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ABSTRACT

The BCL6 (B-Cell Lymphoma 6) gene is a proto-onco-
gene that is often expressed in diffuse large B-cell
lymphomas (DLBCLs). BCL6 loss of function can kill
DLBCL cells, demonstrating that BCL6 is necessary for
the survival of DLBCL cells and could be a therapeutic
target. In this study, we found that BCL6 protein levels
were consistently upregulated in DLBCL tissues,
whereas its mRNA levels varied randomly in tissues,
suggesting that a post-transcriptional mechanism was
involved in BCL6 regulation. We used bioinformatics
analysis to search for miRNAs, which potentially target
BCL6, and identified specific targeting sites for miR-10a
in the 3′-untranslated region (3′-UTR) of BCL6. We fur-
ther identified an inverse correlation between miR-10a
levels and BCL6 protein levels, but not mRNA levels, in
DLBCL tumor tissue samples. By overexpressing or
knocking down miR-10a in DLBCL cells, we experi-
mentally validated that miR-10a directly recognizes the
3′-UTR of the BCL6 transcript and regulated BCL6

expression. Furthermore, we demonstrated that nega-
tively regulating BCL6 by miR-10a suppressed the pro-
liferation and promoted apoptosis of DLBCL cells.

KEYWORDS microRNA, miR-10a, BCL6, DLBCL,
proliferation, apoptosis

INTRODUCTION

Worldwide, diffuse large B-cell lymphoma (DLBCL) is the
most common type of lymphoma, accounting for 30%–40%
of newly diagnosed non-Hodgkin lymphoma (NHL) cases
(Yatomi, 2012). Enormous progress has been made in
therapy, and the average five-year overall survival is
approximately 50% (Gerrard et al., 2013). Despite improve-
ments in the treatments, DLBCL is still associated with a
high mortality rate (Westin and Fayad, 2009); approximately
one-third of patients with DLBCL will be refractory to therapy
or relapse (Van Den Neste et al., 2015).

The BCL6 (B-Cell Lymphoma 6) gene is a member of
the BTB-POZ family and is the most frequently involved
oncogene in DLBCL (Parekh et al., 2007). Recent studies
have demonstrated that BCL6 plays an important role in the
formation of germinal center (GC) B cells, which are the
cells of origin of DLBCLs (Basso and Dalla-Favera, 2012;
Ding et al., 2015). BCL6 can impact DLBCL through mod-
ulating B-cell activation, differentiation, cell cycle arrest and
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apoptosis (Polo et al., 2004; Shaffer et al., 2000). In addi-
tion, BCL6 is involved in the development of CD4+ T-fol-
licular helper cells that play a critical role during the
generation of germinal centers (Yu et al., 2009; Hollister
et al., 2013). Thus, most B cell lymphomas arise from GC B
cells need continued expression of BCL6 to maintain their
survival (Hatzi et al., 2013; Bertolo et al., 2013). Targeted
inhibition of these BCL6 functions has emerged as the
basis for the rational design of lymphoma therapies and
combinatorial regimens.

MicroRNAs (miRNAs) are a class of 19-24-nucleotide-
long short noncoding RNAs, which regulate genes in a
sequence-specific manner (Krol et al., 2010; Koscianska and
Krzyzosiak, 2014). They play key roles in regulating the
translation and degradation of mRNAs by antisense com-
plementarity to specific mRNA, resulting in either direct RNA
degradation or inhibition of protein translation (Koscianska
and Krzyzosiak, 2014; Pillai et al., 2007). Although the bio-
logical functions of most miRNAs are not yet fully under-
stood, it has been suggested that they are involved in
various biological processes, including cell proliferation, cell
death, stress resistance, and fat metabolism, through regu-
lation of gene expression (Ivey and Srivastava, 2015).
Increasing evidence has indicated that miRNAs, in fact, may
be key regulators of various fundamental biological pro-
cesses. In the past years, many research groups have
focused on the potential clinical application of microRNAs as
diagnostic or therapeutic tools for patients with DLBCL (Jung
and Aguiar, 2009; Wang et al., 2014). Some papers have
reported the deregulation of miR-10 family members in
several human cancers (Khan et al., 2015; Zeng and Li,
2014), such as gastric, bladder, cervical and thyroid cancer.
Anja and colleagues found that miR-10a is downregulated in
hematological tumor cell lines (Agirre et al., 2008), and miR-
10a was reported to be downregulated in DLBCL (Roehle
et al., 2008). Early studies indicated that miR-10a could
regulate the development and activation of immunocytes by
targeting BCL6 and its co-repressor Ncor2, which impacts
the stability of the differentiation of Tregs (Takahashi et al.,
2012).

