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ABSTRACT

Cancer stem cells (CSCs), a subpopulation of cancer
cells with ability of initiating tumorigenesis, exist in
many kinds of tumors including breast cancer. Cancer
stem cells contribute to treatment resistance and
relapse. Conventional treatments only kill differentiated
cancer cells, but spare CSCs. Combining conventional
treatments with therapeutic drugs targeting to CSCs will
eradicate cancer cells more efficiently. Studying the
molecular mechanisms of CSCs regulation is essential
for developing new therapeutic strategies. Growing
evidences showed CSCs are regulated by non-coding
RNA (ncRNA) including microRNAs and long non-cod-
ing RNAs (lncRNAs), and histone-modifiers, such as let-
7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we
review the roles of microRNAs, lncRNAs and histone-
modifiers especially Polycomb family proteins in regu-
lating breast cancer stem cells (BCSCs).
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INTRODUCTION

The concept of cancer stem cells (CSCs) has been generally
accepted since leukaemia cancer stem cells were discov-
ered by John E. Dick in 1994 (Lapidot et al., 1994). CSCs
maintain CSCs pool or generate more CSCs via self-re-
newal, and generate non-CSCs progenies forming the dif-
ferentiated cancer cells via differentiation. CSCs also initiate
tumor formation, required critical cell amount for tumor

formation in xenografts is reduced compared to non-CSCs. It
has been reported that CSCs exist in many kinds of tumors,
including breast cancer, lung cancer, leukaemia, glioblas-
toma, colon cancer, live cancer and so on (Visvader and
Lindeman, 2008), meanwhile, some molecular markers have
been used to separate CSCs from total cancer cell popula-
tion, such as ALDH (Ginestier et al., 2007) and CD24−CD44+

(Al-Hajj et al., 2003) for BCSCs, CD90 (Yang et al., 2008)
and CD133 (Ma et al., 2007) for liver cancer stem cells,
ABCB5 and CD271+ for melanoma cancer stem cells
(Schatton et al., 2008), CD133 for brain tumor stem cells
(Singh et al., 2004). CSCs are heterogenous, for example,
BCSCs and colon cancer stem cells include at least two
types of CSCs identified with different molecular markers
(Liu et al., 2014). BCR-ABL1 lymphoblastic leukaemia con-
tains multiple genetically distinct leukaemia stem cell sub-
clones (Notta et al., 2011).

It has revealed that some signaling pathways play critical
roles in regulating the self-renewal and differentiation of
CSCs. Wnt signaling is important for CSC self-renewal, for
example, Wnt/β-catenin signaling is activated in poor differ-
entiated basal-like breast cancer with worse overall survival
(Khramtsov et al., 2010). Constitutive activation of Wnt sig-
naling caused by the mutation of tumor suppressor APC
leads to breast cancer stem cell (BCSC) expansion. In Her2+

breast cancer inhibition of Wnt signaling represses tumor
initiation and metastasis (Monteiro et al., 2014; Schade
et al., 2013). These suggest deregulated Wnt signaling
promotes the expansion of CSCs. Hedgehog (HH) signaling
promotes glioma growth by stimulating self-renewal of
CD133+ glioma CSCs, and increases chemotherapeutic
agent resistance (Clement et al., 2007). Hedgehog signaling
also maintain CSCs in breast cancer and myeloid leukaemia
(Liu et al., 2006; Zhao et al., 2009). Notch signaling is also
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important in regulating CSCs (Pannuti et al., 2010). For
example, Notch-GFP reporter system has been used to
separate CSCs from lung adenocarcinoma and breast can-
cer, GFP+ cancer cells could differentiate into GFP− cancer
cells, and have strong tumor initiation capacity (D’Angelo
et al., 2015; Hassan et al., 2013). Notch signaling induces
deacetylase sirtuin 2 (SIRT2) to deacetylate and activate
ALDH1A1 and then increases BCSCs (Zhao et al., 2014).
Apart from these signaling pathways, TGF-β, IL6/JAK/
STAT3, NF-κB signaling and other signaling pathways also
play critical role in regulating CSCs, and they sometimes
cross-talk with each other in the regulation.

