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Abstract Aspergillus terreus FBCC 1369 was grown in
solid-state culture under statistically optimized conditions.
B-Mannanase was purified to apparent homogeneity by
ultrafiltration, anion exchange and gel filtration chro-
matography. A purification factor of 10.3-fold was
achieved, with the purified enzyme exhibiting specific
activity of 53 U/mg protein. The purified B-mannanase was
optimally active at pH 7.0 and 70 °C and displayed sta-
bility over a broad pH range of 4.0-8.0 and a 30 min half-
life at 80 °C. The molecular weight of B-mannanase was
calculated as ~49 kDa by SDS-PAGE. The enzyme
exhibited K,, and V., values of 5.9 mg/ml and
39.42 pmol/ml/min, respectively. B-Mannanase activity
was stimulated by B-mercaptoethanol and strongly inhib-
ited by Hg>". The p-Mannanase did not hydrolyze man-
nobiose and mannotriose, but only mannotetraose
liberating mannose and mannotriose. This indicated that at
least four mannose residues were required for catalytic
activity. Oligosaccharide with a degree of polymerization
(DP) three was the predominant product in the case of
locust bean gum (16.5 %) and guar gum (15.8 %) hydrol-
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ysis. However, the enzyme liberated DP4 oligosaccharide
(24 %) exclusively from konjac gum. This property can be
exploited in oligosaccharides production with DP 3-4.
B-Mannanase hydrolyzed pretreated lignocelluloses and
liberated reducing sugars (% theoretical yield) from copra
meal (30 %). This property is an important factor for the
bioconversion of the biomass.
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Introduction

In plant cell walls, hemicelluloses are the second most
abundant carbohydrates after cellulose. Mannans are the
second largest group of hemicelluloses after xylan, which
appear predominantly in softwoods of gymnosperms and
also form a minor component of hardwoods (Puls and
Schuseil 1993). These are composed of B-linked mannose
sugar-based backbones with variable degrees of side sub-
stitutions. These polysaccharides are renewable resources
and their enzymatic conversion is of great interest in the
field of lignocellulose biotechnology (Soni and Kango
2013). For the majority of bioconversion processes, man-
nans must be first converted to mannose or manno-
oligosaccharides (MOS).

The breakdown of the main chain of mannan is
accomplished with the action of P-mannanase (1,4-B-
mannan mannohydrolases EC 3.2.1.78), which releases
manno-oligosaccharides. Enzymes that actively participate
in mannan hydrolysis include B-mannanase (1,4-B-p-man-
nan mannohydrolase, EC 3.2.1.78), B-mannosidase (1,4-B-
p-mannopyranoside hydrolase, EC 3.2.1.25), B-glucosidase
(1,4-B-p-glucoside glucohydrolase, EC 3.2.1.21) and
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a-galactosidase (1,4-a-p—galactoside galactohydrolase, EC
3.2.1.22). Enzymatic synthesis of MOS from low-cost
substrate like konjac gum can be developed as a cost-ef-
fective method for generating useful nutraceuticals. A
bacterial mannanase MAN5 was used for MOS production
form konjac flour and its prebiotic effect has also been
described (Al-Ghazzewi et al. 2007). Various reports that
reveal the positive effects of MOS on intestinal microflora,
intestinal structure and function are available (Baurhoo
et al. 2007; Chauhan et al. 2014). Certain MOS possess
nutritional values; MOS-based nutrition supplements are
widely used in nutrition as a natural additive (Van Zyl et al.
2010). Guar gum derived from seed endosperm of
Cyamopsis tetragonolobus (guar seed) is very high in vis-
cosity. Enzymatically generated partially hydrolyzed guar
gum (PHGG) has low viscosity as compared to guar gum
and thus allows its use in enteral products, providing
benefits linked with dietary fiber ingestion (Alam et al.
2000; Slavin and Greenberg 2003), which makes the
enzyme significant from an industrial point of view.
Utilization of lignocellulosic by-products or wastes of
agro-industries for the production of biofuel ethanol is very
attractive (Chaturvedi and Verma 2013; Gama et al. 2015;
Saini et al. 2015). Degradation of agricultural wastes such
as wheat bran, wheat straw, copra meal and corn cob
requires the homo- and heterosynergistic action of several
enzymes. In this study, mannanase was explored for the
degradation of lignocellulosic biomass into fer-
mentable monomeric sugars that work as sugar for bioe-
thanol production.