Although the dysregulation of miR-10a and BCL6 plays
an important role in immunoregulation, no correlation
between BCL6 and miR-10a in DLBCL has been reported.
In this study, we predicted that BCL6 is a target of miR-10a.
After measuring the expression levels of miR-10a and
BCL6 in human DLBCL tumor tissues and paired non-
neoplastic lymphatic tissues, we confirmed an inverse
correlation between miR-10a and the BCL6 protein levels.
Furthermore, we experimentally validated the direct inhibi-
tion of BCL6 translation by miR-10a through overexpress-
ing or knocking down miR-10a in DLBCL cell lines. Finally,
we showed the direct regulation of BCL6 by miR-10a and
the biological role of miR-10a targeting BCL6 in human
DLBCL.

RESULTS

Upregulation of BCL6 protein, but not mRNA, in DLBCL
tissues

The diffuse large B-cell lymphomas (DLBCL) and reactive
lymph node hyperplasia (RLH) tissues were embedded in
paraffin and then stained with H&E or immunohistochemical
staining of Bcl6 for histology examination (Fig. 1A). After
measuring the levels of BCL6 protein in DLBCL and RLH
tissues via Western blotting, we found that BCL6 protein
levels were significantly higher in the DLBCL tissues (Fig.1B,
C). Subsequently, we performed quantitative RT-PCR to
measure the levels of BCL6 mRNA in the same DLBCL and
RLH tissues (Fig. 1D). We found that BCL6 mRNA and
protein levels did not correlate between the DLBCL and RLH
tissues (Fig. S1). This disparity between the BCL6 protein
and mRNA levels in DLBCL tissues strongly suggests that a
post-transcriptional mechanism is involved in the regulation
of BCL6.

Identification of conserved miR-10a target sites
within the 3′-UTR of BCL6

One important mode of post-transcriptional regulation is the
repression of mRNA transcripts by miRNAs. miRNAs are
therefore likely to play a biologically relevant role in regu-
lating BCL6 expression in DLBCL. Three computational
algorithms, including TargetScan (Lewis et al., 2003), miR-
anda (John et al., 2004) and PicTar (Krek et al., 2005), were
used in combination to identify potential miRNAs that can
target BCL6. Using these approaches, miR-10a was identi-
fied as a candidate regulator of BCL6. The predicted inter-
actions between miR-10a and the targeting sites within the
3′-UTR of BCL6 are illustrated in Fig. 2A. One predicted
hybridization was observed between miR-10a and the 3′-
UTR of BCL6. There was perfect complementarity between
the seed region (the core sequence that encompasses the
first 2–8 bases of the mature miRNA) and the putative target
sequence. The minimum free energy value of the
hybridization between miR-10a and BCL6 was −23.5 kcal/-
mol, which is well within the range of genuine miRNA-target
pairs. Furthermore, the miR-10a binding sequences in the
BCL6 3′-UTR were highly conserved across species. Thus,
miR-10a was selected for further experimental verification of
its binding to BCL6.

Identification of an inverse correlation between the miR-
10a and BCL6 levels in DLBCL tissues

miRNAs are generally thought to have expression patterns
that are opposite to those of their targets (Ambros, 2004;
Bartel, 2004; He and Hannon, 2004). We next investigated
whether miR-10a was inversely correlated with BCL6 in
DLBCL. After determining the levels of miR-10a in the same
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DLBCL and RLH tissues, we found that the miR-10a levels
were indeed downregulated in DLBCL tissues (Fig. 2B).
Combining the computational prediction with the detection of
an inverse correlation between miR-10a and BCL6 in vivo, it
is quite likely that miR-10a is involved in the post-transcrip-
tional regulation of BCL6.

Validation of BCL6 as a direct target of miR-10a

The correlation between miR-10a and BCL6 expression was
further examined by evaluating BCL6 expression in the
human DLBCL cell lines OCI-LY7 and OCI-LY3 after the
knockdown and overexpression of miR-10a. In these
experiments, miR-10a overexpression was achieved by
transfecting OCI-LY7 and OCI-LY3 cells with pre-miR-10a (a
synthetic RNA oligonucleotide that mimics the miR-10a
precursor); and miR-10a knockdown was achieved by
transfecting cells with anti-miR-10a, (a chemically modified

antisense oligonucleotide designed to specifically target
mature miR-10a). As anticipated, cellular miR-10a levels
were significantly increased when OCI-LY7 and OCI-LY3
cells were transfected with pre-miR-10a; and were
decreased when OCI-LY7 and OCI-LY3 cells were treated
with anti-miR-10a (Fig. 3A). The expression of the BCL6
protein was reduced by the overexpression of miR-10a and
increased by the knockdown of miR-10a in OCI-LY7 and
OCI-LY3 cells (Fig. 3B and 3C). The expression of BCL6
protein was significantly inhibited by the introduction of pre-
miR-10a into OCI-LY7 and OCI-LY3 cells, while anti-miR-10a
significantly increased the BCL6 protein level in OCI-LY7
and OCI-LY3 cells. To determine the level at which miR-10a
regulates BCL6 expression, we repeated the above experi-
ments and examined the expression of BCL6 mRNA after
transfection. The overexpression or knockdown of miR-10a
did not affect the mRNA stability of BCL6 (Fig. 3D). These
results demonstrated that miR-10a specifically regulated
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Figure 1. BCL6 protein and mRNA in human tissues. (A) Representative H&E-stained and BCL6-stained sections of the

DLBCL&RLH tissues; Western blotting analysis of the expression levels of BCL6 protein in 9 cases of DLBCL and 9 cases of RLH.

