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ABSTRACT

Mitochondrial genome is responsible for multiple human
diseases in a maternal inherited pattern, yet phenotypes
of patients in a same pedigree frequently vary largely.
Genes involving in epigenetic modification, RNA pro-
cessing, and other biological pathways, rather than
“threshold effect” and environmental factors, provide
more specific explanation to the aberrant phenotype.
Thus, the double hit theory, mutations both in mito-
chondrial DNA and modifying genes aggravating the
symptom, throws new light on mitochondrial dysfunc-
tion processes. In addition, mitochondrial retrograde
signaling pathway that leads to reconfiguration of cell
metabolism to adapt defects in mitochondria may as
well play an active role. Here we review selected exam-
ples of modifier genes and mitochondrial retrograde
signaling in mitochondrial disorders, which refine our
understanding and will guide the rational design of
clinical therapies.

KEYWORDS mitochondrial disorder, mitochondrial DNA
mutation, nuclear modifier gene, mitochondrial retrograde
signaling

INTRODUCTION

Mitochondria are essential organelles inside cells that are
responsible for cellular energy production. Through a variety
of pathways, the mitochondria provide fuel (adenosine
triphosphate) for cell survival. In addition, mitochondria now
are recognized as a fundamental platform in cellular signal-
ing, with crucial roles in a number of metabolic and

developmental process, including cell autophagy, cell
apoptosis (death), calcium, copper and iron homeostasis,
and cell cycle regulation (Chan, 2006, Newmeyer and Fer-
guson-Miller, 2003, Nunnari and Suomalainen, 2012,
Rubinsztein et al., 2011). Chronic, multi-symptom illness
arises when sufficient numbers of mitochondrion were
damaged. Mitochondrial disorders has been linked to an
enormous variety of disease, such as MELAS (mitochondrial
encephalomyopathy, lactic acidosis, and stroke-like epi-
sodes) syndrome, MERRF (myoclonic epilepsy with ragged
red fibers) syndrome, LOHN (Leber’s hereditary optic neu-
ropathy), deafness, diabetes, Alzheimer disease, and
Parkinson disease (Wallace, 2005). Moreover, progressive
mitochondrial dysfunction has also been implicated in the
aging process (Ross et al., 2014).

Mitochondrial damage can be inherited via mutations both
in maternal DNA (mtDNA) and nuclear DNA, and present at
birth or remain latent until triggered later in life. In this review,
we will focus specifically on disorders caused by primary
mutations of mtDNA and highlight a few major recent and
ongoing developments of genetic modification, which may
offer insights into the research in progress, as well as sug-
gestions regarding further advances needed.

AN OVERVIEW OF THE MITOCHONDRIAL DNA
MUTATIONS

The human mtDNA is a 16,569 base pairs double stranded
circular molecule (cytosine-rich light (L) and guanine-rich
heavy (H) strands). This remarkably compact genome con-
tains 13 protein-coding genes (core subunits of respiratory
chain complexes), 22 tRNA genes, and 2 ribosomal genes
(12S rRNA and 16S rRNA) (Fig. 1) (Wallace and Chalkia,
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2013). Due to the oxidative damage and lacking of protective
histones, the mitochondrial genome has a very high mutation
rate, 10- to 17-fold higher than that observed in nuclear DNA.
In normal tissues, usually all the mtDNA molecules are
identical, known as homoplasmy; when a mixture of wild type
and mutant mtDNA is encountered, results in heteroplasmy.
In heteroplasmic cells, the mtDNA genotype can shift during

cell replication. Consequently, some lineages drift toward
wild type mtDNA and become homoplasmy, while others
remain heteroplasmic.

Most mtDNA alterations are neutral polymorphisms, and
this type of DNA sequence variation has been categorized
into “haplogroups”, which have been proved useful in the
reconstruction of historic population movements and
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Figure 1. Human mitochondrial genome. Represented is a schematic diagram of the 16.6 kb circular, double-stranded human

mitochondrial genome. The D-loop region, or non-coding control region, is vital for the initiation of mtDNA replication and transcription.

The two ribosomal RNAs (12S rRNA and 16S rRNA) are shown in red and 22 tRNAs are shown in white and denoted by single letter

codes. The subunits of complex I (ND1–ND6 and ND4L) are shown in blue; cytochrome b (Cyt b) of complex III is shown in green;

cytochrome c oxidase (COI–COIII) is shown in yellow; and the subunits of the ATP synthase (ATP6 and ATP8) are shown in purple.