Many microbial B-mannanase production studies have
focused on the utilization of pure mannans such as LBG,
guar gum and konjac gum as inducers (Puchart et al. 2004;
Vijayalaxmi et al. 2013). In addition, low-value mannan-
rich substrates such as copra meal, palm kernel cake
(PKC), apple pomace, coffee extract and other hemicellu-
osic biomass like wheat bean and wheat straw can also be
used in bioprocesses (Abdeshanian et al. 2010; Kote et al.
2009; Soni et al. 2015).

This current study focused on the formulation of an
economical B-mannanase production medium utilizing
inexpensive crop straw or agro-industrial wastes that are
available in large amounts. Initial pH and moisture content
are known to play a crucial role in fungal growth and
enzyme production under SSF. In the present study, sta-
tistical rotatable central composite design (RCCD)
approach of response surface methodology (RSM) was
applied to optimized pH and moisture content for the
optimized production of mannanase. Attention was then
given to the application of B-mannanase for the degrada-
tion of mannan for the generation of oligosaccharide,
PHGG and saccharification of lignocellulosic biomass.
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Methods
Materials

Mannobiose (M,), mannotriose (M3) and mannotetraose
(My) standards were purchased from Megazyme (Bray,
Ireland). Locust bean gum (LBG), solka floc, glucose,
mannose, guar gum, p-nitrophenyl-o-p-galactopyra-
noside,  p-nitrophenyl-B-p-glucopyranoside,  p-nitro-
phenyl-B-p-mannopyranoside, p-nitrophenol (pNP) and
other chemicals were sourced from Sigma-Aldrich, USA.
Copra meal was obtained from Parker Biotech Private
Ltd., Tamil Nadu, Chennai, India. Food-grade konjac
gum (glucomannan) was obtained from New Foods,
Bloomingdale, Illinois, USA. Fenugreek seed (Trigonella
foenum-graecum) meal, Aloe vera pulp, rice husk, wheat
straw and wheat bran were purchased from local
markets.

Microorganism, inoculum preparation and solid-
state fermentation

Thermotolerant A. terreus FBCC 1369 was isolated from
Sagar, MP, India, during a survey of the occurrence of
thermophilic fungi from litter and decaying wood (Maijala
et al. 2012). It was identified based on the cultural and
morphological characteristics. The identity was confirmed
using the ITS sequence of the fungus (GenBank:
FN811183.1). The strain was maintained on Czapek Dox
slants at 4 °C and sub-cultured after every 30 days.

Solid-state fermentation was conducted on mannan-rich
low-value particulate substrates, namely, copra meal,
fenugreek seed meal, Aloe vera pulp, rice husk, wheat
straw and wheat bran for the production of B-mannanase.
Solid substrate (5 g) was placed in a 250 ml flask and
moistened with 5 ml of distilled water. Flasks were then
autoclaved at 121 °C for 30 min and inoculated with 1 ml
of spore suspension (2 x 10° spores/ml) of A. terreus and
incubated at 37 °C for 5 days.

Based on the observed B-mannanase activity, copra
meal was selected for optimized P-mannanase produc-
tion by A. terreus using one-variable-at-a-time approach.
Copra meal (CM) was ground and fractionated using
various sieves to collect particle sizes of 2, 1 and
0.5 mm, respectively. The effect of particle size of the
substrate was investigated. The effects of glucose,
mannose, guar gum, LBG and Solka floc were evaluated
as carbon supplements. Urea, yeast extract, peptone and
ammonium sulfate were evaluated as nitrogen supple-
ments at a concentration of 1 % (w/v). All the experi-
ments were performed in triplicate and the data represent
average + SD.
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Extraction of f-mannanase and enzyme assays

After incubation, 50 ml citrate buffer (50 mM, pH 5.0) was
added to each flask and shaken at 150 rpm for 1 h at 4 °C.
For extraction, the entire content of the flask was squeezed
through a muslin cloth and the extract was centrifuged at
9000g for 15 min at 4 °C. The cell-free clear supernatant
was used as a source of mannanase in further studies.

B-Mannanase activity was measured using LBG (0.5 %
w/v) as substrate. LBG was dissolved in 50 mM Na-citrate
buffer (pH 5.0) by stirring constantly for 1 h at 60 °C. An
aliquot of 100 pl enzyme sample was incubated with
900 wl substrate at 50 °C for 10 min. The reaction was
stopped by the addition of 1.5 ml dinitrosalicylic acid
(DNS) reagent and subsequent boiling for 5 min and
reducing sugar was measured at 540 nm against the blank
(Miller 1959). One unit of enzyme activity was defined as
the amount of enzyme required to produce 1 pmol. of
mannose per min under the experimental conditions.