(B) Representative image. (C) Quantitative analysis; (D) Quantitative RT-PCR analysis of BCL6 mRNA levels in the same DLBCL and

RLH tissues, the relative expression was assessed using ΔCt values (ΔCt = CtBCL6 − CtGAPDH). The GAPDH gene served as the

endogenous control. Data (mean ± SEM) are representative of 3 technique replicates. *** P < 0.001.
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BCL6 protein expression at the post-transcriptional level,
which is the most common mechanism of animal miRNA
action.

To determine whether the negative regulatory effects of
miR-10a on BCL6 expression were mediated by the binding
of miR-10a to the predicted target sites in the 3′-UTR of the
BCL6 mRNA, the full-length 3′-UTR of BCL6 containing the
predicted miR-10a binding site was inserted downstream of
the firefly luciferase gene in a reporter plasmid. After we
proved miR-10a is expressed in HEK293Tcells (Fig. S2), the
resulting plasmid was co-transfected into HEK293Tcells with
a transfection control plasmid (β-gal) and either pre-miR-10a
or anti-miR-10a. As expected, the luciferase activity was
markedly reduced in the cells transfected with pre-miR-10a,
whereas the inhibition of miR-10a resulted in an increase in

reporter activity compared with transfection with anti-miR
control (Fig. 3E). Furthermore, we introduced point muta-
tions into the corresponding complementary sites in the 3′-
UTR of BCL6 to disrupt the predicted miR-10a binding sites.
This mutated luciferase reporter was unaffected by the
overexpression of miR-10a (Fig. 3E). This finding suggested
that the binding sites of BCL6 strongly contributed to this
miRNA-mRNA interaction, which mediates the post-tran-
scriptional repression of BCL6 expression. In conclusion, our
results demonstrate that miR-10a directly binds to the 3′-
UTR of the BCL6 mRNA transcript to suppress BCL6
expression.

miR-10a inhibits proliferation and promotes
the apoptosis of DLBCL cells by targeting BCL6

We next analyzed the biological consequences of the miR-
10a-driven repression of BCL6 expression in DLBCL cells.
Because BCL6 is known to be required for DLBCLs to
maintain their proliferate and survival (Parekh et al., 2008),
we investigated whether the knockdown or overexpression
of miR-10a or BCL6 would impact the cell cycle, proliferation
and apoptosis of OCI-LY7 cells.

To knock down BCL6 expression, the siRNA sequence
targeting different sites of human BCL6 cDNA was designed
and transfected into OCI-LY7 cells. To overexpress BCL6, a
plasmid expressing the BCL6 ORF was transfected into OCI-
LY7 cells. The efficient knockdown or overexpression of
BCL6 is demonstrated in Supplementary Figure 3. And the
BCL6 protein levels in the samples treated with pre- miR10a
or rescued with BCL6 cDNA is demonstrated in Supple-
mentary Figure 4.

The proliferation of OCI-LY7 cells was examined using
the cell cycle and the cck8 assay. OCI-LY7 cells transfected
with the BCL6 siRNA resulted in the initial accumulation of
cells in G0/G1-phase of the cell cycle, in contrast, the OCI-
LY7 cells transfected with the BCL6 overexpression plasmid
showed a reduction of cells in the G0/G1-phase, whereas
the numbers of cells in the S phases increased (Fig. 4A).
And OCI-LY7 cells with BCL6 knocked down using siRNA
exhibited the promotion of apoptosis, the cells transfected
with the BCL6 overexpression plasmid exhibited significantly
reduced apoptosis (Fig. 5A). Meanwhile, We evaluated the
collective effects of BCL6 on the growth and survival of OCI-
LY7 cells using the CCK8 assay. The knockdown of BCL6
inhibited the growth and survival of OCI-LY7 cells; by con-
trast, to overexpress BCL6 had the opposite effect on the
growth and survival of OCI-LY7 cells (Fig. 6A and 6B).