The positions of mutations referred to in the text are marked by black lines and arrows. LHON, Leber’s hereditary optic neuropathy;

MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; MERRF, myoclonic epilepsy and ragged red

muscle fibers; ADPD, Alzeimer’s disease and Parkinsons’s disease.
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practical applications such as forensics (Parson and Ban-
delt, 2007). The first pathogenic mtDNA mutations were
identified in 1988 in patients with mitochondrial myopathies
(Holt et al., 1988). Since then, mtDNA mutations have been
increasingly recognized as an important contributor to an
array of diseases. Over 250 pathogenic mutations (point
mutations and rearrangements) have been identified and
characterized in mtDNA (http://mitomap.org/MITOMAP),
which cause a wide variety of disorders with heterogeneity of
phenotypes and a variable age of onset.

The mtDNA point mutations are usually heteroplasmic
and maternally inherited. These can occur with mtDNA-en-
coded proteins, tRNAs, or ribosomal RNA (rRNA), and
consequently affect the replication, transcription, or RNA
processing. However, more than half of reported disease-
related mtDNA point mutations are located within the tRNA
genes. The most common sites for mt-tRNA mutation are
tRNALeu(UUR) (MT-TL1), and tRNALys (MT-TK). The
m.3243A>G mutation in the tRNALeu(UUR) gene was first
identified in patients with MELAS syndrome (Goto et al.,
1990), and now it has also been proved as one of the
important causes of maternally inherited diabetes and
deafness (van den Ouweland et al., 1992). To investigate the
molecular pathogenic mechanism of the mitochondrial
mutations, cell hybrids (namely cybrids) of mtDNA-deficient
cells and enucleated lymphoblastoid cells from patients are
generated. Analysis of cybrids harboring homoplasmic
m.3243A>G mutation revealed that the level of aminoacy-
lated tRNALeu(UUR) was reduced 70%–75%, which is mainly
due to a shortage of tRNALeu(UUR), leading to the reduced
rate of mitochondrial protein synthesis and respiration
defects (Picard et al., 2014). The most common mutation in
tRNALys is m.8344A>G missense mutation, which is the
main cause of MERRF syndrome that accounts for 80% of
affect individuals. Similar to m.3243A>G, decreased steady-
state levels and aminoacylation of the tRNALys were
observed (Enriquez et al., 1995). In addition, m.8356T>G
and m.8363G>A mutations in the tRNALys are associated
with MERRF, compatible with hearing loss. Yasukawa et al.
reported that both m.3243A>G and m.8344A>G mutations
lead to similar uridine modification defects at the anticodon
wobble position, respectively (Yasukawa et al., 2000a,
Yasukawa et al., 2000b). Biochemical studies of tRNAs
isolated from MELAS or MERRF patient cybrid cells
revealed that the taurine and 2-thio modifications of uridine
stabilize the codon-anticodon pairing. Thus, these structural
tRNA modifications are critical for efficient and accurate
decoding process and further overall mitochondrial transla-
tion (Suzuki and Nagao, 2011).

Primary mutations in mtDNA-encoded proteins, namely
subunits of respiratory chain complexes, also have been
linked to inherited diseases. m.11778G>A, m.3460G>A, and
m.14484T>C, respectively altering NADH dehydrogenase
subunit MT-ND4, MT-ND1, MT-ND6, are present in at least
90% of LHON cases. When there is a greater percentage of
m.8993T>G or m.8993T>C mutation in MT-ATP6, maternally

inherited Leigh syndrome (MILS) is observed, which partic-
ularly affects the brainstem, diencephalon, and basal gan-
glia. The m.1555A>G mutation in the12S rRNA (MT-RNR1)
was first identified in 1993 in a large Arab-Israeli pedigree
(Prezant et al., 1993), which is the first example of point
mutation in mitochondrial rRNA mtDNA, and subsequently
found in many families of various ethnic backgrounds. The
m.1555A>G or m.1494C>T mutation is located in the
decoding site of 12S rRNA and is predicted to cause a
change in the secondary rRNA structure. This alteration
impairs protein synthesis and enhances an interaction with
aminoglycoside antibiotics (Zhao et al., 2004).