For assay of a-galactosidase, a 900 pl aliquot of p-ni-
trophenyl-a-p-galactopyranoside (2 mM in 50 mM Na-ci-
trate buffer, pH 5.0) was incubated with 100 pl sample at
50 °C for 10 min. The reaction was terminated by adding
0.5 ml of 1 M Na,COj3 and the absorbance of released p-
nitrophenol was determined at 400 nm (Maijala et al.
2012). One unit of o-galactosidase was defined as the
amount of enzyme that produced 1 pmol p-nitrophenol per
min. The B-mannosidase and B-glucosidase assay was the
same as described for a-galactosidase except that p-nitro-
phenyl-B-p-mannopyranoside (2 mM) and p-nitrophenyl-
B-p-glucopyranoside (1 mM) were used as substrates,
respectively (Maijala et al. 2012).

Experimental design for the determination
of optimum pH and moisture content

Initial pH and moisture content are crucial factors affecting
hemicellulases production in solid-state culture (Yin et al.
2013; Sadaf and Khare 2014; Zhang and Sang 2015).
Hence, both (A) pH and (B) moisture content were selected
to establish the optimum parameters for B-mannanase
production by A. terreus using an RCCD approach of RSM.
The ranges and levels of the variables selected for RSM are
listed in Supplementary Table 1. According to RCCD, the
total number of experimental combinations @ is
2k + 2k 4+ no., where k is the number of independent
variables and no. is the number of repetitions of the
experiments at the center point. A total of 13 sets of
experiments, including five center points, were conducted,
along with different combinations of two parameters. Each
numeric factor was varied over five levels, that is, plus and
minus alpha (axial point), plus and minus one (factorial
points) and zero (center point).

Statistical analysis and validation of experimental
modeling

The data obtained from RSM was subjected to analysis of
variance (ANOVA) for the analysis of the regression
coefficient, prediction equations and case statistics. Anal-
ysis of data was performed using Design-Expert software
(Version 9.0). The experimental results of the RSM were
fitted using the second-order polynomial equation:

Y= B+ D BXi+ D BiXo + Y BiXiX;. (1)
i ii ij

In this polynomial equation, Y is the predicted response, X;
X; are independent variables, f is the intercept term, f; is
the linear coefficient, f; is the quadratic coefficient and f;
is the interaction coefficient. The statistical model was
validated with respect to all variables within the design
space. Random sets of two experimental optimized com-
binations were used to study the f-mannanase production
under SSF.

Purification, protein determination, electrophoresis
and zymogram analysis

Crude B-mannanase was concentrated using ultrafiltration
employing a 10 kDa cutoff membrane (Millipore). The
resulting enzyme preparation was purified by a fast protein
liquid chromatography (FPLC) system [AKTA Prime Plus]
using a 5 ml Capto™ Q column (Pharmacia Biotech) and
eluting with a linear gradient of 0—1 M NaCl in Tris—HCl
buffer (pH 8.3) at 1 ml min~'. Fractions of p-mannanase
activity were pooled, desalted and then concentrated using
a Vivaspin 20 ml centrifugal concentrator. The concen-
trated enzyme was further purified using a Sephacryl™
S-200HR (16/60) column, eluted with 20 mM Tris—HCL
buffer (pH 8.3) containing 10 mM NaCl at a flow rate of
0.1 ml min~"'. Fractions collected were analyzed for B-
mannanase activity and analyzed on sodium dodecyl sul-
fate—polyacrylamide gel electrophoresis (SDS-PAGE). The
activity of the purified enzyme was confirmed by zymo-
gram analysis on native PAGE. The protein content was
determined by Lowry’s method using bovine serum albu-
min as standard (Lowry et al. 1950).

SDS-PAGE was performed on a 12 % acrylamide gel
(Laemmli 1970) and protein bands were visualized by
Coomassie Brilliant Blue G stain. Broad range molecular
weight standards (14—175 kDa) were used as size markers.
Activity band staining of the purified enzyme was visual-
ized on a 12 % native polyacrylamide gel. After elec-
trophoresis (3—4 h, 70 V), the gel was incubated on a
substrate plate (0.5 % LBG in 2 % agar) for 4 h at 50 °C.
The zone of B-mannanase activity was visualized using
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Congo red (0.1 %) stain followed by destaining using
aqueous NaCl solution (1 % w/v).