With the development of epigenetics, histone-modifying
enzymes and ncRNAs have been found to play vital roles in
regulating CSCs. In this review, we focus on the research
progress about ncRNAs and histone-modifiers in regulating
BCSCs.

BREAST CANCER STEM CELLS

In 2003, Clarke and his colleagues isolated putative BCSCs
as ESA+CD44+CD24− cell population (Al-Hajj et al., 2003).
As few as 200 ESA+CD44+CD24− cells were capable to
generate tumor in vivo, whereas a 100-fold more cells
without these markers isolated from the same tumors were
non-tumorigenic. In addition, the secondary tumors resemble
the phenotype (morphology and ESA/CD44/CD24 expres-
sion profile) of the initial tumor and the tumorigenic
ESA+CD44+CD24− tumor cells could be serially passaged at
least four passages in vivo. Subsequent studies employed
several methodologies adapted from stem cell research to
isolate or investigate BCSCs, including side population (SP)
assay, ALDEFLUOR assay and sphere assay. The SP assay
is based on the ability of stem cells to exclude DNA dye such
as Hoechst 33342 by membrane transporters, and the SP
has been shown to contain the most tumorigenic population
within breast cancer cell line when being transplanted in vivo
(Dontu et al., 2003). The Aldefluor assay represents a group
of enzymes catalyzing the oxidation of aldehydes. In malig-
nant mammary epithelium, cells with high Aldehyde dehy-
drogenase (ALDH) activity were associated with the greatest
self-renewal and differentiation abilities both in vitro and
in vivo, and positive ALDH immunostaining in breast carci-
nomas correlated with poor prognosis (Ginestier et al.,
2007). Mammary stem/progenitor cells are able to survive in
serum-free and anchorage-independent conditions in the
form of spheroids (Dontu et al., 2003). BCSCs were also
enriched when grown as non-adherent spheroids in vitro
(Ponti et al., 2005). Interestingly, the two tumor initiating
populations (ALDH+ cells and ESA+CD44+CD24− cells) only
showed limited overlapping (Box 1) (Ginestier and Wicha,
2007). Similar finding was also demonstrated by the other
group that breast cancers may contain tumor initiating cells
displaying different cell surface markers (Wright et al., 2008).
Despite the heterogeneity of BCSCs, these cells are usually
associated with therapy resistance and tumor relapse, the

two main obstacles in cancer treatment. Therefore, under-
standing the biology of CSCs will help the development of
new therapeutic approaches to target CSCs, leading to more
effective therapies and ultimate cure for cancer.

BREAST CANCER STEM CELLS (BCSCs) ARE
REGULATED BY microRNAs

MicroRNAs (miRNAs) regulate targeted mRNAs through a
combination of translational repression and mRNA destabi-
lization. The biogenesis of miRNAs has been summarized in
details by V. Narry Kim (Kim et al., 2009). Studies have shown
microRNAs regulate cells proliferation, invasion, metastasis
and angiogenesis in both solid tumors and leukemia (Nicoloso
et al., 2009). miR-29 promotes hepatocellular carcinoma cell
apoptosis by targeting Mcl-1 and Bcl-2 (Xiong et al., 2010).
miR-10b initiates tumor invasion and metastasis by targeting
RHOC in breast cancer (Ma et al., 2008).

In recent years, miRNAs have been studied in BCSCs
intensively (Table 1). We have shown that let-7a is down-
regulated in mammosperes in comparison to differentiated
cancer cells utilizing miRNA array analysis; let-7a is also
lower in BCSCs marked by CD24−CD44+ than non-
CD24−CD44+ cells, and let-7a overexpression suppressed
the mammosphere formation and tumor initiation. Further
analysis reveals let-7a suppresses self-renewal of BCSCs in
part by targeting H-Ras, and promotes cellular differentiation
by targeting HMGA2 (Yu et al., 2007). Let-7 is also regulated
by some signaling pathways, e.g., Wnt-β-catenin pathway
activates Lin28 which suppress let-7 biogenesis by inducing
urdylation of precursor let-7 (pre-let-7) at its 3′ end and then
represses let-7 to expand CSCs (Cai et al., 2013; Heo et al.,
2008). Some protein methyltransferases not only catalyze
methylation of histones, but also nonhistone proteins. For
example, SET7/9 which catalyzes monomethylation of his-
tone 3 also catalyzes methylation of Lin28A at K135 to
promote Lin28 accumulation in nucleus, and increases the
stability and pri-let-7-binding ability of Lin28 (Kim et al.,
2014), suggesting epigenetic proteins can regulate CSCs.