Subsequently, we analyzed the biological consequences
of the miR-10a-mediated suppression of BCL6 expression in
DLBCL cells. OCI-LY7 cells transfected with pre-miR-10a
exhibited G0/G1-phase arrest; by contrast, knocking down of
miR-10a the numbers of cells in the S phases increased
(Fig. 4B). Moreover, compared with the cells transfected with
pre-miR-10a, the cells co-transfected with pre-miR-10a and
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the BCL6 overexpression plasmid exhibited reduction of
cells in the G0/G1-phase, and the numbers of cells in the S
phases increased (Fig. 4C), suggesting that miR-10a-resis-
tant BCL6 expression rescued the suppression of BCL6
expression by miR-10a and attenuated the effect on cell
cycle of miR-10a. We investigated the effects of miR-10a on
DLBCL cell apoptosis via flow cytometer. The percentage of
apoptotic cells was higher among the OCI-LY7 cells trans-
fected with pre-miR-10a but was lower among the OCI-LY7
cells transfected with anti-miR-10a (Fig. 5B). Furthermore,
when OCI-LY7 cells were simultaneously transfected with
pre-miR-10a and the BCL6 overexpression plasmid, the pro-
apoptotic effect of miR-10a was dramatically attenuated

(Fig. 5C). Finally, we analyzed the collective effects of miR-
10a-mediated suppression of BCL6 expression on the
growth and survival of DLBCL cells using the CCK8 assay.
OCI-LY7 cells transfected with pre-miR-10a suppressed the
growth and survival of OCI-LY7 cells; by contrast, knock-
down of miR-10a had the opposite effect on the growth and
survival of OCI-LY7 cells (Fig. 6C). Moreover, compared with
the cells transfected with pre-miR-10a, the cells co-trans-
fected with pre-miR-10a and the BCL6 overexpression
plasmid attenuated the inhibition effect of the growth and
survival induced by miR-10a (Fig. 6D), suggesting that miR-
10a-resistant BCL6 expression rescued the suppression of
BCL6 expression by miR-10a. These results indicate that
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Figure 3. Direct regulation of BCL6 expression by miR-10a at the posttranscriptional level. (A) Quantitative RT-PCR analysis

of miR-10a levels in OCI-LY7 and OCI-LY3 cells treated with pre-miR-control, pre-miR-10a, anti-miR-control or anti-miR-10a. U6

snRNA was used as an internal control, and the relative amount of miRNA normalized to the U6 snRNA levels was calculated using

the 2-ΔΔCT formula, in which ΔΔCT = (CT miRNA - CT U6) target - (CT miRNA - CT U6) control. (B and C) Western blot analysis of BCL6 protein

levels in OCI-LY7 and OCI-LY3 cells treated with pre-miR-control, pre-miR-10a, anti-miR-control or anti-miR-10a. B: representative

image. C: quantitative analysis. (D) Quantitative RT-PCR analysis of BCL6 mRNA levels in OCI-LY7 and OCI-LY3 cells treated with

pre-miR-control, pre-miR-10a, anti-miR-control or anti-miR-10a. (E) Direct recognition of the BCL6 3′-UTR by miR-10a. HEK293T

cells were co-transfected with firefly luciferase reporters containing either wild-type (WT) or mutant (MUT) miR-10a binding sites in the

BCL6 3′-UTR and pre-miR-control, pre-miR-10a, anti-miR-control or anti-miR-10a, 24 h after transfection, the cells were assayed

using a luciferase assay kit. Data are the mean±SEM of 3 independent experiments performed in triplicate, ** P < 0.01; *** P < 0.001.
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of 3 independent experiments performed in triplicate, ** P < 0.01; *** P < 0.001.
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miR-10a might inhibits proliferation and promotes the
apoptosis by downregulating BCL6 in DLBCL cells.

DISCUSSION

BCL6 as a transcriptional repressor, often involved in the
development of DLBCL. It is an important gene in B-cell
differentiation, which can mediate apoptosis, cell cycle con-
trol, survival and inflammatory reaction. BCL6 can influence
the prognosis of patients with DLBCL at gene and protein
levels and therefore is an independent prognostic factor for
DLBCL (Gao et al., 2014; Winter et al., 2006). It is also
essential for GC formation (Baron et al., 2004). Thus, most
DLBCLs need BCL6 to maintain their survival, and the
expression of BCL6 plays a key role in DLBCL. Multiple
mechanisms act coordinately to timely modulate BCL6
expression at the transcriptional and post-transcriptional
levels (Basso and Dalla-Favera, 2012). BCL6 loss of func-
tion can kill DLBCL cells, demonstrating that BCL6 is
required for the survival of DLBCL cells and could be an
excellent therapeutic target. Recent studies have intended to
identify highly specific and non-toxic BCL6 inhibitors (Cer-
chietti and Melnick, 2013; Duan et al., 2012). Targeting RNA
by RNA interference (RNAi) or antisense oligonucleotides
(ASOs) has been attempted to eradicate BCL6 from lym-
phoma cells (Saito et al., 2006). In this study, we found an
alternative mechanism—regulating BCL6 expression at the
posttranscriptional level in DLBCL.

