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ABSTRACT

KDM5B is a histone H3K4me2/3 demethylase. The PHD1
domain of KDM5B is critical for demethylation, but the
mechanism underlying the action of this domain is
unclear. In this paper, we observed that PHD1KDM5B

interacts with unmethylated H3K4me0. Our NMR struc-
ture of PHD1KDM5B in complex with H3K4me0 revealed
that the binding mode is slightly different from that of
other reported PHD fingers. The disruption of this
interaction by double mutations on the residues in the
interface (L325A/D328A) decreases the H3K4me2/3
demethylation activity of KDM5B in cells by approxi-
mately 50% and increases the transcriptional repression
of tumor suppressor genes by approximately twofold.
These findings imply that PHD1KDM5B may help maintain
KDM5B at target genes to mediate the demethylation
activities of KDM5B.

KEYWORDS KDM5B, PHD1, H3K4me0, demethylase,
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INTRODUCTION

Covalent histone modifications, notably methylation, are
reversible posttranslational modifications that play key roles
in chromatin structure, gene transcription and the epigenetic
state of the cell (Martin and Zhang, 2005; Mosammaparast
and Shi, 2010). Six lysine residues, including histones H3
(i.e., H3K4, H3K9, H3K27, H3K36 and H3K79) and H4 (i.e.,
H4K20), can be mono-, di-, or trimethylated, and each
modification is found in a stereotypical pattern with respect to
the coding region of a gene and correlates with a different
transcriptional outcome (Zhang and Reinberg, 2001; Mar-
gueron et al., 2005). As a general rule, the methylation of
H3K9, H3K27 and H4K20 is associated with transcriptional
repression, whereas the methylation of H3K4, H3K36 and
H3K79 is related to transcriptional activation (Mosamma-
parast and Shi, 2010; Zhang and Reinberg, 2001). The
methylation of H3K4 is a key regulator for RNA polymerase
binding to an active gene (Sims et al., 2003) and of tran-
scription factor binding within promoter elements (Szutorisz
et al., 2005). One of the important aspects of H3K4 meth-
ylation is how this epigenetic mark is removed, thereby
reducing the localization of RNA polymerase to the specific
genes. The loss of H3K4 methylation appears to be a key
step of differentiation (Mikkelsen et al., 2007). To date, two
distinct classes of histone demethylases have been char-
acterized. The first class includes two members, represented
by LSD1 (lysine-specific demethylase 1, also known as
KDM1A, which demethylates H3K4me1/2) and LSD2 (also
called KDM1B or AOF1, which demethylates H3K4me2).
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Both members of this class use FAD as a cofactor through
an amine-oxidation reaction to remove the lysine methyl
group of H3K4me1/2 (Shi et al., 2004; Ciccone et al., 2009).
The other class contains a JmjC (i.e., Jumonji C) domain to
catalyze histone lysine demethylation assisted by two
cofactors: Fe2+ ion and α-ketoglutarate (α-KG) (Chen et al.,
2006; Cloos et al., 2006; Tsukada et al., 2006; Whetstine
et al., 2006, Shi and Whetstine, 2007). Based on the
sequence homology in the JmjC domain and the overall
architecture of the associated motifs, JmjC domain-contain-
ing proteins have been classified into seven groups: JHDM1,
PHF2/8, JARID, JHDM3/JMJD2, UTX/UTY, JHDM2 and
JmjC domain only (Chen et al., 2006). Structural investiga-
tions of the members of this class, including JHDM1A,
JHDM1D, JMJD2A and PHF8, have already been performed
for their apo forms or in complex with the H3 peptide and
α-KG substrates (Chen et al., 2006; Chen et al., 2007;
Couture et al., 2007; Ng et al., 2007; Horton et al., 2010; Yang
et al., 2010). However, no structure has been published for
the members of the JARID1 sub-group that can specifically
remove methyl groups of di- or tri-methylated H3K4.

The members of the JARID1 subgroup are highly con-
served from yeast to humans and contain a similar motif
architecture, including JmjN, ARID (i.e., AT-rich interactive
domain), JmjC, Zf-C5HC2 (i.e., zinc finger) and two or three
PHD domains (denoted PHD1, PHD2 and PHD3 from the
N-terminus to the C-terminus). A total of four members are
found in mammals (Fig. 1A): JARID1A (also called RBP2 or
KDM5A), JARID1B (also namedPLU-1 or KDM5B), JARID1C
(i.e., SMCX or KDM5C) and JARID1D (also known as SMCY
orKDM5D). These members have been identified to be
H3K4me2/3 demethylases (Christensen et al., 2007; Iwase
et al., 2007; Klose et al., 2007; Lee et al., 2007; Tahiliani et al.,
2007; Yamane et al., 2007). All of these proteins are key
transcriptional co-repressors because they can remove the
transcription-activating marker H3K4me3. KDM5B is involved
in transcriptional repression and breast cancer cell prolifera-
tion (Yamane et al., 2007); thus, mechanistic studies on
KDM5B demethylation are necessary and useful to under-
stand the development of breast cancer. Notably, the deletion
of the N-terminal PHD1 finger (i.e., PHD1KDM5B) of KDM5B
results in the loss of enzymatic demethylase activity, implying
that PHD1KDM5B is involved in H3K4me2/3 demethylation
(Yamane et al., 2007). This observation is consistent with the
fact that the N-terminal PHD1 finger of Lid (i.e., PHD1Lid), a
homologue of KDM5B in Drosophila, is also required for the
demethylase activity of H3K4me3, whereas the PHD2 and
PHD3 of Lid are not (Li et al., 2010). However, the detailed
mechanism underlying the function of PHD1KDM5B in the
demethylation process remains unclear.

Recently, the NAD+-dependent PARylation on KDM5B by
poly (ADP-ribose) polymerase (PARP-1) was reported to be
able to regulate chromatin structure and transcription through
a KDM5B-dependent pathway (Krishnakumar and Kraus,
2010). The demethylation inhibited by PARylation on KDM5B

was confirmed by an in vitro H3 binding assay. Previously,
PHD1Lid was reported to bind with unmodified H3K4me0 (Li
et al., 2010). These observations indicate that KDM5B may
bind to the H3 peptide, most likely to unmodified H3K4. Thus,
in this study, we first tested the interactions of the unmodified
H3K4 peptide with full-length KDM5B or its truncated variants
through a biotin-labeled peptide binding assay. By sequen-
tially depleting different regions in KDM5B-N, we found that
PHD1 in KDM5B (i.e., PHD1KDM5B) can specifically bind to the
unmodified histone H3. To probe the structural basis for this
interaction, we determined a solution structure of PHD1KDM5B

in complex with the unmodified H3K4 peptide. Through
structural and biochemical data, we provide insights into the
function of PHD1KDM5B in KDM5B-regulated demethylation
and tumor-suppressor gene transcription.