miR-200 family, including miR-200a, miR-200b, miR-
200c, miR-141 and miR-429, are reported as tumor sup-
pressors. They repress EMT by targeting ZEB1 and ZEB2.
miR-200c suppresses BCSCs through targeting BMI1

Box 1. Different types of breast cancer stem cells

ALDH+ and CD24−CD44+ are different markers for breast cancer
stem cells (BCSCs) (Liu et al., 2014). CD24−CD44+ marks
BCSCs in a mesenchymal-like (EMT) state, primarily quiescent,
and localized at the tumor invasion front; ALDH+ marked BCSCs
with epithelial-like (MET) state, proliferative, and localized at the
tumor center. They both can self-renew and differentiate. The
tumorigenesis ability of BCSCs in the overlap of ALDH+ and
CD24−CD44+ is the highest. These two types of BCSCs can
reciprocally transform, which could be induced by tumor
microenvironmental factors, microRNAs, lncRNAs or epigenetic
proteins.
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(Shimono et al., 2009). miR-200b inhibits BCSCs by target-
ing SUZ12, H3K27me3 of E-cadherin and other genes
(Iliopoulos et al., 2010). Inhibition of miR-141 increases both
CD44+ and CK5+ cells by targeting Stat5a and progesterone
receptor (PR), and enhances the abilities of mammosphere
formation and tumor initiation. miR-200 family could be
regulated by some signaling pathways, for example, abnor-
mal expression of AKT1 and AKT2 causes dysregulation of
miR-200 family to regulate epithelial-mesenchymal transition
(EMT) and CSCs self-renewal (Iliopoulos et al., 2009).
Besides ZEB1 and ZEB2, some Polycomb group (PcG)
proteins are also targets of miR-200. The role of some
Polycomb family proteins will be introduced later in the text
(Fig. 1).

Recently, Pier Paolo Pandolfi and colleagues found miR-22
promotes the EMT, tumor invasion and metastasis of normal
and cancer mammary stem cells by targeting TET1, TET2
and TET3; miR-22 overexpression enhances some stem-
ness and EMT-related genes expression, such as BMI1,
ZEB1 and ZEB2. TET1, TET2 and TET3 could inhibit the
demethylation of miR-200 promoter. So miR-22 promotes

BCSCs by suppressing miR-200 expression, suggesting
DNA demethylases could regulate BCSCs.

miR-93 plays different roles in BCSCs come from different
subtypes of breast cancer. miR-93 inhibits CSCs and initi-
ates mesenchymal-epithelial transition (MET) in basal type
of breast cancer cells such as SUM159 by targeting AKT3,
SOX4 and STAT3. However, it promotes BCSCs in luminal
type of breast cancer such as MCF-7, suggesting the dual
roles of miR-93 in regulating BCSCs is dependent on the
state of cellular differentiation, but the mechanism is yet to
be elucidated (Liu et al., 2012).

In addition to BCSCs, dysregulation of miRNAs is also
found in other types of CSCs. In colon cancer stem cells, the
function of miR-34a depends on its expression levels: High
miR-34a expression suppresses Notch signaling pathway
and promotes differentiation of CSCs; low miR-34a expres-
sion promotes Notch signaling pathway and maintains CSCs
phenotype (Bu et al., 2013). CD44 is a marker of prostate
cancer stem cells, miR-34a inhibits CSCs and cancer
metastasis by targeting CD44 (Liu et al., 2011). miR-218
inhibits glioma cancer stem cells by targeting BMI1 (Tu et al.,