In this study, we found that silencing BCL6 expression by
siRNA could inhibit proliferation and promote apoptosis in

DLBCL cells, whereas overexpressing BCL6 induced
opposing effects, validating its central role as an essential
oncogene during DLBCL tumorigenesis. Interestingly, we
identified discordance between the BCL6 protein and mRNA
levels in human DLBCL tissues. These results suggested a
post-transcriptional regulation mechanism involved in BCL6
repression. One centrally important mode of post-transcrip-
tional regulation is the repression of mRNA transcripts by
miRNAs. Therefore, we searched for miRNAs that could tar-
get BCL6 and identified miR-10a as a candidate. In addition,
by overexpressing or knocking downmiR-10a in DLBCL cells,
we experimentally validated the direct inhibition of BCL6
translation by miR-10a. Finally, we showed that miR-10a
inhibited BCL6 expression resulted in the initial accumulation
of cells in G0/G1-phase of cell cycle companied with the
inhibited proliferation and promoted apoptosis in cultured
DLBCL cells. The results delineate a novel regulatory network
employing miR-10a and BCL6 to fine tune cell proliferation
and apoptosis. Additionally, a recent study has shown that
miR-10a directly targets Bcl-6 to downregulate protein
expression level in a murine B cell lymphoma cell line(Taka-
hashi et al., 2012). The latter study, combined with ours,
reveals the importance of miR-10a targeting BCL6 as a novel
regulatory pathway in DLBCL progression.

miRNAs are aberrantly expressed in cancer and can func-
tion as oncogenes or tumor suppressor genes (Calin and
Croce, 2006; Esquela-Kerscher and Slack, 2006). In the pre-
sent study, we found that the levels of miR-10a were lower in
DLBCL tumor tissues than in normal adjacent tissues. These
results suggest that miR-10a may be involved in the
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Figure 5. The role of miR-10a targeting BCL6 in the regulation of apoptosis in DLBCL cells. (A)The apoptosis assay was

performed 24 h after the transfection of OCI-LY7 cells with equal dose of control siRNA, BCL6 siRNA, control vector or BCL6

overexpression vector; (B) The apoptosis assay was performed 24h after the transfection of OCI-LY7 cells with equal dose of pre-

miR-control, pre-miR-10a, anti-miR-control or anti-miR-10a; (C)The apoptosis assay was performed 24h after the transfection of OCI-

LY7 cells with pre-miR-control plus control vector, a pre-miR-control plus BCL6 overexpression vector, pre-miR-10a plus control

vector, or pre-miR-10a plus BCL6 overexpression vector. Cell apoptosis profiles were analyzed by flow cytometry. The biparametric

histogram shows cells in early (bottom right quadrant) and late apoptotic states (upper right quadrant). Viable cells are double

negative (bottom left quadrant). Left panel: representative image; right panel: ratio of apoptotic OCI-LY7 cells. Data are the mean ±

SEM of 3 independent experiments performed in triplicate, * P < 0.05; ** P < 0.01.
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pathogenesis of DLBCL as a tumor suppressor. Indeed, it is
reported in many studies that miR-10a is downregulated in
cancers (Havelange et al., 2014; Yan et al., 2013). On the other
hand, it is well known that a single miRNA can target multiple
genes, while multiple miRNAs can target a single gene. Thus,
miR-10a may have multiple different mRNA targets other than
BCL6, and these additional targets may also play important
roles in carcinogenesis. For example, miR-10awas reported to
be downregulated in hematological cancer cell lines (Gaur
et al., 2007) such as acute myeloid leukemia (Zhang et al.,
2006). Therefore, at this stage, the most important question is
to investigate how critical this newpathwaywould be in the field
of DLBCL carcinogenesis. During this study, we found that
overexpressingmiR-10a could inhibit proliferation and promote
apoptosis in DLBCL cells and that BCL6 reduction couldmimic
miR-10a induction. Interestingly, we observed that the
restoration of BCL6 expression could successfully attenuate
the anti-proliferative and pro-apoptotic effects of miR-10a on
DLBCL cells, althoughmiR-10a hasmany other targets. These
results suggest that the targeting of BCL6 is a major mecha-
nism by which miR-10a exerts its tumor-suppressive function.
Therefore, the modulation of BCL6 by miR-10a might explain,
at least in part, why the downregulation of miR-10a during
DLBCL carcinogenesis can promote cell growth and acceler-
ate DLBCL formation.