Characterization of f-mannanase, degradation
of mannan polymers, hydrolysis of MOS
and saccharification of lignocellulosic substrates

The optimum pH of B-mannanase was determined at 50 °C
in 50 mM buffer of varying pH from 4.0 to 10.0. The
buffers used were Na-citrate buffer pH (4.0-7.0) and Tris—
HCL buffer pH (8.0-10.0). The optimum temperature was
determined at pH 7.0 (Na-citrate buffer, 50 mM) in a range
of 40-90 °C.

To assay pH stability, B-mannanase was incubated at
varying pH (4.0-10.0) for 90 min and the residual pB-
mannanase activity was determined under standard assay
conditions. The thermal stability of P-mannanase was
determined after incubation of the enzyme at 50, 60, 70 and
80 °C. Aliquots were withdrawn after 0, 15, 30, 45 and
60 min of incubation, and residual enzyme activity was
measured by the standard assay. The effects of various
metal ions and inhibitors on B-mannanase activity were
determined. Inhibitors such as phenylmethanesulfonyl flu-
oride (PMSF), ethylene diamine tetraacetic acid (EDTA),
1,10-phenanthroline, mercaptoethanol, SDS and urea at a
concentration of 1 mM in 50 mM sodium acetate buffer
(pH 5.0) were used. A solution of MgSO,, ZnSO,, HgCl,,
MnSQ,, CaCl,, and CuSQy, at a concentration of 1 mM was
used (Heck et al. 2006). The residual activity in the reac-
tion sample and its corresponding control (i.e., without
metal ions or inhibitors) was determined by standard assay.

The substrate specificity of B-mannanase was deter-
mined by assaying its activity with guar gum, LBG, konjak
gum and copra mannan (0.5 % w/v in 50 mM Na-citrate
buffer, pH 5.0) as described earlier. Kinetic parameters
were determined using LBG as a substrate in the concen-
tration range of 1-10 mg/ml in 0.05 M Na-citrate buffer
(pH 5.0). The Hanse-Woolf plot was drawn for deter-
mining the values of K,, and V..

The potential of B-mannanase in degrading various
mannan polysaccharides was assessed as indicated below.
LBG, guar gum and konjak gum (0.5 % w/v in 50 mM Na-
citrate buffer, pH 5.0) was incubated with equal volumes
(1:1) of substrate and enzyme (25 U/ml) at 50 °C with
constant shaking. Samples were withdrawn at intervals of
2, 5, 10 and 20 h and boiled to stop the reaction. Samples
were filtered through a membrane filter (pore size 0.45 pum)
and the filtrate was analyzed by HPLC (Waters, USA)
using a Sugar Pak column, RI detector 2414 and injection
valve with capacity of 20 pl (Soni et al. 2015). HPLC-
grade water was used in the mobile phase with a flow rate
of 0.5 ml/min and a column temperature of 90 °C. The
analysis was performed using Empower 2 Build software
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2154. B-Mannanase was also employed for mannobiose
(M2), mannotriose (M3) and mannotetraose (M4) hydrol-
ysis. A total of 10 units of B-mannanase was incubated with
1 % of the different above-mentioned sugars in 50 mM
sodium acetate buffer (pH 5.0) at 50 °C for 24 h. Aliquots
were withdrawn after 24 h, boiled for 5 min, and analyzed
by thin-layer chromatography (TLC). The reaction mix-
tures were spotted on a silica gel plate (Merck Silica Gel
60F 254, Germany) and developed twice in a solvent sys-
tem containing isopropyl alcohol/ethyl acetate/water
(2:2:1-v/v/v). Saccharides were detected by heating the
plate in an oven after spraying with a mixture of 0.5 %
a-naphthol and 5 % sulfuric acid in absolute ethanol (w/v/
v) (Kango 2008). Mannose (M1), mannobiose (M2),
mannotriose (M3) and mannotetraose (M4) were used as
standards.

Lignocellulosic substrates wheat bran (WB), copra
meal (CM), wheat straw (WS) and corn cob were sac-
charified in an incubator shaker at 120 rpm at 50 °C for
24 and 48 h (Maijala et al. 2012). Reducing sugars were
determined using the DNS reagent (Miller 1959) in the
supernatant after centrifugation. Substrates with suit-
able particle size (1-2 mm) were also pre-treated with
0.1 N NaOH (alkali treatment) and 0.1 N HCI (20 % w/v)
(acid treatment) and autoclaved at 121 °C for 30 min for
the observed effect of pre-treatment on saccharification.
After pre-treatment, substrates were washed with distilled
water until the pH was neutral and dried in an oven. Each
substrate was suspended in 50 mM sodium citrate buffer
(pH 5.0) and supplemented with a partially purified -
mannanase preparation (20 U/ml); a substrate consistency
of 3 % (w/v) was maintained. To avoid loss of sugars due
to possible microbial contamination, the reaction mixture
also contained 0.02 % NaNj. The percentage of sacchar-
ification was calculated as indicated below (Baig et al.
2004):

Saccharification = sugars(mg/ml)/substrate (mg/ml)
x 100.