Table 1. miRNAs aberrantly expressed and validated target genes in BCSCs

miRNA Expression Targets Function References

let-7 Down H-Ras, HMGA2 Reduce BCSCs Yu et al. (2007)

miR-200c Down BMI1 Reduce BCSCs Shimono et al. (2009)

miR-200b Down SUZ12 Reduce BCSCs Iliopoulos et al. (2010)

miR-93 Down AKT3, SOX4 and STAT3 Inhibit BCSCs in basal type
cancer, promote BCSCs in
luminal type cancer

Liu et al. (2012)

miR-100 Down SMARCA5, SMARCD1
and BMPR2

Inhibit BCSCs Deng et al., (2014)

miR-141 Down Stat5a and PR Reduce BCSCs Finlay-Schultz et al. (2014)

miR-34c Down Notch4 Inhibit BCSCs Yu et al. (2012)

miR-30 Down Ubc9 and ITGB3 Inhibit BCSCs Yu et al. (2010)

miR-128 Down BMI1 and ABCC5 Inhibit BCSCs Zhu et al. (2011)

miR-140 Down ALDH1 and SOX9 Inhibit BCSCs Zhang et al. (2012)

miR-27a Down ZBTB10 Inhibit BCSCs Tang et al. (2014)

miR-27b Down ENPP1 Inhibit BCSCS Takahashi et al. (2015)

miR-7 Down KLF4, SETDB1 Inhibit BCSCs Okuda et al. (2013);
Zhang et al. (2014a)

miR-34a Down Notch1 Reduce BCSCs Park et al. (2014)

miR-142 Up APC Promote BCSCs Isobe et al. (2014)

miR-21 Up PTEN, AKT and ERK1/2
pathways

promote BCSCs Han et al. (2012a, b, c)

miR-29 Up Non report Promote BCSCs Li et al. (2014)

miR-495 Up E-Cadherin Promote BCSCs Hwang-Verslues et al. (2011)

miR-181 Up ATM Promote BCSCs Finlay-Schultz et al. (2014)

miR-22 Up TET-family proteins Promote BCSCs Song et al. (2013)

miR-221 Up ATXN1 Promote BCSCs Ke et al. (2015)

miR-9 Up Non-report Promote BCSCs Gwak et al. (2014)
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2013). More and more studies showed that miRNAs can
potentially be used for tumor therapy by being linked to
therapeutic vectors, such as nanoparticles.

lncRNAs PLAY POTENTIAL ROLES IN
REGULATING BREAST CANCER AND CANCER
STEM CELLS

lncRNAs (long non-coding RNAs) are >200 nt non-coding
RNA. A great number of lncRNAs have been discovered, but
only a few lncRNAs have been well studied by now.
Recently, lncRNAs have been studied in many cancers. For
example, lncRNA-ATB activated by TGF-β induces EMT in
hepatocellular carcinoma, breast cancer and colon cancer
(Yuan et al., 2014). It not only function as a competing
endogeneous RNA (ceRNA) competitively binding to miR-
200 family to upregulate their targets and induces EMT, but
also binds to IL11 mRNA, increasing the stability of IL11 and
causing autocrine induction of IL11 to activate STAT3 path-
way, which plays a vital role in regulating BCSCs. lncRNA-
ATB may regulate BCSCs by regulating miR-200 family and
STAT3.

Chemokine CCL21 binds to its receptor CCR7 to induce
the phosphorylation of GLI2 mediated by citron (CIT) kinase,
phosphorylation of GLI2 activates the target genes of GLI.
lncRNA BCAR4 is required for transcription activation of
GLI2 target genes. RNA pull-down and mass spectrometry
analysis reveals that BCAR4 interacts with SNIP1 and
PNUTS. When BCAR4 interacts with SNIP1, SNIP1

releases the suppression of p300, and p300 acetylates GLI2
target gene promoters marked H3K18ac and promotes gene
transcription. The acetylated H3K18 can be recognized by
PNUTS, and interact with it to activate the phosphatase
activity of PP1 to maintain hypophosphorylation level of RNA
Pol II Ser5 at gene promoter regions. BCAR4 could induce
the activation of GLI’s target genes and promotes breast
cancer metastasis, especially triple-negative breast cancer
(Xing et al., 2014). The target genes of GLI plays pivotal role
in BCSCs. These suggest that BCAR4may regulate BCSCs,
which is to be demonstrated with further studies.