BCL6 as a pro-oncogenic has emerged as a critical
therapeutic target in DLBCL. The biochemical study of
BCL6-mediated gene repression has provided the basis for

the design of agents that inhibit BCL6 and kill lymphoma
cells (Parekh et al., 2008). Recently, functional and bio-
chemical studies have provided the basis and rational for
the development of highly specific and nontoxic BCL6
inhibitors (Basso and Dalla-Favera, 2012; Cerchietti and
Melnick, 2013). Thus, BCL6 is likely to become a new
target for DLBCL treatment. On the other hand, given the
dysregulation of miRNAs in cancer development, the cor-
rection of cellular miRNA levels has emerged as a potential
therapeutic strategy. The overexpressed miRNAs can be
silenced using miRNA ASOs, and the re-expression of
miRNAs that are lost in cancers can be achieved by
overexpressing miRNA mimics. In this study, the results
suggest that targeting BCL6 is a major mechanism by
which miR-10a exerts its tumor-suppressive and pro-
apoptotic function in DLBCL cells. Thus, it is hypothesized
that a replacement treatment with miR-10a mimics may be
a promising strategy for cancers characterized by miR-10a
downregulation. In summary, as important emerging mod-
ulators in cellular pathways, miR-10a and BCL6 may pro-
vide attractive, novel therapeutic targets for DLBCL
treatment. In future studies, treatments with both miR-10a
mimics and BCL6-targeted drugs may offer a viable strat-
egy for DLBCL therapy.

Together, the results of this study delineate a novel reg-
ulatory network employing miR-10a and BCL6 to fine tune
proliferation and apoptosis in DLBCL cells. This study may
provide a potential novel target for future DLBCL therapy.
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MATERIALS AND METHODS

Clinical samples

The patients were eligible if they had previously untreated, biopsy-

confirmed diffuse large B-cell lymphoma according to the World

Health Organization criteria. In addition, 9 anonymized samples of

histopathological verified reactive lymph node hyperplasia (RLH)

were included as normal control. The diffuse large B-cell lymphoma

tumor tissues and reactive lymph node hyperplasia tissues were

derived from patients undergoing a surgical procedure at the Tianjin

Medical University Cancer Institute and Hospital (Tianjin, China).

Tissue fragments were immediately frozen in liquid nitrogen at the

time of surgery and stored at −80°C. The clinical features of the

DLBCL patients are listed in Supplementary Table 1.

Cell culture and reagents

The cell lines OCI-LY7, OCI-LY3 and HEK293T were obtained from

American Type Culture Collection (ATCC). OCI-LY7 is germinal

center B-cell (GCB)-subtype cell line; OCI-LY3 is an activated B-cell

(ABC)-subtype cell line; and HEK293T is an embryonic kidney cell

line. OCI-LY7 was maintained in complete Iscove’s modified

essential medium (IMDM; GIBCO, Carlsbad, CA, USA) with 2-mer-

captoethanol (1:10000) and 10% fetal bovine serum (GIBCO). OCI-

LY3 was cultured in IMDM with 20% fetal bovine serum. HEK293T

cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM;

GIBCO) supplemented with 10% fetal bovine serum. All of the cell

lines were supplemented with 1% penicillin/streptomycin (Invitrogen,

Carlsbad, CA, USA). All of the cell cultures were maintained at 37°C

under 5% CO2 and 95% air.

RNA isolation and quantitative RT-PCR

Total RNA was extracted from the cultured cells or tissues using

Trizol reagent (Invitrogen) according to the manufacturer’s instruc-

tions. Assays to quantify mature miRNAs were performed using

TaqMan miRNA probes (Applied Biosystems, Foster City, CA, USA)

according to the manufacturer’s instructions. Briefly, 1 µg of total

RNA was reverse transcribed to cDNA using AMV reverse tran-

scriptase (TaKaRa, Dalian, China) and a stem-loop RT primer

R
el

at
iv

e 
ce

ll 
nu

m
be

r

R
el

at
iv

e 
ce

ll 
nu

m
be

r
R

el
at

iv
e 

ce
ll 

nu
m

be
r

R
el

at
iv

e 
ce

ll 
nu

m
be

r

A B

C D
Pre-miR-control + control vector
Pre-miR-10a + control vector
Anti-miR-control + BCL6 vector
Anti-miR-10a + BCL6 vector

siRNA control
siRNA BCL6

Control vector
BCL6 vector

Pre-miR-control
Pre-miR-10a
Anti-miR-control
Anti-miR-10a

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

12
 h

24
 h

36
 h

48
 h

60
 h

12
 h

24
 h

36
 h

48
 h

60
 h

12
 h

24
 h

36
 h

48
 h

60
 h

12
 h

24
 h

36
 h

48
 h

60
 h
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(Applied Biosystems). The reaction conditions were as follows: 16°C

for 30 min, 42°C for 30 min and 85°C for 5 min. Real-time PCR was

performed using a TaqMan PCR kit and an Applied Biosystems 7500

Sequence Detection System (Applied Biosystems). The reactions

were incubated in a 96-well optical plate at 95°C for 5 min, followed

by 40 cycles of 95°C for 15 s and 60°C for 1 min. All of the reactions

were performed in triplicate. After the reactions were complete, the

cycle threshold (CT) data were collected using fixed threshold set-

tings, and the mean CT was determined from triplicate PCRs. A

comparative CT method was used to compare each transcript with

the controls. U6 snRNA was used as an internal control, and the

relative amount of miRNA normalized to the U6 snRNA levels was

calculated using the 2-ΔΔCT formula, in which ΔΔCT = (CT miRNA −
CT U6) target − (CT miRNA − CT U6) control.