RESULTS

PHD1KDM5B specifically interacts with the unmodified
H3K4me0 peptide

To investigate the function of PHD1KDM5B in the demethylation
of H3K4me2/3 by KDM5B (as shown in Fig. 1B), the binding
affinities of five recombinant KDM5B variants, namely
KDM5B-N (N-terminal KDM5B), KDM5B-PC (only containing
PHD1 and JmjC domains in KDM5B-N), KDM5B-N-△P (with-
out the PHD1 domain in KDM5B-N), KDM5B-N-△C (without
the JmjC domain in KDM5B), and KDM5B-N-△ZF (without the
Zf-C5HC2 domain in KDM5B-N), were tested with a biotin-
labeled unmodified H3 peptide (Fig. 1C). The results indicate
that KDM5B-N interacts with the unmodified H3 peptide.
Similar to the KDM5B-N variant, the KDM5B-PC, KDM5B-N-
△C and KDM5B-N-△ZF variants bind to the unmodified H3K4
peptide, implying that the JmjC domain, the Zf-C5HC2 domain,
and the JmjN-ARID domain are not involved in the interaction
with the unmodified H3K4 peptide. However, the deletion of
theN-terminal PHD1KDM5B domain inKDM5B-N (i.e., KDM5B-
N-△P) significantly impaired the interaction between KDM5B-
N and the H3K4me0 peptide. This result suggested that
PHD1KDM5B primarily contributes to the binding of KDM5B to
the H3K4me0 peptide. The glutathione S-transferase (GST)
tag-fused PHD1KDM5B (306–360 aa, similarly hereinafter)
protein binds to the unmodified H3 tail (Fig. 1D), further sup-
porting the function of PHD1KDM5B in the specific binding to the
unmodified H3. Themethylation of H3R2 andH3K4 abolishes
or weakens the binding affinity, suggesting that these two
amino acids may be involved in the binding. In addition, the
methylation of H3K9 does not notably inhibit this binding,
which indicates that H3K9 does not participate in the binding.
Moreover, an ITCanalysis obtained thedissociation constants
(KD) of 6.4 ± 0.6 μmol/L for PHD1KDM5B interacting with the
unmodified H3K4 peptide, 25.6 ± 3.8 μmol/L for PHD1KDM5B

interacting withmono-methylated H3K4me1, 80.0 ± 7.9 μmol/L
for PHD1KDM5B interacting with dimethylated H3K4me2
and 103.7 ± 11.2 μmol/L for PHD1KDM5B interacting with
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tri-methylated H3K4me3 (Fig. 1E). These KDs revealed that
H3K4 is highly involved in the binding and that themethylation
of H3K4 inhibits this binding.

Solution structure of PHD1KDM5B in complex
with H3K4me0

To understand the interaction of PHD1KDM5B with unmodified
H3K4, we initially attempted to crystallize PHD1KDM5B in its
free form and in complex with the H3K4me0 peptide. How-
ever, we only obtained the X-ray structure of the free

PHD1KDM5B with a high resolution of 1.65 Å (Fig. S1) (Guo
et al., 2011). Thus, we determined the solution structures of
free PHD1KDM5B and of PHD1KDM5B in complex with the
H3K4 peptide (1–10 aa) using multidimensional heteronu-
clear NMR spectroscopy (Fig. 2). To probe whether the
electronic properties of histidines in solution are similar to
those in the crystal state (two histidines, H335 and H344, are
in the amino acid sequence of PHD1KDM5B; the H335 resi-
due was suggested to ligate with a zinc ion in the X-ray
crystal structure of free PHD1KDM5B) before structural
determination, we analyzed the 1H-15N LR-HSQC spectra of
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Figure 1. PHD1KDM5B specifically binds to the tail of H3K4me0. (A) Mammalian KDM5 family members are highly similar in

domain architecture and contain JmjN, ARID, Jmjc, zf-C5HC2 and PHD domains. (B) KDM5B variants described in the text. (C) In

vitro binding assays for analysis of the binding of recombinant KDM5B variants to the unmodified histone H3K4 N-terminal tail.

(D) PHD1KDM5B is sufficient for H3 tail binding. (E) The binding affinities of PHD1KDM5B to unmodified, mono-methylated,

di-methylated or tri-methylated H3K4 peptides (residues 1–10) were measured through an ITC assay. The KD values are the means

(± s.d.) of at least three experiments using varied peptide and protein concentrations.
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PHD1KDM5B in the free and bound states (Fig. S2). This LR-
HSQC experiment correlates the carbon-bound protons of
the histidine rings with the imidazole nitrogen atoms and can
unambiguously establish the tautomeric and protonation
states of histidines in proteins (Pelton et al., 1993; Drohat
et al., 1999). The characteristic upside-down L-shaped

patterns of the peaks in the LR-HSQC spectra for the H335
and H344 residues and their well-separated 15N chemical
shifts indicated that these two histidines are in the Nε2-H
tautomeric form. Additionally, both histidines are in their
neutral form under the NMR experimental conditions. The
15Nδ1 chemical shift of H335 is more deshielded than that of

0.6 ppm

0.4–0.6 ppm

0.2–0.4 ppm

0.2 ppm

C
he

m
ic

al
 s

hi
ft 

ch
an

ge
1.0

0.8

0.6

0.4

0.2

0.0

N C

D
30

8

D
32

0

D
32

8

D
34

5D
33

2

E
32

1

L3
09

L3
25

L3
24

Y
31

0

C
32

7
C

33
0

G
32

9
S

33
3

W
35

1
G

34
9

V
31

1

L326

Residue number
310        320         330        340         350        360

T3

E321

D308

Y310

T6

D328

L326
R2

L326
Y310

D308
K4

A1
R2K4

R8

K9

A
N

N
C

N

N
C

A1

R2

T3
K4

L324
L325

L326

P347

G349

L325

A1
W351

P347

B

D

C

E

F G

H I J K

RESEARCH ARTICLE Yan Zhang et al.