Among different mtDNA rearrangement mutations, large-
scale deletions, varying in size from 1.3 to 8 kb, were the
majority patterns. With these large-scale deletions, patients
are more likely to suffer from Kearns-Sayre syndrome,
chronic progressive external ophthalmoplegia (CPEO), or
Pearson syndrome (Taylor and Turnbull, 2005). The most
common mtDNA deletion is a 5-kb deletion (m.8470-
m.13447), which is present in approximately one third of
patients. Despite different origins, most mtDNA deletions
occur between the regions of replication that is flanked by
short direct repeat sequences (Samuels et al., 2004).

DOUBLE HIT THEORY: THE PENETRANCE OF
MITOCHONDRIAL DISORDER MAY BE SUBJECT TO
THE EFFECTS OF NUCLEAR MODIFIER GENES

Given the mitochondrion’s important role in cell growth and
survival, patients with mitochondrial dysfunction appear to
have a highly diverse multi-organ symptom. Mitochondrial
dysfunction is usually considered as one of many risk factors
in multifactorial disease, as it predisposes for disease
throughout the entire system. And considering the mito-
chondrion’s role in energy production, high energy depen-
dent tissues such as brain, heart, liver, and muscles, are
most susceptible to direct mitochondrial damage. “Threshold
effect” is one of the specific features of mitochondrial dis-
ease, since majority of mtDNA mutations are found in some
but not all mitochondria genomes that refer to “hetero-
plasmy”. Biochemical defects and tissue dysfunction will not
be apparent until the mutated mtDNAs reach a minimum
critical proportion, and this threshold level varies among
different tissues. The incomplete penetrance can be influ-
enced by pharmaceutical or environmental exposures and
nutrient or cofactor deficits. Although “threshold effect” and
environmental factors can partly explain the various disease
phenotypes observed in patients harboring same mtDNA
mutation, the exact correlation and mechanism of tissue
specification are still lacking.

In addition, family members with same background of
mtDNA genome were found to be affected in different ways.
For example, LHON is usually due to a homoplasmic mtDNA
mutation and all maternal offspring will inherit the mutation;
however, whilst 50% of male offspring are affected with
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LHON, only 10% of female offspring will develop visual loss
(Harding et al., 1995, Riordan-Eva et al., 1995). In a very
recent study, Jaime and colleagues reported that inherited
mtDNA sequence variation combined with somatic mtDNA
mutagenesis has an additive effect in creating phenotypes
relevant for pathology and ageing (Ross et al., 2014). To
explain the pathogenesis of these cases, the most accepted
hypothesis will be the double hit theory: first hit, predisposi-
tion for disease as a consequence of primary mtDNA
mutation, and second hit, the effects of genetic modifier.

Over the past few years, many studies have been done
on genetic modification, and major advances have occurred
in both understanding and practice with regard to targeting
modifier genes in various diseases such as cancer, arryth-
mia, and cystic fibrosis (Gusella et al., 2014, Luhmann e al.,
2015). These modifier genes often have at least two alleles,
one of which exacerbates disease, and one that suppresses
disease. It has been proved that mitochondrial genome
combined with a poorly co-adapted nucleus will lead to
reduced fitness/lifespan in animal models (Ross et al.,
2013). Given that mitochondrial disorders generally refer to
diseases caused by dysfunctional bioenergetics, the modi-
fier genes are more likely to be associated with OXPHOS
systems, including mitochondrial DNA, RNA, and protein
dynamics (Table 1). Scientists from various countries are
now at different stages in researching potential genetic
modifiers responsible for the phenotypic variances. Various
nuclear genes have been confirmed to cause mitochondrial
diseases (Koopman et al., 2012), yet few studies have focus
on their interplay with primary mitochondrial mutations. Once
the modifier genes that suppress mitochondrial dysfunction
are identified, the door opens to new potential therapeutic
targets, since these modifier genes are more amenable to
administrate than the primary mutant mtDNAs.

