series ETSi is extracted, by the func-
tion BuildEpidemicTSData (line 28) applied in its 
Source Epidemic Hotspots SEHi and the infection data 
ID. ETSi is a multivariate time series that aggregates the 
number of infections occurred in a time interval (e.g., 
each day) in EHi and in each source epidemic hotspot in 
SEHi . Given the Epidemic Time Series ETSi related to 
EHi , the DiscoverEpidemicModel (line 29) method 
learns a forecasting model for predicting the number of 
epidemic events in the future, inside the epidemic hot-
spot EHi.
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Algorithm 1 EpidemicForecasting
Input:

ID: infection dataset;
MD: mobility dataset;
δmin: miminum overlapping theshold.

Output:
EH = {eh1, ..., ehK}: a set of K epidemic hotspots;
EP = {ep1, ..., epL}: a set of L epidemic patterns;
Fspreading = {F1, ..., FK}: a set of K epidemic predictors.

1: IH = {IH1, ..., IHV } ← DiscoverHotspots(ID) � Step 1
2: MH = {MH1, ...,MHW } ← DiscoverHotspots(MD) � Step 2
3: MP = {MP1, ...,MPZ} ← ExtractMobilityPatterns(MD,MH) � Step 3

� Step 4: Compute Overlapping Infection Hotspots oih[MP]
4: for each MHi ∈ MH do
5: oih[MH]← {}
6: for each IHj ∈ IH do
7: if δ(IHj ,MH〉) ≥ δmin then
8: oih[MHi] ← oih[MHi] ∪ {IH}
9: end if

10: end for
11: end for

� Step 5: Compute EH and EP
12: EH ← {}
13: EP ← {}
14: for each MPi = (MHs,MHd) ∈ MP do
15: for each IHs ∈ oih[MHs] do
16: for each IHd ∈ oih[MPd] do
17: EH ← EH ∪ {IHs, IHd}
18: EP ← EP ∪ {(IHs, IHd)}
19: end for
20: end for
21: end for

� Step 6: Extract the epidemic regression model
22: Fspreading ← {}
23: for each EHi ∈ EH do
24: SEHi ← {}
25: for each EP = (EHs, EHi) ∈ EH do
26: SEHi ← SEHi ∪ {EHs}
27: end for
28: ET Si ← BuildEpidemicTSData(ID, SEHi, EHi)
29: Fi ← DiscoverEpidemicModel(ID, ET Si, EHi)
30: Fspreading ← Fspreading ∪ {Fi}
31: end for
32: return EH, EP, Fspreading

4.2 � Detection of Infection and Mobility Hotspots

The DiscoverHotspots method (lines 1 and 2) per-
forms a spatial clustering of the data set, where each cluster 
represents a hotspot of events. The density-based notion is 
a common approach for clustering, whose inspiring idea 
is that objects forming a dense region should be grouped 
together into one cluster. In our implementation, this task has 
been performed by applying DBSCAN (Ester et al. 1996), a 
popular density-based clustering algorithm that finds clus-
ters starting from the estimated density distribution of the 

considered data. We have chosen the DBSCAN algorithm 
because it has the ability to discover clusters with arbitrary 
shape such as linear, concave, oval, etc. and (in contrast to 
other clustering algorithms proposed in the literature) it does 
not require the predetermination of the number of clusters 
to be discovered. Basically, the algorithm finds clusters with 
respect to the notion of density reachability among points: 
a point is directly density-reachable from another point if 
it is not farther away than a given distance ( � ) (i.e., is part 
of its neighborhood) and if it is surrounded by sufficiently 
many points (minPts). In the considered context, a cluster 



	 Social Network Analysis and Mining (2022) 12:116

1 3

116  Page 8 of 15

corresponds to an hotspot. Finally, DBSCAN requires the 
user to specify the radius of the neighborhood (i.e., � ) and 
the minimum number of objects it should have (i.e., min-
Points), whose values affect size and density of the discov-
ered clusters. Generally, an optimal setting of its parameters 
is complex to be achieved and requires specific techniques; 
however, this topic is outside the scope of this paper.