840 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



H344 in PHD1KDM5B, revealing the strong chelation of H335
to an electropositive Zn2+. This observation is identical to
that observed in the X-ray structure of the free PHD1KDM5B.

The NMR solution structure of free PHD1KDM5B (Fig. 2B)
was then determined using the program XPLOR-NIH (Ku-
szewski and Clore, 2000) with 670 NOEs, 10 hydrogen
bonds and 106 dihedral angle constraints that were mean-
ingful and acceptable (Table 1). The resulting structure was
similar to that obtained by X-ray techniques with a backbone-
atom RMSD of 0.48 Å, which was determined by superim-
posing the backbone Cα atoms in the secondary structural
region (Fig. S1). Thus, in this paper, we only use the NMR
structure of the free PHD1KDM5B for comparison with that of
the complex. In contrast, the solution structure of
PHD1KDM5B in complex with an unmodified H3K4me0 pep-
tide (1–10 aa) was obtained through 1263 NOEs (including
150 observed intermolecular NOEs), 17 hydrogen bonds
and 106 dihedral angle constraints. The PHD1KDM5B struc-
tures in both free and bound states adopt a ‘cross-braced’
topology of zinc ion coordinated residues that was identical
to that of all structurally characterized PHD fingers. These
states are well defined by NMR data; the RMSD of the free
PHD1KDM5B and the PHD1KDM5B in complex with the H3
peptide were 1.18 ± 0.17 Å and 0.63 ± 0.14 Å for the heavy
atoms in the secondary structural regions of the 20 lowest
energy structures, respectively. By superimposing the
backbone Cα atoms in the secondary structural region, the

free and bound solution PHD1KDM5B structures have a
backbone-atom RMSD value of 1.13 Å (Fig. S1). This RMSD
indicates that the H3K4me0 peptide binding does not induce
major conformational changes to the backbone of
PHD1KDM5B.

In the structure of the PHD1KDM5B-H3K4me0 complex,
the H3 peptide binds to the surface of the PHD1KDM5B as an
anti-parallel β-sheet (residues 2–3 aa). This H3 β-sheet is
shorter in this complex than in the complex of the PHD of
human autoimmune regulator, (PHDAIRE) with unmethylated
H3K4 (PDB code: 2KFT)(Chakravarty et al., 2009) and in the
complex of the PHD finger of the BHC80 protein in the LSD1
co-repressor (PHDBHC80) with unmethylated H3K4 (PDB
code: 2PUY)(Lan et al., 2007) (Fig. 2D). In the current
structure of the complex, the backbone atoms of residues
H3R2 and H3K4 in the unmethylated H3 peptide form
hydrogen bonds with the backbone carbonyl oxygen and
nitrogen atoms of L324 and L326 in PHD1KDM5B (Fig. 2F),
respectively. The cognate PHD1KDM5B only contacts the first
six residues of the H3 peptide, whereas H3K9 is completely
exposed to solvent by extending its side chain away from the
complex (Fig. 2E). This finding supports the concept that the
methylation of H3K9 has no effect on the binding. The
conformation of the side chain of H3R8 is also flexible. In the
20 final NMR structures for the complex, H3R8 does not
contact the protein. This coincides with the fact that no
intermolecular NOEs were observed between the H3R8 side
chain and the protein.

Analysis of the interaction between PHD1KDM5B

and the unmodified H3K4me0 peptide

According to the structural information provided by the
structure of the complex of PHD1KDM5B with the unmodified
H3K4 peptide, the H3K4me0 specificity of PHD1KDM5B is
determined through the recognition of the residues in the H3
amino terminus, including H3A1, H3R2, H3T3, H3K4 and
H3T6 (Fig. 2F–K). The H3A1 methyl group is anchored by
intermolecular hydrogen bonds with the backbone carbonyl
oxygen atoms of residues P347 and G349 (Fig. 2F, in which
the H3A1 backbone nitrogen supplies two hydrogen bonds)
and by nonpolar hydrophobic interactions between the H3A1
methyl group and the side chains of L325, P347 and W351 in
PHD1KDM5B (Fig. 2G). These side chains are similar to those
observed in the PHDAIRE-H3K4me0 complex and other
complexes (Chakravarty et al., 2009; Lan et al., 2007, Li
et al., 2006, Pena et al., 2006, Hu et al., 2011, Wang et al.,
2011). These observations support our site-directed muta-
tion studies for both the PHD1KDM5B protein and the
H3K4me0 peptide (Table S1). On the one hand, both the
W351A and L325A mutants of PHD1KDM5B have non-
detectable binding affinities with the H3K4me0 peptide. On
the other hand, removing the methyl group from H3A1 by
changing alanine to glycine results in an approximately
50-fold decrease in the binding affinity of the unmodified H3

Figure 2. Structure of PHD1KDM5B with the unmodified H3

tail (1–10 aa). (A) An NMR titration assay was used to map the

binding sites of the H3K4me0 peptide on PHD1KDM5B. The

chemical shift of the PHD1KDM5B backbone atoms amide 1H and
15N after H3K4me0 peptide binding was calculated using the

following equation: Ddav 05� DdNH202 � Dd15N
2

h in o1=2
. (B)

Ribbon representation of free PHD1KDM5B. To indicate the

binding sites of the H3K4me0 peptide on PHD1KDM5B, the

residues with different chemical shifts are marked in different

colors. (C) Backbone atoms (N, Cα and C′) of the 20 superposed

NMR structures of PHD1KDM5B (grey) in complex with the

H3K4me0 peptide (yellow). (D) The ribbon representation of the

structure of the complex highlights the secondary structural

elements (protein, grey; peptide, yellow). The pink spheres

represent zinc atoms. For clarity, only the representation of the

zinc atoms in the lowest energy structure is shown in the

ensemble. (E) Electrostatic potential surface representation of

the PHD1KDM5B interaction with the H3K4me0 peptide (yellow).