Function of modifier gene in mitochondrial hearing loss
was first reported by Bykhovskaya et al. in a non-syndromic
hearing loss (NSHL) Arab-Israeli family bearing 12S rRNA
(m.1555A>G) mutation (Bykhovskaya et al., 2004). The
m.1555A>G mutation, locates in the decoding site of the
mitochondrial small subunit (SSU) ribosomal RNA, is the first

identified homoplasmic mitochondrial mutation. In addition,
the mutation is predicted to cause an alteration in the second
structure, which impairs protein synthesis and enlarges
sensitivity to aminoglycoside ototoxicity (Prezant et al.,
1993). It is also well accepted that m.1555A>G mutation
presents as a key cause of antibiotic-induced hearing loss;
however, the mutation alone typically does not lead to dis-
ease. Among these Arab-Israeli family members without
previous exposure to aminoglycosides, the m.1555A>G
mutation induced various clinical phenotypes ranging from
severe congenital deafness, to moderate progressive hear-
ing loss of later onset, to completely normal hearing. It was
characterized by Guan et al. that there’s more severe bio-
chemical defects in the lymphoblastoid cells derived from
symptomatic individuals than those from asymptomatic ones
of the Arab-Israeli family bearing m.1555A>G mutation
(Guan et al., 1996). On the other hand, an identical degree of
mitochondrial dysfunction was observed when they com-
pared the cybrids cell lines derived from symptomatic and
asymptomatic individuals (Guan et al., 2001). These findings
strongly indicate that the m.A1555G mutation as a primary
cause of hearing loss and nuclear modifier genes play a role
in modulating the phenotypic expression (Guan et al., 2006).
Naturally, the most promising candidates would be these
nuclear genes encode the subunits of respiratory chain
complex, proteins involved in mitochondrial protein synthe-
sis, and proteins involved in mtDNA replication and main-
tenance. TFB1M (transcription factor B1), encoding a
mitochondrial rRNA methyltransferase, has been putatively
identified as a possible nuclear modifier of the m.1555A>G
mutation, suggesting a connection between 12S rRNA
methylation and hearing loss (Raimundo et al., 2012).

Mutations in mitochondrial tRNAs have been reported to
be associated with various mitochondrial disease states
(Abbott et al., 2014). With disrupted structures, mt tRNAs
mutations would cause defective translation and impaired mt
protein synthesis, leading to defects in OXPHOS systems.
Post-transcriptional processing, including maturation of pri-
mary tRNA, multiple chemical residue modifications, and
aminoacylation, are critical to accurate and effective

Table 1. Putative modifier genes reviewed in text

Gene name Function Reference

TFB1M rRNA methylation Raimundo et al., (2012)

TRMU tRNA base modification Guan et al., (2006)

MTO1 Li et al., (2002)

GTPBP3 Li and Guan, (2003)

KARS tRNA aminoacylation McMillan et al., (2014)

YARS2 Nakajima et al., (2014)

VARS2 Diodato et al., (2014)

TARS2 Diodato et al., (2014)

LARS2 Perli et al., (2014)
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translation. Thus enzymes involved in these processing are
highly possible modifier genes. The penetrance is much
higher in the presence of nuclear mutations involved in
transfer RNA base modification (MTO1, TRMU-MTO2, and
GTPBP3 genes) (Guan et al., 2006, Li and Guan, 2003, Li
et al., 2002); however, additional supporting evidence is still
needed to firmly confirm their role as genetic modifier.
Establishment of ideal animal models may help discover
their functions in mitochondrial diseases and explain their
tissue specificity. Recent studies largely expand the pheno-
typic spectrum associated with different aminoacyl-tRNA
synthetases (ARS). McMilan et al. reported congenital visual
impairment and progressive microcephaly has been asso-
ciated with KARS mutations (McMillan et al., 2014) and
Nakajima et al. reported a homozygous YARS2 causes
severe myopathy, lactic acidosis, and sideroblastic anemia 2
(Nakajima et al., 2014). Another whole-exome sequencing
study reveals that mutations in VASR2 and TARS2 are the
causes of mitochondrial encephalomyopathies (Diodato
et al., 2014). Perli et al. further reported that isolated non-
catalytic C-terminal of LASR2 can improve both viability and
bioenergetic proficiency of cybrid cells carrying pathogenic
mutations in mt-tRNAs (Perli et al., 2014). These findings
strongly suggest the group of aminoacyl-tRNA synthetases
as active modifying players in mitochondrial disorders, and
may lead to further understanding of tissue specific mito-
chondrial diseases.

In general, our knowledge of modifier genes involved in
mitochondrial disorders has increased substantially in the
past decade. Several mitochondrial rRNA methyltransferase
and mitochondrial tRNA modifications have been identified
in human, but the proteins involved in these modifications
are far from being all identified. Understanding how the cells
modulate biological processes to accommodate the adverse
effects of mtDNA dysfunction is important as it may provide
vital clues in the search for modifier genes as well as ther-
apeutic targets.