Furthermore, lncRNA lncTCF7 regulated self-renewal of
hepatocellular carcinoma stem cells demonstrated by
tumorsphere formation ability in vitro and tumor initiating
frequency in vivo. lncTCF7 recruits the SWI/SNF complex to
bind to TCF7 promoter and activate TCF7 expression, and
TCF7 activates Wnt pathway to expand hepatocellular car-
cinoma stem cells (Wang et al., 2015). lncRNA-ROR is a
modulator of cell reprogramming and pluripotency. In breast
cancer, lncRNA-ROR induces EMT and promotes metasta-
sis, lncRNA-ROR overexpression increases the percentage
of CD24−CD44+ cell population and mammosphere num-
bers. Further analysis reveals that it can act as a ceRNA of
miR-205 which targets the EMT inducer ZEB2 and blocks
the degradation of ZEB2 to promote EMT (Hou et al., 2014).

HOTAIR has been studied for many types of cancers
(Zhang et al., 2014b). In breast cancer HOTAIR promotes
cancer metastasis (Gupta et al., 2010). It can act as a
scaffold to bring two epigenetic protein complexes. The 5′
domain of HOTAIR binds to Ploycomb repressive complex 2
(PRC2), and the 3′ domian binds to the LSD1/CoREST/
REST complex. HOTAIR can regulate the function of epi-
genetic complex and causes chromatin state change (Tsai
et al., 2010). HOTAIR also regulates BCSCs, and microarray
analysis reveals HOTAIR overexpression upregualtes the
genes related to stemness and EMT, such as CD44, STAT3,
ALDH2, ZEB1 and VIM, but the tumor initiating frequency
in vivo assay are needed to demonstrate the role of HOTAIR
in regulating BCSCs further (Padua Alves et al., 2013).

With the progression of studies about lncRNAs, more and
more lncRNAs will been demonstrated in modulating CSCs.
lncRNAs represent a new type of CSCs regulator by regu-
lating miRNAs, mRNAs and other lncRNAs. The study of
lncRNAs will improve the understanding of novel molecular
regulation of CSCs, and lncRNAs can function as targets for
novel therapies and as prognosis factors.

HISTONE-MODIFIERS, ANOTHER VITAL
REGULATOR OF BREAST CANCER STEM CELLS
(BCSCs)

Histone H2A, H2B, H3 and H4 is modified by histone mod-
ifying enzymes, including histone acetyltransferases, histone
deacetylases, histone methyltransferase and histone
demethylases. Histone modifying enzymes play a role in the
regulation of transcription by modulating the state of

Lin28

Let-7

SET7/9

IL6

miR-200AKT1, AKT2 TET family miR-22

lncRNA-ATB 

Wnt-β-catenin

NF-κB

BCSC

Figure 1. Let-7 and miR-200 inhibit BCSCs. Wnt-β-catenin

could regulate BCSCs not only by regulating Lin28, but also by

other proteins. Lin28 can be activated by NF-κB and SET7/9.

Lin28 inhibits let-7. AKT1 and AKT2 suppress miR-200, and

also activate NF-κB to regulate BCSCs. miR-22 inhibits TET

family proteins which can activate miR-200, and lncRNA-ATB

also inhibits miR-200.
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chromatin, and they also cross-talk with each other (Portela
and Esteller, 2010). Studies about the roles of histone
modifying enzymes in breast cancer and other cancers have
been reported (Patani et al., 2011). H3K4 demethylase Jar-
id1B/KDM5B is amplified and overexpressed in breast can-
cer to promote cell proliferation. RNA-seq and ChIP-seq
analysis revealed the binding sites of Jarid1B are signifi-
cantly enriched in the promoters and enhancers of luminal-
high genes than those of basal-high genes, indicating it is a
luminal lineage-driving oncogene (Yamamoto et al., 2014).
H3K9me2 methyltransferase G9a interacts with Snail and
DNA methyltransferase, recruits them to the promoter of
E-cadherin for DNA methylation and promotes EMT in breast
cancer (Dong et al., 2012). Coactivator-associated arginine
methyltransferase 1 (CARM1) methylates BAF155 at R1064.
Methylation of BAF155 promotes breast cancer invasion and
metastasis in vivo and in vitro. Chromatin immunoprecipita-
tion (ChIP) analysis demonstrates CARM1 control the
expression of genes in the c-myc pathway (Wang et al.,
2014).