The residues in theH3peptideare labeled.Theorientationsof the

protein in figures (B) to (E) are identical. (F) The hydrogen-bond

interactions between the backbone atoms of PHD1KDM5B and the

H3K4me0 peptide. (G–K) Key protein-peptide side-chain inter-

actions between A1, R2, T3, K4 and T6 in the H3 peptide and

residues in PHD1KDM5B. The carbon atoms in the peptide and

protein residuesare shown in yellowandgreen, respectively. The

nonpolar non-bonded interacting atoms are labeled with !.
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peptide to PHD1KDM5B (KD
H3K4-PHD1 = 6.4 ± 0.6 μmol/L and

KD
H3 A1G-PHD1 = 304.9 ± 11.7 μmol/L). In the 1H-15N HSQC

spectra, compared with that of free PHD1KDM5B, the binding
to wild-type H3A1 (i.e., H3K4me0) produces a large shift in
most of the cross-peaks of PHD1KDM5B, whereas the binding
of the H3G1 variant does not induce this shift. This result
indicates the important roles of the H3A1 methyl group in the
interaction. One of the positively charged side-chain nitrogen
atoms (Nη) of H3R2 forms a salt bridge with one of the
negatively charged oxygen atoms in the side-chain of D328
(Fig. 2H). D328 mutations in PHD1KDM5B (the D328A
mutant) or R2 mutations in the H3K4me0 peptide (H3 R2A or
R2E mutants) remove the negative or positive charges in
their side chains; therefore, the binding affinities were sig-
nificantly reduced (KD

H3A1-PHD1 D328A = 182.1 ± 21.9 μmol/L,

the binding affinity decreased by 30-fold; KD
H3 R2A-PHD1 =

370.4 ± 52.1 μmol/L, the binding affinity decreased by
60-fold; and the KD value for the interaction of PHD1KDM5B to
the H3 R2E mutant was too small to detect) (Table S1)
compared with that of the wild-type PHD1KDM5B or the
unmodified H3K4 peptide. These results were consistent
with the observations mentioned for the above-described
structures. In addition, the distance between the Cβ atom of
L326 and the Cβ atom of H3R2 is 4.0 Å, indicating a
hydrophobic interaction between the side chains of L326 and
H3R2 (Fig. 2H).

The side-chain -OH group of H3T3 forms two additional
hydrogen bonds with one of the side-chain carbonyl oxygen
atoms and the backbone oxygen of E321 (Fig. 2I), further
stabilizing the interaction between the H3 peptide and the

Table 1. NMR structural statistics for free PHD1KDM5B and for the complex of PHD1KDM5B with H3K4me0 peptide

NMR distance and dihedral constraints PHD1-H3K4me0 PHD1-free

Distance restraints from NOEs

Intra-molecualr

Total 1263 670

Intraresidue (|i − j| = 0) 445 232

Sequential (|i − j| = 1) 214 214

Medium range (1 < |i − j| < 5) 218 118

Long range (|i − j| > 5) 236 106

Inter-molecular 150 -

H-bonds 17 10

Dihedral angle constraints 106 106

φ 53 53

ψ 53 53

Structure statistics

Rms deviations versus the mean structure (Å)

All backbone atoms 0.74 ± 0.19 1.13 ± 0.24

All heavy atoms 1.34 ± 0.20 1.72 ± 0.27

Backbone atoms (secondary structure) 0.16 ± 0.04 0.71 ± 0.19

Heavy atoms (secondary structure) 0.63 ± 0.14 1.18 ± 0.17

Rms deviations from experimental restraints

NOE distance (Å) 0.035 ± 0.011 0.096 ± 0.015

Dihedral angles (deg.) 0.79 ± 0.20 1.6 ± 0.16

Rms deviations from idealized geometry

Bonds (Å) 0.0034 ± 0.00026 0.0020 ± 0.00014

Angles (deg.) 0.91 ± 0.073 0.41 ± 0.073

Impropers (deg.) 0.47 ± 0.032 0.47 ± 0.053

Structure analysis

Residues in most favored regions 82.5 84.9

Residues in additionally allowed regions 17.3 9.8

Residues in generously allowed regions 0.3 5.3

Residues in disallowed regions 0 0
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PHD1KDM5B protein. Removing hydrogen bonds by adding
mutations from E321 to A321 in PHD1KDM5B or from T3 to V3
in the H3 peptide lowers the binding affinities of the
H3K4me0 peptide to PHD1KDM5B by approximately tenfold
(KD

H3K4-PHD1 E321A = 75.8 ± 5.7 μmol/L, KD
H3K4 T3V-PHD1 = 57.1

± 2.2 μmol/L). The distances between the H3T6-OH group
and the backbone carboxyl oxygen of D308 and Y310 are
less than 4 Å (Fig. 2K), indicating that weak hydrogen bonds
might form between these atoms. The presence of these
weak hydrogen bonds is supported by the measured KD

values of the mutants (KD
H3 T6V-PHD1 = 61.3 ± 1.6 μmol/L, the

binding affinity decreased by approximately tenfold com-
pared with that of the wild-type protein, which exhibits a
KD
H3K4-PHD1 of 6.4 ± 0.6 μmol/L).
Moreover, the side-chain NH3

+ group of H3K4 forms a
rigid hydrogen bond with the side-chain carbonyl oxygen of
D308 (Fig. 2J), which supports the results of the analysis of
the structure of the complex and of the mutation studies
(KD

H3 K4E-PHD1 is non-detectable, whereas KD
H3K4-PHD1 D308A

was measured as 41.7 ± 2.2 μmol/L). In addition to inter-
acting with D308, the side chain of H3K4 also displays weak
hydrophobic interactions with the aromatic ring of Y310 and
the methyl groups of L326 (Fig. 2J). The distances between
the Cγ or Cδ atom of the H3K4 side chain and the aromatic
Cγ atom of Y310 or the methyl group of L326 in PHD1KDM5B

are approximately 4.5 Å. The mutation of Y310 to F310 does
not change the binding affinities of PHD1KDM5B to the
unmodified H3 peptide (KD

H3K4-PHD1 = 6.4 ± 0.6 μmol/L and
KD
H3K4-PHD1 Y310F = 4.3 ± 0.2 μmol/L), suggesting that the-OH

group in the side chain of residue Y310 may not be involved
in the interaction. When Y310 is replaced by A310, the
binding affinity between PHD1KDM5B and the H3 peptide
decreased by approximately fivefold (KD

H3K4-PHD1 Y310A =
28.1 ± 1.3 μmol/L) compared with the binding affinity of the
wild-type PHD1KDM5B to the H3 peptide. The PHD1KDM5B