MITOCHONDRIAL RETROGRADE SIGNALING IN
MITOCHONDRIAL DISORDERS

Mitochondria play a central role not only in energy production
but also in the integration of metabolic pathways as well as
signals for apoptosis and autophagy. Mitochondria-to-nu-
cleus retrograde signaling was first discovered in yeast by
Parikh et al. (Parikh et al., 1987) and subsequently described
in mammalian cells, which also known as mitochondrial
stress signaling (Gomes et al., 2013). The mitochondrial
metabolism perturbation is due to dysfunctional OXPHOS
system or mtDNA mutations leading to loss of mitochondrial
membrane potential (Δψ) and abnormal ROS generation.
These stress signals mitochondrial dysfunction to cytosol by
unbalanced levels of ATP and NADH and the release of Ca2+,
which results in active calcium-sensitive proteins and further
the activation of downstream transcription factors.

Consequently, the adaptive modulating the expression of
nuclear genes such as metabolic enzyme genes and stress
response genes leads to a compensation for the metabolic
reconfiguration, in which various mitochondrial or cellular
effects can be achieved (Fig. 2) (Butow and Avadhani, 2004).

Over the past few years, the awareness of the biological
processing in mitochondrial dysfunction disease has grown
exponentially along with the development of sequencing
technology. It has been reported that the retrograde signaling
interacts with several other signaling pathways, such as
target of rapamycin (TOR) signaling, AMP-dependent pro-
tein kinase (AMPK) pathway, and mitochondrial unfolded
protein response (Butow and Avadhani, 2004, Pellegrino
et al., 2013, Ryan and Hoogenraad, 2007). A wide spectrum
of genes were affected under mitochondrial stress, including
those involved in Ca2+ storage and release (RyR1, RyR2,
calreticulin, calsequestrin), in glucose uptake and metabo-
lism (Glut 4, IGF1R, hexokinase, IRS1), in oncogenesis
(TGFβ1, p53, and cMyc), and in apoptosis (Bcl-2, Survivin,
BAD, Bax, Bid) (Table 2) (Bers, 2008, Biswas et al., 2005,
Wallace, 2012, Youle and Strasser, 2008).

The increase of mitochondrial biogenesis is one of the
compensatory strategies to mitochondrial dysfunction com-
monly observed, as exemplified by the significantly
increased proliferation of mitochondria in skeletal muscle
fibers from patients with LHON (DiMauro and Schon, 2003).
In a recent study, Giordano et al. showed a much higher
mitochondrial DNA content and increased mitochondrial
biogenesis in multiple tissues in unaffected mutation
(m.11778G>A) carriers, which differentiates the unaffected
carries from LHON affected patients and healthy individuals
(Giordano et al., 2014). The gene expression analysis
showed a scale of increasing expression of transcription
factors (NRF1 and TFAM) and the PPRC1 from controls to
affected individuals to carriers. A significant difference was
reached for PPRC1 and TFAM, comparing carriers to con-
trols. Considering that PPRC1 are transcriptional co-activa-
tor upstream of NRF1 and TFAM, both regarded as key
regulators of mitochondrial biogenesis, these results provide
a reasonable explanation that efficient mitochondrial bio-
genesis may account for the incomplete penetrance in
LHON.

Although the compensatory mechanism may improve the
efficiency of the mitochondrial translation, the function of the
OXPHOS system can still remain impaired in cell with
mtDNA mutations. The loss of mitochondrial transmembrane
potential (Δψm) acts as inducers of mitochondrial retrograde
signaling. Using ρ° human fibrosarcoma 143B cells and a
MERRF cybrid cell line carrying the mutated mitochondrial
tRNALys (m.8344A>G), Arnould et al. showed that the res-
piratory deficiency induced the activation of CaMK IV, which
in turn activated CREB by protein phosphorylation (Arnould
et al., 2002). Recently, some models suggest that mito-
chondrial reactive oxygen species (ROS) also acts as an
important messengers in mitochondria-nucleus crosstalk.
ROS is the natural by-products of oxygen metabolism and is
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important to a number of basic cell and life processes, such
as signaling and the defense against pathogens, but ROS
levels must be kept in strict balance. Raimundo et al.
showed that increased level of mitochondrial ROS in
m.1555A>G cybrids activates the proapoptotic nuclear
transcription factor E2F1 in an AMPK dependent manner;
and in the animal study by using Tg-mtTFB1 transgenic (to
model pathogenesis due to increased mitochondrial12S

rRNA methylation), progressive hearing loss was observed
associated with tissue-specific upregulation of E2F1, as well
as the apoptosis of critical cells in inner ear (Raimundo et al.,
2012). Importantly, blocking the pathway at any level in
cultured cells ablates apoptosis susceptibility, which was
equally observed in vivo (Raimundo et al., 2012). Gradually
researchers are changing their focus from decreased mito-
chondrial performance to pathogenic signaling elicited by

Figure 2. A diagram of the communication between mitochondria and nucleus. Multiple genes are involved in the nuclear-

mitochondrial cross talk and respond to oxidative stress manifested due to impaired mitochondrial function.