All the experiments were carried out in triplicate and the
results indicate the average of triplicate readings £SD.

Results
Optimization of process parameters

Among the six substrates examined for the production of -
mannanase in SSF, copra meal was observed to be the best
supporting 59 U/gds  B-mannanase  (Supplementary
Table 2). Henceforth, copra meal was used for further
optimization. Optimized parameters screened through the
one-variable-at-a-time approach were as follows: the
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smallest particle size 0.5 mm of substrate supported a
maximum yield of B-mannanase (110 U/gds); addition of
1 % (w/w) pulverized cellulose (solka floc) supported the
highest yield of B-mannanase (157 U/gds) comparable to
the unsupplemented control (110 U/gds), while among
nitrogen supplementation urea supported the highest pro-
duction of B-mannanase (170.8 U/gds) (Supplementary
Fig. 1a—c). The presence of other associated hemicellu-
lases, o-galactosidase (7.2 U/gds) and [-glucosidase
(4.3 U/gds) was noted. Such enzyme consortia help to
achieve complete depolymerization of mannan. Mannosi-
dase activity was below the detection level.

Optimization of factors by response surface
methodology (RSM)

In this investigation, RSM was applied for the optimization
of two crucial factors, viz. pH and moisture for -man-
nanase production to study the interaction of these factors
at different levels. RSM involving an RCCD was adopted
to optimize both parameters for B-mannanase production
by A. terreus. A set of 13 experiments, including five center
points, was carried out. Each numeric factor was varied
over five levels (—a, —1, 0, +1, o). The full experimental
plan with respect to their actual and coded forms is listed in
supplementary Table 1. The response values (¥ = B-man-
nanase activity) in each trial were the average of triplicates.
Analysis of variance (ANOVA) was used for analysis of
the regression coefficient, prediction equations and case
statistics. The experimental results of RSM were fitted
using the following second-order polynomial equation 1.
In this study, the independent variables were coded as A
(pH) and B (moisture). Thus, the second-order polynomial
equation can be represented as follows:

f-mannanase activity = 4422.80 — 15.70 x A 4 16.65
x B —67.09 x A> — 128.59
X B*—425xAXBx.

(2)

The statistical significance of the second-order
polynomial equation (Eq.2) was checked by Fisher
distribution (F test) (ANOVA) and the results are shown
in Supplementary Table 3. The “predicted R-squared”
value of 0.997 is in reasonable agreement with the
“adjusted R-squared” value of 0.99. This indicated a
good agreement between the observed and predicted
values. In this case, A, B, AB, A? and B? were significant
model terms. Moreover, “lack of fit (LOF) F value” of
0.08 implies that it was not significant relative to the pure
error. Non-significant LOF indicated a good fitness of
model. Predicted vs. actual plot (Supplementary Fig. 2)
represents a high degree of similarity that was observed

between the predicted and experimental values. The 3D
response surface curve and its respective 2D contour plot
(Fig. 1) illustrate the interaction between both factors and
indicate the optimum value of each factor for maximum
response in terms of P-mannanase production yield
(U/gds). The plot was obtained from the pairwise
combination of independent factors. Increasing the
moisture of the medium from 1.8 to 12.5 ml significantly
increased the B-mannanase production yield from 145 to
423 U/gds, but thereafter no significant increases in [-
mannanase production yield was observed. It was also
observed that when the pH was increased beyond level
“0”, the B-mannanase production yield decreased (Std. run
3, 4 and 6 in Supplementary Table 1).