L326A mutant has an approximately two-fold weaker binding
affinity (KD

H3K4-PHD1 L326A = 14.1 ± 0.8 μmol/L) to the
unmodified H3 peptide than the wild-type. These observa-
tions imply that the hydrophobic interactions between the
side chains of L325 and Y310 in PHD1KDM5B and H3K4
contribute less to the binding than the hydrogen bond
between H3K4 and D308 in PHD1KDM5B. The methylation of
H3K4 may weaken these hydrophobic interactions
because minimal space exists among residues L325 and
Y310 in PHD1KDM5B and H3K4. This may explain the
reduction in the binding affinities of PHD1KDM5B to H3K4me1
(by ∼4-fold), H3K4me2 (by >10-fold) and H3K4me3 (by >15-
fold) compared with the H3K4me0 peptide. Therefore,
molecular recognition of the unmodified lysine 4 primarily
occurs through hydrogen bonding to the unmodified epsilon
amino group and steric elusion of the methyl groups on
H3K4me3/2.

In addition, residues D308, Y310 and L326 are conserved
among the members in the KDM5 PHD1 family (Fig. 3B) with
the exception of residues E323 in KDM5C and F331 in

KDM5D. Therefore, our structure may reveal that the PHD1
domain in other members of the KDM5 family functions as a
specific reader of unmodified H3K4, although structural
models of the PHD1 KDM5A, KDM5C and KDM5D in com-
plex with unmodified H3K4 are not available.

Recognition of H3K4me0 by PHD1KDM5B affects KDM5B
demethylase activity

The binding sites of unmodified H3K4 on PHD1KDM5B were
first determined by an NMR titration binding assay (Fig. 2A
and 2B). The majority of residues with chemical shifts larger
than 0.3 ppm are involved in the interaction; this result is
consistent with the results from the ITC assay (Table S1) and
with the structural information of the complex. In the solution
structure of PHD1KDM5B in complex with H3K4, residues
D308, L325, D328 and W351 are involved in the interaction
between PHD1KDM5B and H3K4 through hydrogen bonds,
hydrophobic interactions, or salt bridges (Fig. 2). The single-
site mutation of D308, L325, D328 or W351 to alanine dis-
rupts the interaction between PHD1KDM5B and the H3K4me0
peptide. Based on these structural and biochemical analy-
ses, we then designed three full-length KDM5B mutants
(D308A, L325A/D328A and W351A) and tested whether the
in vivo H3K4me2/3 demethylation by KDM5B is affected by
disrupting the interaction between PHD1KDM5B and
H3K4me0 through an immunofluorescence staining assay.

Compared with the wild-type (WT) KDM5B (99% of
H3K4me3 was demethylated), the D308A mutant exhibited
79% demethylase activity on H3K4me3 (decreased by
approximately 20%) (Fig. 4A). The mutants that completely
lose their ability to binding to the unmodified H3K4 exhibited
decreases in their demethylase activities to 72% (W351A)
and 56% (L325A/D328A). For H3K4me2 demethylation
(Fig. 4B), the wild-type KDM5B displays 93% demethylase
activity, whereas the D308A, W351A and L325A/D328A
mutants demonstrate 76%, 66% and 55% demethylase
activities, respectively. In both cases, the L325A/D328A
mutant has a higher effect on the demethylase activities of
KDM5B. These data indicate that the KDM5B demethylase
activity was partially affected by (but not dependent on) the
interaction between the N-terminal PHD1 finger and the
unmodified N-terminal H3K4 tail.

Recognition H3K4me0 by PHD1KDM5B affects
repression of tumor suppressor genes

KDM5B has been reported to function as a transcriptional
repressor, and the knockdown of KDM5B increases the
expression level of several tumor suppressor genes,
including 14-3-3s, BRCA1, CAV1 and HOXA5 (Tan et al.,
2003; Yamane et al., 2007). To illustrate the functional
importance of the binding between PHD1KDM5B and the
unmodified H3K4, we tested whether the mutants could
affect the expression of tumor suppressor genes com-
pared with wild-type KDM5B. As shown in Fig. 4C, the
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overexpression of WT KDM5B decreased the expression of
tumor suppressor genes. Compared with WT KDM5B, the
overexpression of the D308A, W351A and L325A/D328A
mutants up-regulated the expression of the four genes to a
lesser but still significant extent. Among the mutants, the
L325A/D328A mutant increased the gene expression by
more than twofold. Therefore, the gene expression results
agree with the binding affinities of PHD1KDM5B and its
mutants with the H3 peptide. The overexpression of the
mutants is expected to produce fewer unmodified H3K4,
thereby increasing the gene repression level. In combina-
tion, these findings support the model in which PHD1KDM5B

specifically binds to the unmodified histone H3. Additionally,
the H3 histone remains unmodified. This process is corre-
lated with KDM5B demethylase activity and KDM5B-medi-
ated gene repression.

DISCUSSION

Comparison between PHD1KDM5B and other PHD
fingers

The reportedstructureofPHDBHC80 incomplexwithunmodified
H3K4 (PDB code: 2PUY) demonstrated that H3K4 residue
forms hydrogen bonds with the side chains of D489 and E488
(Fig. 3A) (Lan et al., 2007). Moreover, the Cβ atom of H487
restricts the interaction of PHDBHC80 with methylated H3K4,
which means that the H3K4me1 and H3K4me2 peptides can-
not bind to PHDBHC80 (Lan et al., 2007). However, in the
PHD1KDM5B-H3K4me0 complex, H3K4me0 recognition is
enhanced by hydrophobic interactions of the side-chains of
H3K4 with the aromatic ring of Y310 and the methyl group of
L326. Therefore, the binding mode of PHD1KDM5B-H3K4me0
differs slightly from that of PHDBHC80. Recognition of H3K4me0

A

B ********
KDM5B
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KDM5D
BHC80
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DPF3b
UHRF1
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ING2
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D297

K294
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Y215

M226
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E315

I314D328
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W891

M882

Y10

Y17 Y23

W32

3FAT2GNIFTPB1FRHU

KDM5B BHC80 AIRE DPF3b

Figure 3. Binding mode of PHD1KDM5B to the H3K4me0 peptide. (A) The recognition modes of H3K4me0 by PHD1KDM5B,

