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An improved method for phasing crystal
structures with low non-crystallographic
symmetry using cryo-electron microscopy
data

Dear Editor,

Cryo-electron microscopy (cryo-EM) and macromolecular
crystallography (MX) both allow the creation of three-di-
mensional images of biological macromolecules. EM data
usually provide access to three-dimensional reconstructions
of large biological complexes at low resolution, whereas MX
usually delivers atomic or quasi-atomic resolution structures
(1–3 Å). Two limiting factors of MX, which are not encoun-
tered in EM, are the production of high diffraction-quality
crystals and the “phase problem”. Therefore, these two
methods can be utilized in combination to determine the
structure of biological macromolecules, especially of very
large and complicated assemblies (Dodson, 2001; Navaza,
2008; Stuart and Abrescia, 2013; Xiong, 2008).

Low-resolution EM reconstructions were previously used
to solve high-resolution MX structures by the molecular
replacement (MR) method (Rossmann, 1972). The process
is divided into two consecutive steps (Fig. 1). In the first step,
an EM reconstruction model is placed at the center of a P1
cell with ‘crystal’ unit cell dimensions at least twice the model
diameter. The structure factors can be generated by the
inverse Fourier transform. Molecular replacement is then
performed to match observed crystal diffraction intensities to
those predicted by a suitable EM model correctly oriented
and positioned within the unit cell (Dodson, 2001). Sufficient
resolution overlapping between the EM reconstruction and
MX data is the most critical parameter for the success of this
step (Jenni and Ban, 2009). In the second step, after the
search EM map has been positioned, EM-model based
phases are calculated up to the EM reconstruction resolu-
tion. Phase extension to the higher resolution provided by
the X-ray diffraction data was usually achieved by iterated
density-modification procedures comprising solvent flatten-
ing, histogram matching, and especially non-crystallographic
symmetry (NCS) map averaging. This strategy has been
successfully exploited in the determination of structures with
a high degree of internal symmetry, e.g. icosahedral viruses

(Stuart and Abrescia, 2013), fungal fatty acid synthase (FAS)
particle (Jenni and Ban, 2009; Xiong, 2008) with 32-fold
symmetry, major vault protein (cpMVP vaults) including
concentric 24- and 48-fold rotational symmetry (Anderson
et al., 2007), CaDHQ with 12 proper NCS operators and one
improper NCS operator (Trapani et al., 2010), bacteriophage
φ6 major capsid protein with five-fold NCS (Nemecek et al.,
2013), a bacteriophage capsid protein P2 with six-fold NCS
(Abrescia et al., 2011), etc. which often results in a good-
quality electron density map for interpretation even at the
resolution of around 3 Å, due to the power of the NCS
averaging technique. To our knowledge, this strategy has
never been used for two NCS copies or less in the asym-
metric unit (ASU).

Recently we applied the EM/MR approach to solve the
crystal structure of toll-like receptor 13 (TLR13) with only two
TLR13 molecules in the asymmetric unit of the cell. This
work demonstrates that the phase extension method
described in this study can extend the EM-based phases to
higher resolution even without the usual high number of NCS
copies.

Toll-like receptors (TLRs) have crucial roles in innate
immunity by functioning as pattern recognition receptors.
TLR13 recognizes a stretch of conserved nucleotides from
bacterial 23S ribosomal RNA with stringent specificity to
trigger an immune response (Song et al., 2015). We crys-
tallized the complex of TLR13 ecto-LRR domain with a
13-nucleotide RNA oligomer and collected a native X-ray
diffraction dataset of 2.3 Å (Table S1). However, the tradi-
tional phasing methods in X-ray crystallography, e.g.
molecular replacement with homologue structures, isomor-
phous replacement with heavy atom derivatives, or anoma-
lous dispersion with selenium methionine substitution, all
failed for phasing the TLR13 structure.

Advances in electron microscopy (Kuhlbrandt, 2014) may
pave the way for the routine use of low-resolution three-
dimensional reconstructions as MR models to phase X-ray
data (Stuart and Abrescia, 2013). To solve the phase

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2015, 6(12):919–923
DOI 10.1007/s13238-015-0219-4 Protein&Cell

P
ro
te
in

&
C
e
ll

http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-015-0219-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-015-0219-4&amp;domain=pdf


problem in the TLR13 solution by a cryo-EM map, a single-
particle cryo-EM reconstruction at 4.87 Å of TLR13 with a
25-nucleotide RNA oligomer was obtained (Table S2). In the
cryo-EM map, two copies of TLR13 molecules formed an “M-
shaped” dimer (Fig. 1), which is supposed to be the effective
assembly for recognition of single-strand RNA released from
the internalized microbes for activation.

Although the correct position of the TLR13 dimer has
been identified in the crystallographic data as judged by the
high value of Z-score in PHASER (McCoy et al., 2007), and
phases were calculated up to 4.87 Å resolution, the low
number of NCS copies of TLR13 in the asymmetric unit of
the crystal constituted an obstacle for the effective density
improvement merely using the traditional methods. There-
fore, a novel phase-extension method was developed in
order to obtain interpretable high-resolution phases up to
2.3 Å. The flowchart of the current phase extension proce-
dure is shown in Fig. 2A. An overview of the entire process is
presented into the following steps:

1) The positioned EM map was used to calculate the
phases for X-ray data up to the EM reconstruction
resolution.