To quantify the BCL6 and GAPDH mRNA levels, 1 µg of total

RNA was reversely transcribed to cDNA using oligod (T) 18 primers

(TaKaRa) and ThermoScript reverse transcriptase (Invitrogen). The

reaction conditions were as follows: 42°C for 60 min and 70°C for 10

min. Real-time PCR was then performed with the RT product, and

these reactions included SYBR Green dye (Invitrogen) and specific

primers for BCL6 and GAPDH. The sequences of the primers were

as follows: 5′-ACTCCCATGTGATAGTGCCA-3′ (BCL6 sense) and

5′-GTGCCTCTTCTGGGATTGTT-3′ (BCL6 antisense); 5′-

GATATTGTTGCCATCAATGAC-3′ (GAPDH sense) and 5′-

TTGATTTTGGAGGGATCTCG-3′ (GAPDH antisense). The reac-

tions were incubated at 95°C for 5 min, followed by 40 cycles of 95°

C for 30 s, 60°C for 30 s and 72°C for 30 s. After the reactions were

completed, the CT values were determined by setting a fixed

threshold. The relative amount of BCL6 mRNA was normalized to

that of GAPDH.

Overexpression and knockdown of miR-10a

miRNA overexpression was achieved by transfecting cells with a

pre-miR-10a (a synthetic RNA oligonucleotide duplex mimicking the

miRNA precursor), whereas knockdown was achieved by trans-

fecting cells with an anti-miR-10a (a chemically modified single-

stranded antisense oligonucleotide designed to specifically target

mature miRNA). Synthetic pre-miR-10a, anti-miR-10a, pre-miR-

control and anti-miR-control RNAs were purchased from Gene-

pharma (Shanghai, China). Next, 3 × 106 OCI-LY7 or OCI-LY3 cells

were seeded per well in 6-well plates and were transfected with

Lipofectamine 2000 (Invitrogen) following the manufacturer’s proto-

cols. The cells were harvested 24 h or 48 h after transfection for

quantitative RT-PCR or Western blotting. The transfection efficiency

was determined by quantitative RT-PCR for hsa-miR-10a. Trans-

fection experiments were repeated three times independently and in

each case were done in triplicate.

miRNA target prediction

The miRNAs that may target BCL6 were determined using algo-

rithms from TargetScan (http://genes.mit.edu/targetscan/), PicTar

(http://pictar.bio.nyu.edu/), and miRanda (http://cbio.mskcc.org/cgi-

bin/mirnaviewer/mirnaviewer.pl).

Luciferase reporter assay

To test the direct binding of miR-10a to the target gene BCL6, a

luciferase reporter assay was performed as previously described

(Chen et al., 2009). The entire 3′-untranslated region (3′-UTR) of

human BCL6 was amplified using PCR with human genomic DNA as

a template. The PCR products were inserted into the p-MIR-reporter

plasmid (Ambion), and the insertion was confirmed to be correct via

sequencing. To test the binding specificity, the sequences that

interacted with the miR-10a seed sequence were mutated (from

CAGGGTT to GTCCCAA), and the mutant BCL6 3′-UTR was

inserted into an equivalent luciferase reporter. For luciferase reporter

assays, HEK293T cells were cultured in 24-well plates, and each

well was transfected with 1 µg of firefly luciferase reporter plasmid, 1

µg of a β-galactosidase (β-gal) expression plasmid (Ambion), and

equal amounts (100 pmol) of pre-miR-10a, anti-miR-10a, or the

scrambled negative control RNA using Lipofectamine 2000 (Invit-

rogen). The β-gal plasmid was used as a transfection control. 24h

post-transfection, the cells were assayed using a luciferase assay kit

(Promega, Madison, WI, USA).

siRNA and plasmid construction interference assay

The siRNA sequence targeting human BCL6 was designed and

synthesized by Genepharma (Shanghai, China). The scrambled

siRNA (Genepharma, Shanghai, China) was included as a negative

control. A mammalian expression plasmid (pReceiver-M02-BCL6)

designed to specifically express the full-length open reading frame

(ORF) of human BCL6 without the miR-10a-responsive 3′-UTR was

purchased from GeneCopoeia (Germantown, MD, USA). An empty

plasmid (pReceiver-M02) served as a negative control. The siRNA

or overexpression plasmid was transfected into OCI-Ly7 cells using

Lipofectamine2000 (Invitrogen) according to the manufacturer’s

instructions. Total RNA or protein was isolated 24 h or 48 h after

transfection. Quantitative RT-PCR and Western blotting assessed

the BCL6 mRNA and protein expression levels.