PHDBHC80, PHDARIE, PHD2DPF3b and PHDUHRF1 are displayed. For comparison, the recognition of H3K4me3 by PHDBPTF, PHDING2

and PHDTAF3 are also shown. Either H3K4me0 or H3K4me3 is depicted in yellow. (B) Sequence alignment of the PHD fingers

(binding to H3K4me0) of KDM5 family members (BHC80, AIRE, DPF3b and UHRF1) and of the PHD fingers (binding methylated

H3K4) of BPTF, ING2 and TAF3. The zinc-binding residues, H3A1-binding residues and H3R2-binding residues are highlighted in

grey, blue and red, respectively. The H3K4-binding residues are highlighted in purple (in the KDM5 family), green (in all of the PHD

fingers) and brown (in all of the PHD fingers except those of the KDM5 family).
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in PHD1KDM5B, PHDBHC80, PHDARIE (Chakravarty et al., 2009),
the PHD finger in UHRF1 (i.e., PHDUHRF1, PDB code: 2LGG)
(Hu et al., 2011; Wang et al., 2011; Lallous et al., 2011;

Rajakumara et al., 2011) and the PHD2 finger in DPF3b (i.e.,
PHD2DPF3b, PDBcode2KWK) (Xie et al., 2012) occurs through
a salt bridge between a conserved Asp (D) or Glu (E) residue in
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KDM5B-WT (99%, 94/95) KDM5B-L325A/D328A (56%, 48/86)
DAPI Myc H3K4me3 DAPI Myc H3K4me3

KDM5B-D308A (79%, 70/88) KDM5B-W351A (72%, 58/81)
DAPI Myc H3K4me3 DAPI Myc H3K4me3

KDM5B-WT (93%, 78/84) KDM5B-L325A/D328A (55%, 52/95)
DAPI Myc H3K4me2 DAPI Myc H3K4me2

KDM5B-W351A (66%, 39/59)KDM5B-D308A (76%, 61/80)
DAPI Myc H3K4me2 DAPI Myc H3K4me2

Figure 4. PHD1KDM5B binding to H3K4me0 is important for KDM5B demethylase activity and KDM5B-mediated repression.

Various mutants of KDM5B-myc proteins were expressed in 293T cells, and the histone modification levels were analyzed by

immunofluorescent staining with (A) H3K4me3 and (B) H3K4me2 specific antibodies. The arrows indicate KDM5B-transfected cells.

(C) KDM5B-mediated repression was affected by the disruption of the interaction between PHD1KDM5B and unmodified H3K4. The

expression levels of BRCA1, CAV1, 14-3-3s and HOXA5 were analyzed in cells expressing wild-type and mutant KDM5B by real-time

RT-PCR.
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thePHDfingerand theK4side chain (Fig. 3). Thesedifferences
result from the action of the conserved residuesof glycine (G) in
PHDBPTF and PHDING2 or cysteine (C) in PHDUHRF1 and
PHD1KDM5B. In PHDBHC80, this space is occupied by residue
M502. In comparison, methylated H3K4me3 recognition was
found to occur primarily through the interaction between the
positively charged H3K4me3 and the conserved aromatic
residues, such as W32 in PHDBPTF, W238 in PHDING2 and
W891 inPHDTAF3, as shown in Fig. 3. Other residues, including
Y10 and Y17 in PHDBPTF, Y315 and M226 in PHDING2, and
W868 and M882 in PHDING2, associate through hydrophobic
interactions or aromatic Π-cation ion interactions to form the
binding cage.

Thus, similar to PHDBHC80 and other PHD fingers (Fig. 3A),
PHD1KDM5B does not use the aromatic cage to specifically
identify H3K4, which is present in structurally characterized
methylated lysine PHD fingers, such as the PHD fingers in
BPTF (i.e., PHDBPTF, PDB code: 2F6J), ING2 (i.e., PHDING2,
PDB code: 2G6Q) and TAF3 (i.e., PHDTAF3, PDB code: 2K17)
(Fig. 3A) (Pena et al., 2006; Li et al., 2006). ThesePHD fingers
adopt similar folds, engage the H3 peptide as an anti-parallel
β-sheet on the surface and recognize the H3 N-amine and
H3A1 side chain. H3R2 is buried in a pocket in PHDBPTF,
PHDING2, PHDUHRF1 (Hu et al., 2011; Wang et al., 2011; Lal-
lous et al., 2011; Rajakumara et al., 2011; Xie et al., 2012) and
PHD2DPF3b (Zeng et al., 2010), bound in tiny surface grooves
in PHDAIRE, PHDTAF3 and PHD1KDM5B, and not contacted in
PHDBHC80.

The binding mode of PHD1KDM5B to H3K4me0 is also
distinguished from the caging of the di- and tri-methyl lysine
by aromatic residues, as identified in the polycomb (Pc) and
heterochromatin protein I (HP1) chromodomain (Fischle
et al., 2003; Nielsen et al., 2002; Jacobs and Khorasani-
zadeh, 2002; Min et al., 2003; Tan et al., 2003). The meth-
ylation of lysine 9 in histone H3 is recognized by HP1; this
methylation directs the binding of other proteins to control
chromatin structure and gene expression. The structures of
the complex between the Drosophila HP1 chromodomain
and the histone H3 tail with a di- or tri-methylated K9 display
histone tail inserts as a β strand, completing the β-sandwich
architecture of the chromodomain. The methylated lysine is
caged by the side chains of the aromatic residues Y21, W42
and F45, whereas adjacent residues form discerning con-
tacts with one face of the chromodomain. The structure of the
Pc chromodomain in complex with a H3 peptide bearing
trimethylated K27 (Fischle et al., 2003) demonstrates that the
methylated H3K27 is caged by four aromatic residues (i.e.,
Y26, W47, W50 and Y54) preceding the ARKS motif.