2) The phases were then improved with the prime-and-
switch phasing method to remove model bias from the
currently available phased map in RESOLVE (Ter-
williger, 2000). (Density modification step, DM).

3) Automatic main-chain and side-chain model building was
performed in the electron density map obtained in step 2
(Terwilliger, 2000). (Automatic model building step, AMB)

4) The phases calculated from auto-built models of step 3
were combined with the step-2 prime-and-switched
phases in SIGMAA (Read, 1986) with the appropriate
weights between the phases from the above two
sources. (Phase combination step, PHSCMB)

5) Further prime-and-switch phase improvement was
achieved by returning to step 2. The whole procedure
can be performed iteratively, until the extended phases
are good enough for map interpretation. The resulting
electron density map was utilized for further automatic
or manual model building, and final structure
refinement.

In this case study, phases for X-ray data to 4.87 Å
resolution were calculated for TLR13 based on the EM
model and the MR positions, which gave map correlation
coefficients relative to the final refined coordinates of 0.365
and 0.257 for main-chain and side-chain atoms, respec-
tively (Fig. S1). A single run of traditional density modifi-
cation procedure, including solvent flattening, histogram
matching, and two-fold NCS averaging resulted in the
phases with a figure-of-merit (FOM) weighted mean phase
error of ∼63° (Fig. 2B: Cycle 1). A portion of the electron-
density map is shown in Fig. 2C: Cycle 1. It is difficult to
trace the whole chain from this map. However, after auto-
matic model building, RESOLVE could identify some cor-
rect residue positions, along with a number of wrong ones,
which totally accounts for 38.56% of the candidate posi-
tions within 1.5 Å of a true Cα position (first row in
Table S3). Combining the auto-built model phases with
density-modified phases resulted in a sudden increase in
the mean phase error to ∼70°. Although the phase error
temporarily rose up, this step could be considered akin to
the temperature heating step in the simulated annealing
method, which would help to escape from the local mini-
mum to find the global minimum. Another cycle of density
modification on the combined phases improved the resul-
tant phases dramatically. The improved electron density
map is shown in Fig. 2C: Cycle 2, and more correctly
positioned Cα atoms were built automatically (Table S3).
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Figure 1. Schematic representation of the workflow combining EM and MX techniques. First, EM reconstruction models are

placed at the center of a P1 cell with ‘crystal’ axes at least twice the model diameter. The structure factors are generated from inverse

Fourier transform. Molecular replacement is then performed to match observed crystal diffraction intensities to those predicted by a

suitable EM model correctly oriented and positioned within the crystal unit cell. Second, once the search EM map has been

positioned, EM-based phases can be calculated up to the EM reconstruction resolution. Phase-extension procedures are then

needed to solve the structure at the resolution provided by the X-ray diffraction data.
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The whole procedure was repeated four times, alternating
between density modification and phase combination. The
mean phase error in the final cycle dropped to ∼45°

(Fig. 2B: Cycle 4), with a correlation coefficient of 0.77
(Fig. S1), which is sufficient for automatic model building
and structure refinement.
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Figure 2. An improved phase extension method for phasing crystal structures with low NCS using cryo-EM data.

(A) Flowchart of phase extension procedure. (B) Plot of figure-of-merit-weighted (FOM) mean phase errors (wMPE) calculated

relative to the subsequently refined structure for the various steps of phase improvement. The cycle number of iteration in the

flowchart of Fig. 2A is indicated above the plot with the various colors. DM, density modification in RESOLVE; PHSCMB, phase

combination in SIGMAA. (C) A portion of the electron-density map for the various iterative phase-extension steps. The electron

density maps are shown in light grey mesh representation at the various cycles, and the final refined model is supposed as grey

ribbon onto the density. The ribbon representation of the models built automatically by RESOLVE is also shown with the color

consistent with that used in Fig. 2B.
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In summary, based on our experience learned from the
TLR13 structure, the process of the solution of the “phase
problem” with high-resolution X-ray crystallographic data and
a low-resolution cryo-EM reconstruction map may be divided
into the following steps:

1) B-factor sharpened and FOM-weighted cryo-EM map
should always be used as the starting point (Supple-
mentary Materials).

2) The cryo-EM map is then corrected for the magnification
error, according to the previous microscopic calibration
(Supplementary Materials).

3) The cryo-EM reconstruction is placed at the center of a
P1 cell with ‘crystal’ unit cell dimensions at least twice
the model diameter. The structure factors can be
generated by the inverse Fourier transform.

4) Molecular replacement is then performed to determine
the orientation and position of the cryo-EM map in the
crystal lattice.

5) Application of the phase extension procedure in this
study is used to extend the phases to the highest
resolution available from the X-ray data.

6) Final model building and structure refinement is
performed.
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