Characterization of f-mannanase

In the present study, B-mannanase extracted from a solid-
state culture of A. terreus was purified by ultrafiltration,
anion exchange and gel filtration. The results of the
purification steps are summarized in Table 1. Purified B-
mannanase had a specific activity of 53.75 U/mg. This
preparation was further used for characterization of -
mannanase. SDS-PAGE of the purified protein revealed a
single band suggesting that B-mannanase from A. ferreus
FBCC 1369 is a monomeric polypeptide with an estimated
molecular weight of ~49 kDa. This was further confirmed
by hydrolysis on gel containing mannan substrate through
zymogram (Fig. 2).
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-Mannanase activity (U/gds)

Fig. 1 3D response surface plot for production of B-mannanase as a
function of A pH and B moisture content
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Table 1 Summary of B-mannanase purification from A. ferreus FBCC 1369

Purification step Total activity (U) Specific activity Yield (%) Purification (fold)
(U/mg)

Culture filtrate 2115 5.2 100 1

Ultrafiltration 765 26.3 36 5.05

Ton exchange 360 30.6 17 5.8

Gel filtration 223 53.75 10 10.3

Fig. 2 SDS-PAGE and native PAGE (zymogram) analysis of puri-
fied f-mannanase from A. ferreus; lane 1 standard protein marker;
lane 2 crude protein, lane 3 protein after ion exchange chromatog-
raphy; lane 4 purified f-mannanase; and lane 5 zymogram of the f-
mannanase purified from A. terreus

For industrial use, pH and temperature are the important
factors which could affect the catalytic efficiency of an
enzyme. Optimum pH and temperature values for f-man-
nanase activity were pH 7.0 and 70 °C, respectively
(Supplementary Fig. 3a, b). The stability profile of pB-
mannanase indicated this to be a relatively ther-
mostable enzyme active over a wide pH range. B-Man-
nanase was stable up to 1 h at 50 °C, retaining 85 %
activity. The half-life of this enzyme at 80 °C was about
30 min (Fig. 3a). The enzyme was stable in the pH range
of 4.0-7.0 (Fig. 3b) retaining full activity after 90 min
incubation. The enzyme retained more than 50 % activity
at pH 10.0 after 60 min of incubation.

Among various substrates, A. ferreus P-mannanase
hydrolyzed LBG most efficiently, suggesting that LBG is the
most suitable substrate for its action (Supplementary Fig. 4).
K,, and V., values were observed to be 5.9 + 0.3 mg/ml
and 39.42 £ 0.4 umol/ml/min, respectively, on LBG.

The effect of potential inhibitors or activators on puri-
fied P-mannanase is shown in Supplementary Table 4.
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Fig. 3 Temperature (a) and pH (b) stability of A. terreus FBCC 1369
B-mannanase. Data points indicate the means of triplicate values
+ SD

Results showed that Hg?*, Zn*" PMSF and EDTA were
strong inhibitors of enzyme activity, while Ca®", urea and
KCl had a slight inhibitory effect on its activity. 1,10-
Phenanthroline, Cu*" and Mg®" did not affect the enzyme
activity while p-mercaptoethanol, a reducing reagent,
enhanced enzyme activity by 30 %.

Validation of the model
An attempt was made to maximize the productivity of B-

mannanase while keeping the moisture and pH ‘in the
range’. Using these criteria, a solution pH 8.8 and moisture
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13 ml with maximum response were selected and experi-
ments were conducted. The observed response
(422 £+ 1.8 U/gds yield of B-mannanase) was near the
predicted outcome (423 U/gds yield of f-mannanase). The
production of enzyme predicted by the quadratic model
equation, and that recorded experimentally, were in good
agreement, and thus the model was valid. The production
attained after statistical optimization was sevenfold higher
than that attained under unoptimized conditions (Supple-
mentary Table 5).

Degradation of mannan polymers and hydrolysis
of MOS

The degradation of various mannan polymers such as LBG,
guar gum and konjac powder by the preparation of man-
nanase of A. terreus was performed. As shown in Fig. 4a—
¢, mannanase preparation was able to degrade different
types of mannan polymers, such as 32, 28 and 24 % LBG,
guar gum (galactomannans) and konjac gum (glucoman-
nan), respectively. The degradation of LBG and guar gum
resulted in the formation of a mixture of mannose (M),
mannobiose (M2) and oligosaccharide with the degree of
polymerization (DP) of the three sugars, while hydrolysis
of konjac gum yielded predominantly oligosaccharide with
DP of four as the main product (Table 2). Purified B-
mannanase was incubated with different MOS and the
products were resolved by TLC. TLC analysis confirmed
that B-mannanase cannot cleave the glycosidic linkage in
M2 and M3 even after a prolonged incubation period of
24 h; however, it efficiently hydrolyzed mannotetraose
forming M3 and M (Fig. 5). The results indicated that B-
mannanase was highly endo-acting and required at least
four mannose residues for hydrolytic activity.