Protein isolation and Western blotting

All of the cells were rinsed with PBS (pH 7.4) and lysed in RIPA Lysis

buffer (Beyotime, China) supplemented with a protease and phos-

phatase inhibitor cocktail (Thermo Scientific 78440) on ice for 45

min. The DLBCL and RLH tissues were frozen solid with liquid

nitrogen, ground into a powder and lysed in RIPA Lysis buffer con-

taining the protease and phosphatase inhibitor cocktail on ice for 30

min. When necessary, sonication was used to facilitate cell lysis. Cell

lysates or tissue homogenates were centrifuged for 15 min (12,000

g, 4°C). The supernatant was collected, and the protein concentra-

tion was calculated using the Pierce BCA protein assay kit (Thermo

Scientific, Rockford, IL, USA). The BCL6 protein levels were ana-

lyzed using Western blotting with the corresponding antibodies. The

protein levels were normalized by probing the same blots with

GAPDH antibody. Experiments were conducted at least in inde-

pendent triplicates. Densitometry analysis was performed using

ImageJ, and normalized by the GAPDH intensity. The antibodies

were purchased from the following sources: anti-BCL6 (sc-7388;
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Santa Cruz Biotechnology, CA, USA) and anti-GAPDH (sc-365062,

Santa Cruz Biotechnology, CA, USA).

Cell cycle assay

To analyze the cell cycle, OCI-LY7 cells were seeded in 6-well plates

and transfected with pre-miR-10a, anti-miR-10a, BCL6 siRNA, or the

BCL6 overexpression plasmid. Pre-miR-control, anti-miR-control,

control siRNA, and control plasmid served as negative controls.

Twenty-four hours after transfection, the cells were washed twice

with PBS and fixed in 70% ethanol at 4°C overnight. Then, cells

were resuspended in 1×PBS with 0.1% Triton X-100, 250 µg/mL

RNase A for 1 h at 37°C. Staining for DNA content was performed

using 50 mg/mL propidium iodide (BD Biosciences, San Jose, CA).

The flow cytometry data was acquired on at least 10,000 cells from

each sample on the Becton Dickinson FACS Calibur machine by the

Cell Quest Pro software. For the cell cycle analysis, the Dean/Jett/

Fox method of Flow Jo software was used.

Apoptosis assays

The apoptosis of OCI-LY7 cells was tested using an Annexin

V-FITC/propidium iodide (PI) staining assay. OCI-LY7 cells were

cultured in 12-well plates and transfected with pre-miR-10a, anti-

miR-10a, BCL6 siRNA, or the BCL6 overexpression plasmid to

induce apoptosis. Pre-miR-control, anti-miR-control, control siRNA,

and control plasmid served as negative controls. Cells were cultured

overnight with serum-depleted medium, and then the cells were

harvested. We detect the OCI-LY7 cells apoptosis of under normal

or serum deprivation over night (Fig. S5). Flow cytometry analysis of

apoptotic cells was performed using an Annexin V-FITC/PI staining

kit (BD Biosciences, CA, USA). After washing with cold PBS, the

cells were resuspended in binding buffer (100 mM HEPES at pH 7.4,

100 mmol/L NaCl, and 25 mmol/L CaCl2), followed by staining with

Annexin V-FITC/PI at room temperature in the dark for 15 min.

Apoptotic cells were then evaluated by gating PI- and Annexin

V-positive cells using a fluorescence-activated cell-sorting (FACS)

flow cytometer (BD Biosciences, San Jose, CA).

Cell proliferation assay

OCI-LY7 cells were cultured in 6-well plates and transfected as

mentioned above. Six hours after transfection, the cells were seeded

into 96-well plates at a density of 2 × 104 cells per well and then

incubated overnight in IMDM supplemented with 10% FBS. Prolif-

eration rates were determined at 12, 24, 36, 48 and 60 h after

transfection. Cells were incubated with 10% CCK-8 (CK04-500,

Dojindo) at 37°C for 3 h, and then the absorbance of each well was

measured at a wave length of 450 nm. The day of transfection was

set as Day 0, and the relative cell number was calculated based on

the ratio of the absorbance at Day n to that at Day 0.

Statistical analysis

All of the Western blotting images are representative of at least three

independent experiments. Quantitative RT-PCR, the luciferase

reporter assay, the cell cycle, cell proliferation assay and apoptosis

assays were performed in triplicate, and each experiment were

repeated three times. Data (mean ± SEM) are representative of at

least three independent experiments. The numerical data were

statistically analyzed by 2-tailed Student’s t-test. Bivariate correlation

between two independent variables was calculated by Spearman’s

rank correlation coefficient. Statistically significance was defined as

P < 0.05.
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