Proposed biological function of PHD1KDM5B

in demethylation by KDM5B

The binding of the PHD1KDM5B domain to the H3K4me0
peptide, which is a demethylation product of the full-length
KDM5B, indicates that PHD1KDM5B may function downstream

of KDM5B demethylase activity. This observation is similar to
that found for BHC80 in LSD1-mediated H3K4me2 demeth-
ylation and repression (Lan et al., 2007). The regulation of
histonemethylation is highly dynamic and involves the actions
of both a methyltransferase and demethylase on identical
target promoters. Therefore,we suggest that PHD1KDM5Bmay
be important in maintaining KDM5B at the target promoters
and preventing the re-methylation of H3K4. The downstream
effector of PHD1KDM5B is therefore required for the KDM5B-
induced demethylation of H3K4me2/3. This was confirmed by
our binding assay results, which showed that the removal of
PHD1KDM5B resulted in decreased binding of KDM5B-N to the
K4 unmethylated histone H3 peptide in vitro (Fig. 1C). Our
findings indicate that PHD1KDM5B is important for KDM5B
association with its reaction product H3K4me0 after demeth-
ylation. Thus, PHD1KDM5B operates both as a reader and a
protector of unmethylated H3K4.

Similar to PHD1KDM5B, PHD1Lid has also been suggested
to interact with H3K4me0 (Li et al., 2010). PHD1Lid was pro-
posed to bind to non-DNA elements, such as local chromatin
environments, during H3K4me2/3 demethylation by Lid. The
C-terminal PHD3 region of Lid (i.e., PHD3Lid) was observed to
specifically bind to H3K4me2/3 through the interaction of
aromatic residues in the PHD finger with the positively
charged methylated H3K4. By aligning the amino acid
sequences of PHD3KDM5B, PHD3Lid and other PHD fingers
that recognize the H3K4me2/3 peptide (Fig. 5), we found that
the residues most likely interacting with the H3K4me2/3 site
are highly conserved. Residues W1781 in PHD3Lid and
W1512 inPHD3KDM5B are conserved corresponding toW32 in
PHDBPTF, W238 in PHDING2, and W891 in PHDTAF3. We thus
suggested that PHD3KDM5B might also specifically bind to
methylated H3K4me2/3 and that the W1502 residue in
PHD3KDM5B may have a biological function similar to that of
residues W1771 in PHD3Lid, Y17 in PHDBPTF, M226 in
PHDING2 and M882 in PHDTAF3. In mammalian cells, c-Myc
prefers to bind to E-boxes located within a chromatin context
that contain highly di- and tri-methylated nucleosomal histone
H3K4 (Guccione et al., 2006). However, the mechanism
through which Myc recognizes the chromatin landscape
remains unclear. Here, we propose that KDM5Bmay utilize its
H3K4me2/3-binding C-terminal PHD3 finger to tether Myc to
its preferred chromatin context. This process may be
enhanced by the interaction between PHD1KDM5B and the
unmethylatedH3K4me0N-terminal tail, therebypermitting the
selection of biologically important E boxes. Further experi-
ments are required to more precisely define the roles of
KDM5B PHD fingers in cell growth.

In summary, we identified a specific interaction between
PHD1KDM5B and the unmodified H3K4 peptide. We further
provided structural insights into the binding. The specific
recognition of unmodified H3K4 by the PHD1 domain of
KDM5B is important for the KDM5B histone demethylase
activity in cells and for the transcriptional repression of tumor
suppressor genes.
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MATERIALS AND METHODS

PHD1KDM5B preparation for crystallization and NMR experiments

The details of the preparation, purification, crystallization and

determination of the PHDKDM5B (residues 306–360 aa) X-ray struc-

ture were previously described (Guo et al., 2011). The modified

pGEX-6p-1 vectors expressed proteins with the N-terminal GST tag,

which is removable by cleavage with a 3C protease, enabling the

use of non-tagged proteins in our studies. Only the X-ray structure of

free PHD1KDM5B was obtained.

A similar PHDKDM5B construct was used for the sample required

in the NMR experiments. 13C- and 15N-labeled PHDKDM5B were

prepared in M9 medium. Site-directed mutagenesis was performed

using a QuikChange site-directed mutagenesis kit (Stratagene Inc.

La Jolla, California, U.S.A). All of the DNA constructs were

sequenced, and the molecular weights of the recombinant proteins

were verified by mass spectrometry (MALDI).

H3 peptide synthesis

To study the binding affinities in vitro or to construct different NMR

samples of the complex, H3K4 peptides without modifications (with

the ARTKQTARKS sequence or ARTKQTARKSTGGKAPRKQLA

sequence) or with some modifications (H3R2me1, R2 monomethy-

lation; H3R2me2s, R2 symmetric dimethylation; H3R2me2a, R2

asymmetric dimethylation; H3K4me1/2/3, K4 mono-, di-, and tri-

methylation; H3K9me1/2/3, K9 mono-, di- and tri-methylation; H3

peptide A1G, R2A, T3V, K4A, Q5E, T6V mutants without any

modification) were purchased from GL Biochem Ltd. (Shanghai,

China), and their purity was confirmed by HPLC and mass

spectrometry.

GST pull-down and biotin pull down assays

For the biotin pull-down assay, biotin-labeled H3 peptides were used

to pull down the PHD1KDM5B protein in order to determine the

binding affinities. Briefly, 0.5 μg of the peptide was mixed with the

protein at an identical molar ratio, and the mixture was incubated

with streptavidin beads at 4°C overnight. After washing five times,

the beads were boiled in SDS loading buffer and separated on a

SDS-PAGE gel.

For the GST pull-down assay, histone peptides (0.5 μg) were

incubated with 2–5 μg of purified recombinant GST-PHD1KDM5B for

2 h at 4°C in binding buffer (20 mmol/L Tris-HCl, pH 7.5, 150 mmol/L

NaCl, 0.1% Triton X-100). The streptavidin beads (Upstate 16–126)

were washed four times and stained with Coomassie blue.

NMR and isothermal titration calorimetry (ITC) binding assay

The 15N-labelled PHD1KDM5B and titrants (H3 peptide or its mutants)

were mixed at a 1:6 molar ratio of PHDKDM5B:titrant in NMR buffer

composed of 20 mmol/L Na2HPO3, 100 mmol/L NaCl, 0.01% NaN3,

pH 7.4 and 10% D2O. The assignments of the cross peaks in the 2D
1H-15N HSQC spectrum were confirmed through NMR stepwise

titration experiments using an increasing the molar ratio of

PHDKDM5B:H3 as follows: 1:0.0, 1:0.6, 1:1.4, 1:2.0, 1:3.2, 1:6.2 and

1:7.2 (data not shown). The 1H-15N HSQC spectra were collected

after each addition.