NYD1/KDM2B

H3K36me1/2 and H3K4me3 demethylase NYD1/KDM2B
plays an important role in ES and iPS. It is directly regulated
by pluripotency factors OCT4 and SOX2, and it interacts with
the core subunits of Ploycomb repressive complex 1
(PRC1), such as Ring1B and recruits PRC1 to the CpG
island of promoter of genes which control the differentiation,
resulting in the inhibition of differentiation genes. This also
suggests KDM2B can function as a Polycomb group
repressive element (PRE) to inhibit differentiation gene
expression (He et al., 2013). KDM2B also inhibits let-7 and
miR-101 to induce upregulation of EZH2 and the levels of
H3K27me3 in the sites of Ink4a-Arf-Ink4b. So KDM2B can
function as an oncogene (Kottakis et al., 2011; Tzatsos et al.,
2011). In breast cancer, downreguation of KDM2B inhibits
anchorage-dependent and -independent growth, arrests cell
cycle in G1 and promotes apoptosis, and CSCs were also
reduced. These results suggest KDM2B is an oncogene, not
only promoting breast cancer but also maintaining BCSCs.
Basal marker and luminal marker analysis showed KDM2B
is required for the maintenance of the myoepithelial/luminal
progenitor cell phenotype of basal breast cancer cells.
Western blot analysis indicates Polycomb group (PcG) pro-
teins, SUZ12, EZH2, RING1B and BMI1, are downregulated
upon KDM2B knockdown, but they are not the direct
downstream of KDM2B. KDM2B binds to the sites encoding
miR-200 family, miR-101, miR-181 and miR-203. SUZ12,
EZH2, RING1B and BMI1 are the direct targets of these
miRNAs, and KDM2B inhibits BCSCs through repressing
these miRNAs and upregulation of the core subunits of PcG
proteins (Kottakis et al., 2014). In clinical samples, KDM2B
expression has a negative correlation with these miRNAs,
but has a positive correlation with these core subunits of
PcG proteins. So PcG proteins have prominent role in

BCSCs. RING1B is an E3 ubiquitin ligase for H2AK119, but
the role of RING1B in breast stem cells have to be studied
further in BCSCs.

PcG proteins are divided into two main subfamilies of
complexes: PRC1 and PRC2. The targets of PcG proteins
are highly enriched for transcription factors of signaling
pathways involved in development and disease. With the
new algorithms emerging, more targets of PcG proteins will
be identified, including lncRNAs and miRNAs. The core
subunits of PRC2 catalyze H3K27me3 in target sites, and
H3K27me3 recruits PRC1 to inhibit target gene expression
(Kerppola, 2009; Simon and Kingston, 2009). In addition to
this mechanism, RYBP1-PRC1 complexes mediate H2A
ubiquitylation at the Polycomb target sites also suppress the
expression of targets independent on PRC2 and H3K27me3
(Tavares et al., 2012).