4.3 � Extraction of mobility patterns

The ExtractMobilityPatterns method (line 3) 
performs the detection of mobility patterns between two 
hotspots. We implemented this task by the T-Apriori algo-
rithm (Cesario et al. 2017), an Apriori-based algorithm 
that extracts rules whose elements respect a monotonically 
increasing time order (i.e., the timestamps of the antecedents 
are chronologically previous of those appearing in the conse-
quent). The final result is a set of sequential patterns between 
two mobility hotspots, in the form SH → DH . The block on 
the left SH is the source hotspot, while the block on the right 
DH is the destination hotspot of the pattern. The algorithm 
requires the user to specify the supmin and confmin thresholds, 
and it discovers the set of sub-sequences occurring with a 
support sup ≥ supmin and a confidence conf ≥ confmin.

4.4 � Discovery of epidemic forecasting models

The DiscoverEpidemicModel method (line 29 in Algo-
rithm 1) performs the training of an epidemic forecasting 

model given a multivariate time series that aggregates the 
number of infections that occurred in a time interval in a 
target epidemic hotspot and its sources previously identified. 
This task can be done through different time series fore-
casting approaches, such as Simple Exponential Smoothing 
(SES) and Auto-regressive models (ARIMA). In this work 
we exploit Recurrent Neural Nnetworks, and in particular 
Long-Short Term Memory (LSTM) neural networks.

LSTMs (Hochreiter and Schmidhuber 1997; Sak et al. 
2014) have been proved to be effective in forecasting tasks, 
due to their capability of processing sequences. They are also 
widely used in speech recognition and language translation. 
An LSTM neural network is a particular kind of recurrent 
neural network (RNN) and thus admits feedback connec-
tions. LSTMs are characterized by the presence of a block 
of memory cells, which are special structures permitting the 
network to remember values over arbitrary time intervals. 
Four gates control a cell’s information flow and state: an 
input gate, an output gate, a forget gate, and a cell gate. The 
following equations define the behavior of an LSTM unit:

where ht is the hidden state at time t, ct is the cell state at 
time t, xt is the input at time t, it , ft , gt , ot are the input, 
forget, cell, and output gates, respectively. � is the sigmoid 

(1)

it = 𝜎(Wiixt + bii +Whiht−1 + bhi)

ft = 𝜎(Wif xt + bif +Whf ht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = 𝜎(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh(ct)

Fig. 2   Map of Chicago and its 
zip codes
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activation function, and ⊙ is the Hadamard product. W and 
b are the weights to be learned during the LSTM optimiza-
tion. It is worth noting that the recurrent nature of LSTM 
is given as both ct and ht depend on ct−1 and ht−1 , which are 
their values at the previous step.

In this work, we exploited a neural network embedding an 
LSTM layer. The models are trained by exploiting the well-
known ADAM optimizer (Kingma and Ba 2014).

5 � Analysis and experimental results

To evaluate the performance and the effectiveness of the 
approach described above, we carried out an experimen-
tal analysis by performing different tests in a real-world 
case study concerning the city of Chicago, whose map 
and zip codes are shown in Fig. 2. The goal of our analysis 
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comprises detecting the most significant mobility patterns 
among hotspots, the epidemic hotspots and effective predic-
tive models, which can estimate the number of epidemic 
events that are likely to happen in the future. We also per-
formed a comparative analysis of our results with respect 
to a baseline, achieved by auto-regression. In the following 
subsections we describe the main issues of our analysis: data 
description and gathering (Section 5.1), the regressive model 
training, the detection of epidemic hotspots and mobility 
patterns (Section 5.2), training and testing of the forecast-
ing model (Section 5.3), the experimental evaluation of the 
model on the test set and a comparative analysis with an 
auto-regression model (Section 5.4).

5.1 � Data description

The data that we used to train the models and perform the 
experimental evaluation have been gathered from Chicago 
Data Portal [18] and Observable Web Portal [19], two pub-
lic data search and exploration platforms hosting datasets 
related to urban and extra-urban environments. In particular:

–	 Mobility data have been gathered from the ’Public Pas-
senger Vehicle Licenses’ dataset housed on the Chicago 
Data Portal, a real-life collection of trajectories traced by 
public passenger vehicles (i.e., licensed taxicabs, liveries, 
ambulances, medicars, charter-sightseeing buses, horse-
drawn carriages, and pedicabs) in the city of Chicago. 
Each trajectory is described by source place and destina-
tion place.