Saccharification of lignocellulosics

Preparation of mannanase from A. ferreus potentially sac-
charified wheat bran, followed by copra meal, wheat straw
and corn cob. It can be observed that the saccharification of
alkali-pretreated substrates yielded more reducing sugar
than untreated substrates. The results are summarized in
Table 3. It indicated that pretreatment of substrates could
result in improvement of reducing sugar yield.

Discussion

Thermotolerant fungus A. terreus FBCC 1369 produced
59 U/gds titer of P-mannanase under non-optimized
conditions in solid-state culture on copra meal. Opti-
mization of various parameters, viz. the particle size of
substrate and carbon and nitrogen supplementation, was

carried out. The smallest particle size of 0.5 mm sup-
ported the maximum [-mannanase production and is
similar to the findings of a particle size of 0.6 mm being
suitable for xylanase production by Sporotrichum ther-
mophile (Sadaf and Khare 2014). Among the carbon
supplements examined, pulverized cellulose (solka floc)
supported higher yields of B-mannanase. Similar levels
of induction were also observed in Myceliophthora fer-
gusii MTCC 9293 (Maijala et al. 2012). Glucose and
mannose supplementation clearly repressed J-mannanase
production. Supplementation of complex galactomannans
like guar gum and LBG also lowered the enzyme yield
significantly.

Aspergillus terreus produced a higher yield of f-man-
nanase at alkaline pH (9.0), with obvious luxuriant growth
in SSF, indicating its alkaliphilic nature.

High titers of B-mannanase 422 U/gds were attained
after statistical optimization and the results suggest that
copra meal as solid can be used alone without any sup-
plementation for the efficient production of B-mannanase.

Purified B-mannanase was a ~49 kDa monomeric
protein (Fig. 2). p-Mannanases of molecular mass in the
range of 40-60 kDa are usually monomeric in nature
(Ademark et al. 1998; Luo et al. 2009; Lim et al. 2012).
Most of the fungal B-mannanases characterized so far
exhibited optimal activity in the acidic pH range of 4.0-5.0
(Christgau et al. 1994; Benech et al. 2007; Lim et al. 2012;
Katrolia et al. 2013), while B-mannanase from A. terreus
FBCC 1369 was maximally active at pH 7.0. In the present
study, the optimum temperature for PB-mannanase was
70 °C, which is similar to that reported for f-mannanase of
Aspergillus aculeatus (60-70 °C) (Regalado et al. 2000)
and higher than those of other Aspergilli viz. Aspergillus
niger (60 °C), Aspergillus sulphureus (50 °C) and the
thermotolerant Aspergillus fumigatus (60 °C) (Regalado
et al. 2000; Puchart et al. 2004; Chen et al. 2007). In this
study, the half-life of B-mannanase at 80 °C was about
30 min, while f-mannanase MANI and MANII from the
thermotolerant Aspergillus fumigatus were rapidly inacti-
vated above 60 °C (Puchart et al. 2004). The properties of
some fungi B-mannanases, in comparison to that of the
strain used in the present study, are summarized in Sup-
plementary Table 6.

Tons that react with sulfydryl groups such as Hg?"
generally inhibit enzyme activity. In this study, inhibition
of B-mannanase revealed that there was an important cys-
teine residue in or near the active site of the enzyme
(Chevero et al. 2001). As was the case in this study,
enhancement of enzyme activity by f-mercaptoethanol has
also recently been reported for some enzymes (Sharma and
Satyanarayana 2013).

Mannanase displayed a great deal of variation in their
ability to degrade a diverse range of mannans from
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Fig. 4 HPLC analysis of mannan hydrolysis: equal volume of
enzyme and substrate (1:1) were incubated at 50 °C under constant
shaking. a Hydrolysis of guar gum (GG); b hydrolysis of LBG;
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Table 2 End product hydrolysis profile of different types of mannan by A. terreus FBCC 1369 f-mannanase

Substrate M M2 MOS (DP 3) MOS (DP 4)
Locust bean gum powder (galactomannan) 4.9 % 10.8 % 16.5 % -

Guar gum powder (galactomannan) 5.9 % 6.8 % 15.8 % -

Konjac gum powder (glucomannan) - - - 24 %

M mannose, M2 mannobiose, MOS manno-oligosaccharides, DP degree of polymerization

M M2 M3 M4 Oh 24h Oh  24h Oh  24h
M2 M3 M4

Fig. 5 TLC of end product analysis of action of purified B-
mannanase on M2, M3 and M4 (10 U/ml B-mannanase was incubated
with 1 % (M2) mannobiose (M3) mannotriose and mannotetraose
(M4) at 50 °C in 50 mM sodium acetate buffer (pH 5) for 24 h. M,
M2, M3 and M4 were used as standards of MOS (1 % w/v in sodium
acetate buffer, pH 5)