EZH2 AND SUZ12

EZH2 and SUZ12 belong to PRC2. EZH2 is a histone
methyltransferase and catalyzes H3K27me3, and SUZ12
stimulates the activity of EZH2. EZH2 plays critical roles in
embryonic stem cells, adult stem cells and cancer. For
example, in mammary gland, EZH2 maintains luminal pro-
genitor cell self-renewal (Michalak et al., 2013). EZH2 is also
an oncogene and the downstream of the pRB-E2F pathway.
EZH2 is essential for proliferation and amplified in many
primary cancers, and is inhibited by AKT through phospho-
rylation at Ser21 (Cha et al., 2005). EZH2 can be used as a
molecular marker for precancerous diagnosis, and EZH2
overexpression in histologically normal breast epithelium
increases the risk of developing cancer. Furthermore, EZH2
is upregulated in breast cancer, and high EZH2 levels are
associated with aggressive breast cancer. Kaplan-Meier
analysis of metastasis-free survival and overall survival
show the survival rate is lower in patients with high EZH2
(Kleer et al., 2003). It has been well-known that hypoxia
promotes CSCs, such as glioma stem cells (Li et al., 2009),
colorectal cancer stem cells (Yeung et al., 2011) and BCSCs
(Conley et al., 2012). Chun-Ju Chang and colleagues found
hypoxia induces the expression of EZH2 to expand BCSCs,
and EZH2 overexpression increases the number of SP and
CD24−CD44+ cells. But the mechanism that hypoxia regu-
lating EZH2 has to be elucidated. EZH2 inhibits the
expression of tumor suppressor RAD51 which participates in
DNA repair leading to genomic instability and increases
some oncogene expression such as RAF1 which activates
ERK and Wnt-β-catenin pathway to promote cancer cell
survival and proliferation, and expands BCSCs (Chang et al.,
2011). Notch signaling pathway maintains the stemness of
cancer stem cells, induces EMT transition and promotes
chemoresistance (Pannuti et al., 2010). In clinical samples,
the expression of EZH2 and Notch1 are positively correlated.
EZH2 knockdown inhibits the onset and growth of xenografts
derived from triple-negative breast cancer, and the opposite
phenotype emerges when EZH2 is overexpressed. EZH2
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overexpression activates Notch1 signaling activity to pro-
mote BCSC self-renewal. Further analysis indicates EZH2
regulates Notch transcriptional activity depending on direct
binding to the promoter of Notch1 rather than its histone
methyltransferase activity. In glioblastoma stem cells, EZH2
activates STAT3 signaling and promotes tumorigenicity (Kim
et al., 2013). Activation of STAT3 also promotes BCSCs, and
intronic RNAs also mediate regulation of epigenetic targets
(Guil et al., 2012). Recently, Hae-Yun Jung and colleagues
find PAF (PCNA-associated factor) interacts with β-catenin
to recruit EZH2 and form a transcriptional complex, and this
complex specifically transactivates the target genes of Wnt
signaling, suggesting EZH2 expands BCSCs by activating
Wnt pathway (Jung et al., 2013), which indicates EZH2 may
be a central protein, and is regulated by several key sig-
naling pathways which regulate CSCs. Further studies are
needed to reveal the regulatory mechanism.

SUZ12 promotes the silencing of Hox gene, cell prolifer-
ation and embryogenesis (Cao and Zhang, 2004; Pasini
et al., 2004). The mutations of SUZ12 often are found in
some cancer, for example, SUZ12 mutations cause the
malignant transformation of peripheral nerve sheath tumors
(Zhang et al., 2014c). SUZ12 knockdown inhibits mammo-
sphere formation ability of BCSCs, and suppresses CD44.
SUZ12 is also a direct target miR-200b which is a BCSC
suppressor. miR-200b inhibits BCSCs through SUZ12 partly,
but the molecular mechanism of SUZ12 regulating BCSCs is
yet to be elucidated.