Table 2. Pathways and processing in retrograde signaling

Name Genes Reference

TOR signaling pathway Tor1, Tor2 Butow and Avadhani, (2004)

AMPK pathway PGC1α, UCP1, p53 Ryan and Hoogenraad, (2007)

Unfolded protein response JNK2, AKT Pellegrino et al., (2013)

Ca2+ metabolism RyR1, RyR2, calreticulin, calsequestrin Bers, (2008)

Glucose metabolism Glut 4, IGF1R, hexokinase, IRS1 Biswas et al., (2005)

Oncogenesis TGFβ1, p53, and cMyc Wallace, (2012)

Apoptosis Bcl-2, Survivin, BAD, Bax, Bid Youle and Strasser, (2008)
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mitochondria dysfunction (Raimundo, 2014). It was recently
reported by Meseguer et al. that mt-DNA mutation can
directly affect microRNA expression (Meseguer et al., 2015).
The authors found that enhanced ROS level in MELAS cells
induced a post-transcriptional miRNA mediated response
which is responsible for the regulation of mt-tRNA-modifying
enzymes. MicroRNA-9/9∗ expression was significantly
induced through a ROS/NFkB signaling pathway in cybrids
with m.3243A>G mutation, which negatively regulate
GTPBP3, MTO1, and TRMU, leading to mt-tRNA hypo-
modification and contributes to the MELAS phenotype.

It has been reported that single mtDNA point mutation can
cause different cellular transcriptional responses within cells
of same nuclear background. Picard et al. demonstrated that
continuous changes in mtDNA heteroplasmy (m.3243A>G)
result in discontinuous remodeling of nuclear DNA and
mtDNA gene expression profiles due to alterations in both
the signal transduction and epigenetic regulatory processes.
It was reported that individuals harboring 10%–30%
m.3243A>G mutation manifest diabetes and occasionally
autism, individuals with 50%–90% mutant mtDNAs manifest
encephalomyopathies, and these cases with 90%–100%
mutant mtDNAs face perinatal lethality (Picard et al., 2014).
This result provides an alternative perspective on the cellular
basis of phenotypic heterogeneity in mtDNA diseases.

CONCLUSION

Unlike chromosomal genes, the mtDNA can be present in
hundreds to thousands of copies. Relatively subtle changes
in the proportion of mutant mtDNA can lead to dramatic
effects on a patient’s phenotype; however, the mtDNA
mutation doesn’t do it alone. In spite of environmental fac-
tors, the discovery of nuclear modifier genes provides
additional information about pathways in which the primary
mutation functions, as well as new entry points for under-
standing the pathological effects of certain disease gene.

That mitochondrial dysfunction can modulate nuclear
gene expression has been demonstrated in different spe-
cies. Existing studies indicate that the retrograde response
accumulates overall a cell’s lifespan, which compensates for
mitochondrial dysfunction as mitochondrial quality control
(Owusu-Ansah et al., 2013, Raimundo, 2014). In addition,
the mitochondrial retrograde signaling triggers both adaptive
and maladaptive cellular responses, which constitutes a
complex network of processes (Guha and Avadhani, 2013).
However, our current understanding of the mechanistic
details is far from complete, a systems approach is needed.

In this review, we have presented the examples of mod-
ifier genes for human mitochondrial disorders. While chro-
mosomal location of some modifier effects has been
identified, cloning of modifier genes still remains to be diffi-
cult. Studies of the mitochondrial retrograde signaling will
provide insight into mechanisms of genetic interactions and
facilitate the identification of potential modifier genes. Finally,
the elucidation of modifier genes associated with the

suppression of mitochondrial defects could be useful in
designing new therapeutics, improving prediction of risk
factors for susceptibility, and eventual prevention of disease
manifestation.
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