–	 Infection data have been retrieved from the ’Historical 
Illinois COVID-19 ZIP code data’, a dataset populated by 
daily snapshots of Illinois Department of Health counts 
by ZIP code1. This dataset has been retrieved as open 
data by the Observable Web Portal, a Web framework 
which gives public access to several datasets storing 
urban data2. In particular, for our analysis we have col-
lected infection data from April 18, 2020 to December 
20, 2021. Each infection event is described by several 
attributes (i.e., zip code, date, cumulative number of 
tested, cumulative number of positive cases, etc.).

Mobility data have been analyzed to discover mobility pat-
terns and epidemic hotspots, while the infection data have 
been analyzed to discover predictive models for epidemic 
spread forecasting.

Figure 3 shows a preliminary view of the infection data 
collected, which provides some hints about data trends and 

distribution. In particular, it shows the time plot of the num-
ber of observed infection data for each zip code, in which the 
cumulative number of infections (positive cases) is plotted 
versus the time of observation. From the plot, we see that 
the occurrence of infection is almost stable during Spring 
2020 and Summer 2020, strongly increases in late Autumn 
2020 and Winter 2020-2021, again achieving a stable trend 
during Spring and Summer 2021, and returning to rise in 
Autumn 2021.

Starting from the collected cumulative data, we computed 
the daily number of infected cases by performing the differ-
ence between two consecutive measurements, for each zip 
code. We plot the daily data in Fig. 4, which reveals some 
additional interesting features about data trends and distribu-
tion. First, it is evident that the number of detected infections 
is very unstable among the observation time, showing an 
high spread of the time series. Second, a seasonal pattern 
is clearly observable, that shows a multi-wave pattern in the 
data. From the plot, we see that the number of positive cases 
increased in April 2020, decreased during the Summer 2020, 
increased in late Autumn 2020 and during the Winter 2020-
2021, decreased again during the Spring 2021 (with a peak 
in April 2021) and the Summer 2021, and returning to rise 
again during the Autumn 2021.

A clearer view of the seasonality hidden in the data can 
be seen in Fig. 5, which shows the distribution of the number 
of positive cases by month in the whole city area, that is, 
cumulated over all the zip codes. The histogram shows that 
the number of infection events varies significantly between 
different periods of the year. In particular, the number of 
infection events is highest in November 2021, and lowest 
in June 2021.

5.2 � Detection of Epidemic Hotspots and Epidemic 
Patterns

Before the analysis of the trajectories, a pre-processing 
step has been performed to clean, select and transform data 
to make them suitable for the analysis. First, we cleaned 
the collected data by removing all the points with unreli-
able positions (i.e., null coordinates and evident wrong 
values). Then, since infection data are spatially referenced 
at zip-code granularity, we transformed the trajectory data 
by assigning each pickUp and DropOff location to its spe-
cific Zip Code. In total, this matching step resulted in 23 
Zip Codes (i.e., 60601, 60654, 60611, etc.) involved in the 
mobility data. The final dataset contains about 15,000 daily 
trajectories, each modeled as < PickUp,DropOff > pairs and 
describing the set of trajectories traced by buses during a 
day. The total data size is about 28 MB. We report in the 
following the results of the analysis performed on such a 
dataset, by showing the zip codes of the city involved in the 
mobility data and the discovered mobility patterns.

1  https://​obser​vable​hq.​com/@​chica​gorep​orter/​histo​rical-​illin​ois-​
covid-​19-​zip-​code-​data?​colle​ction=@​chica​gorep​orter/​illin​ois-​coron​
avirus-​data
2  https://​obser​vable​hq.​com/

https://observablehq.com/%40chicagoreporter/historical-illinois-covid-19-zip-code-data?collection=%40chicagoreporter/illinois-coronavirus-data
https://observablehq.com/%40chicagoreporter/historical-illinois-covid-19-zip-code-data?collection=%40chicagoreporter/illinois-coronavirus-data
https://observablehq.com/%40chicagoreporter/historical-illinois-covid-19-zip-code-data?collection=%40chicagoreporter/illinois-coronavirus-data
https://observablehq.com/
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Mobility and Epidemic Patterns. Mobility patterns 
(Cesario et al. 2017) have been discovered by applying the 
mlxtend.frequent-patterns Python library, a 
pattern mining implementation of the well known apriori 
algorithm. The discovered mining model is a set of mobil-
ity patterns describing sequential relations between the 
movement of the users under investigation. The number of 
mobility patterns extracted from the frequent regions highly 
depends on the minimum support. When the minimum sup-
port increases, the number of rules decreases. In our tests we 
set a support s = 0.6 and we discovered 5 mobility patterns, 
involving 16 zip codes. In particular, the set of discovered 
mobility patterns is reported below:

EP1 :  60611,60654,60656,60661,60603  →  6
0601

EP2 :  60654,60661,60601   →   60603
EP3 :  60601,60603   →   60611
EP4 :  60601,60603   →   60661
EP5 :  60661,60603,60601   →   60654
As the mobility patterns are detected, epidemic patterns 

are generated by selecting those ones having epidemic hot-
spots involved as both source and destination areas. As in 
our case each zip code region is also an epidemic hotspot, 
the five mobility patterns above listed are also epidemic pat-
terns, whose antecedents and consequents will be further 
exploited to learn the epidemic forecasting models.

5.3 � Training and Testing the Forecasting Models

Having extracted the epidemic patterns, the next step is 
aimed at learning a specific epidemic forecasting model for 
each destination location, exploiting infection data of the 
source locations as regression variables. For such a reason, 
we perform now the training of five regression functions, 
one for each destination zip code: 60601, 60603, 60611, 
60661, 60654.

As well known, to perform the regression task and its 
validation, we need to split the original dataset into two 
partitions: the training set and the test set. The first one is 
exploited to discover the relationships inside data while the 
second one is used for evaluating whether the discovered 
relationships hold. In our case, the overall infection data 
spans 21 months of data, and it has been split with respect 
to the number of months: the training set contains the infec-
tion data of the first 17 months (April 2020 - August 2021), 
while the test set holds the infection data of the last 4 months 
(September 2021 - December 2021). Thus, the training set 
contains the 81% of the data, while the test set the remain-
ing 19%.

As described in the following sub-sections, we trained 
the knowledge models using data from April 2020 to August 
2021 and we used the trained model to forecast the infec-
tion events from September 2021 to December 2021, to 

assess the quality of the predictions. Forecasting models 
have been discovered by applying the LSTM algorithm of 
the PyTorch library.

To assess the effectiveness and accuracy of the regres-
sive function modeled by LSTM regression model, we per-
formed an evaluation analysis on the test set consisting of 
the last four months of data (i.e., from September 2021 to 
December 2021). In particular, the model has been used to 
predict future values of the number of positive cases that will 
occur in that area, day by day. The prediction of other types 
of associated events (i.e., number of hospitalized persons, 
number of deaths, etc.) is out of the scope of this work and 
it will be studied in a further research activity.

Let yi denote the ith observation and ŷi denote the fore-
cast of yi according to the LSTM model for t = ti . Figure 6 
shows the curves for the five zip codes under investigation. 
For the training set period, from April 2020 to August 2021, 
observed data and fitted data are plotted in black and red, 
respectively. For the test set period, i.e. from September 2021 
to December 2021, observed and forecasted data are traced 
in blue and green, respectively. It is interesting to highlight 
that the regressive curve fits well the training data series. 
By looking at the test set, we can notice that forecasted data 
adhere very well to the observed data for that period. It is 
evident that the trend forecasted by the regressive model is 
very similar to that occurring in the observed data. In par-
ticular, we can notice that predicted values in general are a 
bit lower than observed data by showing an under-forecasting 
with respect to the real number of infection events.

5.4 � Experimental evaluation and comparative 
analysis

To make our evaluation more accurate and complete, we per-
formed a comparative analysis of the proposed approach with 
an auto-regressive approach. In particular, auto-regressive 
(AR) models are a subset of time series models, which can be 
used to predict future values based on previous observations 
(AR models use regression techniques and rely on autocor-
relation in order to make accurate predictions). AR models 
have been discovered by applying the AutoReg algorithm 
of the statsmodels.tsa.ar-model Python library.

Now, let us give a quantitative evaluation about the accu-
racy of the regressive model. To do that, we computed sev-
eral indices (commonly used in the literature) to evaluate the 
forecasting accuracy. In particular, let yi denote the ith obser-
vation, ŷi denote the forecast of yi according the regressive 
model and y = mean(y) , the indices are defined as follows:

•	 Mean Absolute Error: MAE(yi, ŷi) =
1
n

∑n−1
i=0 ∣ yi − ŷi ∣ , i.e., a 

scale-dependent index measuring the average forecast-
ing absolute error (the lower value, the better score);
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•	 M e a n  A b s o l u t e  P e r c e n t a g e  E r r o r : 
MAPE(yi, ŷi) =