BMI1

BMI1 which a canonical component of PRC1, is a co-factor for
E3 ubiquitin ligase and compact polynucleosomes. Growing
evidences suggest BMI1 plays a vital role in regulating self-
renewal of normal and cancer stem cells. BMI1 stimulates the
self-renewal of normal and leukaemic stem cells (Lessard and
Sauvageau, 2003), and enhances self-renewal of hematopoi-
etic stemcells (Iwamaet al., 2004). Bmi1 promotes neural stem
self-renewal by repressing the p16 and p19 senescence
pathways (Lessard and Sauvageau, 2003), but other studies
have shown BMI1 controls neural stem self-renewal through
p21-Rbpathway (ChristopherA. Fasanoet al., 2007). BMI1 is a
regulator of prostate stem cell self-renewal and malignant
transformation (Lukacs et al., 2010). BMI1 is a marker for
intestinal stem cells, and a BMI1 inhibitor has been found to
inhibit colorectal cancer stem cells (Kreso et al., 2014; Yan
et al., 2012). In BCSCs, BMI1 is a target of miR-200 family and
miR-128, which regulate BCSCs by targeting BMI1. BMI1 is
also regulated by some signalings, such as Hedgehog (Liu
et al., 2006). Activation of Hedgehog signaling pathway pro-
motes self-renewal in bothmammary stem/progenitor cells and
BCSCs, and downregulation of BMI1 eliminates this effect.
BMI1 also activatesWnt signaling pathway by repressingWNT
inhibitors, Dickkopf (DKK), to activateWNTpathway. BMI1also
auto-activates itself. c-Myc is a target of WNT, and also an
activator of BMI1. BMI1, DKK1,WNTand c-Myc form a positive

feedback loop to promote BCSCs (Cho et al., 2013). So BMI1
plays a critical role in self-renewal of BCSCs (Fig. 2). Recently,
Xu and colleagues reported that a lncRNA FAL1 is overex-
pressed in some types of cancers including breast cancer, and
it interacts with BMI1-PRC1 complex to enhance its stabiliza-
tion by blocking its proteasomal degradation, which influences
the ubiquitylation levels of H2AK119 to epigenetically repress
genes expression such as CDKN1A (Neven et al., 2014).
PRC1 binds to the target sites through PREs, and PREs may
be ncRNAs or proteins, such as Jarid2, KDM2B and HOTAIR
(Schwartz and Pirrotta, 2013). These suggest BMI1 can cross-
talk with ncRNAs.

Histone-modifiers are a new frontier for drug discovery,
and lots of small molecular compound inhibitors have been
developed for disease therapies, among which some have
been investigated in Phase III of clinical trials (Arrowsmith
et al., 2012). The research of histone-modifiers in depth in
regulating BCSCs will benefit the survival rate of patients
with breast cancer and other type cancers.

CONCLUDING REMARKS

In this review, we mainly summarize the role of ncRNA and
histone-modifiers in regulating BCSCs. More and more non-
coding RNAs have been been found to regulate CSCs, and
the new function and mechanism of histone-modifiers is also
getting clearer.

miRNAs are ncRNAs with short sequence, and they can
be covalently conjugated with nanovectors easily. The tumor
cells will be eradicated when the miRNAs or antisense
nucleotide of specific miRNAs can be delivered to tumor
cells by nanovectors. So, the development of nanocarriers of
the drugs is important. lncRNAs are newly identified regu-
lators of CSCs, and the regulation mechanisms are getting
clearer by investigating more and more lncRNAs. lncRNAs
can also function as therapeutic targets. For example,
inhibiting lncRNA BCAR4 with locked nucleic acid (LNA)-
based antisense oligonucleotides suppressed the metasta-
sis of breast cancer (Xing et al., 2014).

CSCs could not be cultured like embryonic stem cells in
undifferentiated state in vitro to date, and flow cytometry with
specific markers is the main method for CSC separation.
Some important technologies used to study mechanism,
such as immunoprecipitation and ChIP-seq, require a larger
number of cells, which is not suitable for cancer stem cell
research. But new technologies such as single cell RNA-
sequencing (Hou et al., 2012) and ChIP-seq of 500 cells
(Lara-Astiaso et al., 2014), will bring new hope for CSC
research. For example, epigenetic regulator proteins play an
important role in the regulation of CSCs, but the mechanism
of regulation has still not been well studied due to the small
CSCs number, single cell RNA-sequencing and ChIP-seq of
500 cells will eventually solve this problem. The promises
and challenges of single cell RNA-sequencing have been
reviewed by Stegle, O. and colleagues (Stegle et al., 2015).
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The interaction among signaling pathways, ncRNAs and
histone-modifiers plays a vital role in regulating CSCs. They
can cross-talk with each other. Fully understanding the net-
work of signaling pathways, ncRNAs and histone-modifiers
will be helpful for tumor therapies.
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