Table 3 Saccharification of lignocellulosic substrates using a man-
nanase preparation from A. rerreus FBCC 1369

Substrate Treatment Reducing sugars (%) liberated
after reaction times
24 h 48 h
Wheat bran NwW 5.5 79
AcT 10.4 15
AIT 322 37.5
Copra meal NW 55 5.0
AcT 1.5 13
AIT 253 30.0
Wheat straw NW 3.0 5.5
AcT 3 5.5
AIT 15 17.8
Corn cob NW 23 24
AcT 2.8 33
AIT 3.4 3.7

NW normal washing, AcT acidic treatment, AIT alkali treatment

different sources. Based on the amounts of hydrolysis
products of different substrates, the hydrolysis degree of
mannanase against various substrates was in the order of
LBG (32 %) > guar gum (28 %) > konjac powder (24 %).
The results showed that mannanase was more active in
degrading galactomannan than glucomannan. The results
also suggested that B-mannanase possesses high endo-f-
mannanase activity and releases oligosaccharides with DP
of 3—4. It has been reported that oligosaccharides from
hydrolysis of mannans can act as prebiotics for positive
effects on the growth of chickens and prevention of
infection. MOS are able to interfere in bacterial attachment
(of Salmonella and E. coli). In the intestinal tract, however,
these oligosaccharides selectively promote the growth of
beneficial bacteria, especially Lactobacillus and Bifi-
dobacterium (Chauhan et al. 2014; Dhawan et al. 2015).
Thus, the production of oligosaccharides with DP 3-4
makes A. terreus PB-mannanase a good candidate for
potential application in the feed industry.

The results of substrate specificity studies indicated that
A. terreus B-mannanase exhibited high activity toward
LBG (defined as 100 %) followed by guar gum (86 %),
konjac gum (52 %) and copra mannan (8 %) (Supple-
mentary Fig. 4). This is in strong contrast to the B-man-
nanase from Bacillus circulans NT 6.7 (Piwapankaew et al.
2014), which displayed activity only on LBG, with no
activity on guar gum. -Mannanase from Reinkea sp. KIT-
Y010 did not display any activity on either LBG or guar
gum, but was able to hydrolyze linear mannans (konjac
gum) much more efficiently (Hakamada et al. 2014).

HPLC results showed that the hydrolysis of LBG was
approximately twofold higher compared to A. awamori K4 B-
mannanase (Kurakake and Komaki 2001). Guar gum
hydrolysis indicated that this f-mannanase could be useful in
the preparation of partially hydrolyzed guar gum (PHGG), a
clinical nutrition supplement useful in the treatment of irri-
table bowel syndrome (IBS) and in the manufacture of enteral
products and beverages (Alam et al. 2000; Slavin and
Greenberg 2003).Exclusive generation of DP4 manno-
oligosaccharide from konjac gum, with negligible mannose,
suggests the potential of A. terreus B-mannanase, in industrial
prebiotic preparations. Zhang et al. (2009) have reported the
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formation of oligosaccharides (DP 2-6), with negligible
mannose, from konjac flour using bacterial B-mannanase.

Saccharification of lignocellulosic biomass using par-
tially purified B-mannanase showed that alkali pre-treat-
ment enhanced saccharification of substrates as compared
to untreated substrates. It indicated that pretreatment
could result in increased degradation of lignocellulosic
materials. Similar results were reported by Zhang and
Sang (2015) and Liao et al. (2015) using xylanase.
Recently, Cameron et al. (2015) used crude mannanase
from Penicillium sp. and observed improved saccharifi-
cation of Pinus radiate.

Conclusion

The high B-mannanase yield on low-value copra meal,
exclusive generation of DP 4 oligosaccharide from konjac
gum, formation of partially hydrolyzed guar gum (PHGG)
and a 30 min half-life at 80 °C make A. terreus P-man-
nanase an attractive enzyme for the nutraceutical, food and
paper industries. Copra meal is rich in indigestible mannan,
cannot be used directly as animal feed (poultry and pigs)
and its disposal causes pollution. In the present study it is
utilized as substrate for the production of mannanase. The
residues left after SSF have reduced galactomannan con-
tent and can be used as feed for monogastric animals. This
study provides a suitable valorization solution for the uti-
lization and management of copra-oil industry waste which
causes pollution.
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