1

n

∑n−1

i=0

∣yi−ŷi∣

∣yi∣
 , i.e., a scale-independent 

index computing the average forecasting percentage error 
(the lower value, the better score);

•	 Mean Squared Error: MSE(yi, ŷi) =
1

n

∑n−1

i=0
(yi − ŷi)

2 , i.e., 
a general purpose error metric for numerical predictions 
that amplifies and severely punishes large errors (the 
lower value, the better score);

•	 M e d i a n  A b s o l u t e  E r r o r : 
MedAE(yi, ŷi) = Median(∣ y1 − ŷ1 ∣,… , ∣ yn − ŷn ∣) , i.e., 
a scale-dependent index measuring the median abso-
lute forecasting error, which is particularly interesting 
because it is robust to outliers (the lower value, the better 
score);

•	 R2 score: R2(yi, ŷi) = 1 −
∑n

i=1
(yi−ŷi)

2

∑n

i=1
(yi−y)

2
 , i.e., a general pur-

pose error metric for numerical predictions that repre-
sents the proportion of variance (of y) that has been 
explained by the independent variables in the model. It 
provides an indication of goodness of fit and therefore a 
measure of how well unseen samples are likely to be pre-
dicted by the model, through the proportion of explained 
variance. The best score is 1.0 and it can be negative 
because the model can be arbitrarily worse (the higher 
value, the better score);

•	 Explained Variance Score: EVS(yi, ŷi) = 1 −
Var(y−ŷ)

Var(y)
 , 

which measures the proportion to which a mathematical 
model accounts for the variance (dispersion) of a given 
data set, whose the best possible score is 1.0 (the higher 
value, the better score).

To perform the comparative analysis, we evaluated the fore-
casting performance of the two approaches on the test set 
of the five areas (identified by the zip-codes). The results 
for the algorithms were obtained by performing an accurate 
tuning of the input parameters: for each dataset, different 
runs were executed for different values of the parameters, 
then the best results were selected. The results shown below 
only refer to the run with the best combination of param-
eters. Figure 7 summarizes the results of the comparison 
between our proposed approach based on mobility patterns 
(MobPat) and the auto-regression approach based only on a 
auto-regressive formula (AR). The figure shows the achieved 
indices, for the five areas (zip-codes) under investigation. 
In particular, we can see that our approach largely achieves 
better performances than other algorithms, in terms of MAE, 
MAPE, MSE and MedAE, for all five zip-codes (but MedAE 
on the zip-codes 60611, as shown in Fig. 7d). Taking into 
account the two indices R2 and EVS, even if it is less evi-
dent, our approach results in better performance compared 
to the other. These results confirm the appropriateness of the 
proposed approach based on mobility patterns and its good 
performance in the epidemic prediction domain.

6 � Conclusion

COVID-19 has been resulting as one of the worst pandem-
ics in history, which has been responsible for more than 
four hundred million reported cases. This has motivated a 
research effort towards the study of data-driven predictive 
models for epidemic events, whose effectiveness is crucial 
to support decision-makers in the efficient management and 
utilization of healthcare resources.

This paper presented the design and implementation of an 
approach based on spatial analysis and regressive models to 
discover spatio-temporal predictive epidemic models from 
mobility and infection data. First, the algorithm extracts 
infection hotspots, mobility hotspots, and mobility patterns. 
Then, on the basis of such knowledge, as infectious diseases 
are mainly spread through human-human transmissions, 
epidemic patterns are extracted from the subset of mobility 
patterns involving epidemic hotspots. Finally, the approach 
extracts a specific epidemic forecasting model for each epi-
demic hotspot, by analyzing the infection data. The experi-
mental evaluation, performed on a real-world data set col-
lecting the infection cases of some areas of Chicago, showed 
that the proposed methodology can forecast the number of 
positive cases with good accuracy. Furthermore, we also 
presented a comparative analysis with an auto-regressive 
algorithm exploited as base-line.

In future work, other research issues may be investigated. 
First, we may perform an extended experimental evaluation 
on other urban territories, to assess the results obtained 
in the case study reported here. Second, we may further 
explore the application of other spatial analysis approaches 
and regressive algorithms for the extraction of forecasting 
models. Third, in addition to the number of positive cases, 
it may be interesting to investigate some methodologies that 
predict other relevant indicators related to the epidemics 
under investigation.
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