To investigate whether the PHD1KDM5B finger and its mutants

interact with unmodified or methylated H3K4 or H3K4mutants, the

binding affinities of PHD1KDM5B or its mutants to H3 peptides were

studied. An ITC-200 microcalorimeter (GE Healthcare) was used

with a buffer containing 20 mmol/L Tris, 150 mmol/L NaCl, and 1%

Triton X-100, pH 7.5 at 25°C. The reference titration of small mole-

cules in the buffer was subtracted from the experimental data, and

the data were fitted using the Origin 7.0 (OriginLab Corporation)

software. The results are summarized in Table S1.

NMR spectroscopy and analysis

The NMR samples contained 1.5 mmol/L uniformly 13C/15N-labelled

PHDKDM5B and the unlabeled H3 peptide H3K4me0 in complex at a

PHDKDM5B-to-H3-peptide molar ratio of 1:6 in NMR buffer (20 mmol/L

Na2HPO3, 100 mmol/L NaCl, 0.01% NaN3, pH 7.4 and 10% D2O).

All of the NMR experiments were performed at 20°C on a Varian

Unity Inova 600 NMR spectrometer equipped with a triple reso-

nances cryoprobe and pulsed field gradients. The standard suite of

experiments for assigning the 1H, 13C and 15N backbone, deter-

mining the side-chain chemical shifts of PHDKDM5B in complex with

the H3 peptide and collecting the NOE-based distance restraints

were measured (Bax and Grzesiek, 1993; Clore and Gronenborn,

1998), and these included 2D 13C-edited HSQC and 15N-edited

HSQC; 3D HNCA, HNCO, HN(CO)CA, HNCACB, CBCA(CO)NH,
15N-resolved HSQC-TOCSY and HCCH-TOCSY in both aliphatic

and aromatic regions; 15N-resolved HSQC-NOESY; 13C-resolved

HSQC-NOESY for both aliphatic and aromatic resonances; and 2D

hbcbcgcdceheA and hbcbcgcdhdA spectra for the correlation of Cβ

and Hδ or Hε in the aromatic ring that is used for aromatic proton

assignment (Yamazaki et al., 1993). The proton NMR signals of the

bound H3 peptides were assigned by analyzing the 2D 13C-filtered,
15N-filtered and J-resolved NOESYand TOCSY spectra recorded for

the 13C- and 15N-labeled protein with the unlabeled H3 peptide

H3K4me0 and the 2D 1H-1H COSY, NOESY and TOCSY spectra

********
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LID
BPTF
ING2
TAF3

1478
1751
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Figure 5. Sequence alignment of PHD fingers (binding to H3K4me3/2) of KDM5B (i.e., PHD3KDM5B), Lid (i.e., PHD3Lid), BPTF,

ING2 and TAF3. The zinc-binding residues, H3A1-binding residues, H3R2-binding residues and H3K4me3/2-binding residues are

highlighted in grey (and star on the top of KDM5B), blue, red and brown, respectively.
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recorded for the unlabeled free H3 peptides in the NMR buffer

mentioned above, respectively. The intermolecular NOEs between

the labeled protein and the unlabeled H3 peptides were obtained by

analyzing the 3D 13C-F1 edited and 13C/15N-F3 filtered NOESY

spectra. The spectra were processed with the NMRPipe program

(Delaglio et al., 1995) and analyzed using Sparky 3 (http://www.cgl.

ucsf.edu/home/sparky/).

Determining the NMR structure

The calculations were performed using a standard simulated

annealing protocol implemented in the XPLOR-2.19 program (NIH

version)(Kuszewski and Clore, 2000). The inter-proton distance

restraints derived from the NOE intensities were grouped into three

distance ranges, namely 1.8–2.9 Å, 1.8–3.5 Å and 1.8–6.0 Å, which

corresponds to strong, medium and weak NOEs, respectively. The

dihedral angles phi and psi were derived from the backbone

chemical shifts (HN, HA, CO and CA) using the program TALOS

(Cornilescu et al., 1999). Slow-exchanging amide protons identified

in the 2D 15N-1H HSQC spectra recorded after the H2O buffer was

exchanged for a D2O buffer were used in the structure calculated

with the NOE distance restraints to generate hydrogen bonds for the

final structure calculation as previously described in the literature

(Chakravarty et al., 2009). Constraints between the protein ligands

and the zinc ion were added using a previously reported procedure

(Neuhaus et al., 1992; Cao et al., 2003). A total of ten iterations were

performed (50 structures in the initial eight iterations). In total, 100

structures were computed during the last two iterations, and the 20

conformers with the lowest energy were used to represent the 3D

structures. The conformers of these two bundles (free PHD1KDM5B

and PHD1KDM5B in complex with the H3K4me0 peptide) do not

violate the following constraints: NOE > 0.3 Å and dihedral angle

>3°. The entire structure statistics were evaluated with PROCHECK

(Laskowski et al., 1993) and PROCHECK-NMR (Laskowski et al.,

1996) and are summarized in Table 1. All of the structure figures

were generated using the PyMOL (http://pymol.org/) and MOLMOL

programs (Koradi et al., 1996).

Immunofluorescence staining

The 293T cells were transfected with pcDNA3-KDM5B-Myc-His WT

and mutants using Lipofectamine 2000. After 48 h, the cells were

fixed with 4% paraformaldehyde for 10 min and permeabilized with

0.5% Triton in PBS for 15 min. After blocking, the cells were incu-

bated with a primary antibody (Millipore, anti-H3K4me2, 1:200 dilu-

tion), and washed three times with PBS, and incubated with

fluorescence-labeled secondary antibody for 1 h (Molecular Probes,

Alexa Fluor 555 goat anti-rabbit, 1:250 dilution). After extensive

rinsing with PBS, cover slips were mounted with an antifade reagent

and DAPI (Molecular Probes) and examined on an Olympus IX51

microscope.

Real-time qPCR assay

The pcDNA3-KDM5B-Myc-His WT and mutants were transfected

into 293T cells with Lipofectamine 2000. Forty-eight hours after

transfection, the total RNA was extracted using a standard proto-

col. Reverse transcription was conducted using the reverse

transcriptase M-MLV from Promega. Real-time PCR was performed

in triplicate using the SYBR Green PCR Mix (Promega) on an ABI

7500 sequence detection system (Applied Biosystems). Quantitative

PCR reactions were performed under conditions that were stan-

dardized for each primer.
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