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Abstract Gold nanoparticle is growing class of nan-

otechnology due to large number of uses. We synthesized

stable L-methionine protected gold nanoparticles (AuNps)

by in situ reduction of HAuCl4 using sodium borohydrate

as reducing and L-methionine as stabilizing agent in an

aqueous medium. Different parameters (pH, capping agent,

precursor salt, and heating time) were optimized to see the

effect on the size of particles. Double beam spectropho-

tometer was used to carry out the spectroscopic studies. It

was observed that pH and concentration of reducing salt

are deciding factors in controlling the size and morphology

of AuNps. Scanning electron microscopy (SEM) verified

the formation of AuNPs as predicted by UV–Vis spectra.

The interaction of AuNPs with L-methionine was con-

firmed by Fourier Transform Infrared (FTIR). The reduc-

tion of 4-nitrophenol acted as standard of reaction to check

the response of AuNps catalyst. Complete reduction of

4-nitrophenol was accomplished by AuNps sol in just 60 s.

Fastest reduction rate was observed with smaller spherical

particles. This study concluded that size and shape of

AuNps can be monitored by controlling the pH, concen-

tration of capping and reducing agent. It also provides an

economical solution to aquatic environment in terms of

time saving and use of small volume of catalytic solution

for reduction of several other toxic organic pollutants.
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Introduction

Nanoparticle has gained considerable attention because of

their tremendous applications in fields of catalysis (Prieto

et al. 2013; Yu et al. 2010), sensor (Majid et al. 2006; Yan

et al. 2016), imaging (Lee and El-Sayed 2006; Padman-

abhan et al. 2016), drug delivery (Bhumkar et al. 2007; Yu

et al. 2016), and medicine (Jain et al. 2008; Khan et al.

2015, 2017b). Among these, AuNps have remarkable

attention. AuNps are extensively used in electronics

(Homberger and Simon 2010), magnetic (Nealon et al.

2012), optics (Tajdidzadeh et al. 2017), homo and hetero-

geneous catalysis (Li et al. 2013), and in the field of

biology (Ghosh et al. 2008; Safavi et al. 2008).

Variety of methods has been found in literature for the

synthesis of AuNps. Among, the chemical reduction of

metal salts is most convenient method. The reducing agent

including sodium borohydride (Faraday 1857; Zhenjiang

2005), sodium citrate (Frens 1973; Zhang et al. 2011),

carbon monoxide (Chen and Xie 2016; Lee and Meisel

1980), and alcohol (Youk et al. 2001) are mostly com-

monly employed in the reduction of salt to NPs. However,

organic reducing agents are toxic; therefore, this study

focuses on the development of eco-friendly methods for the

preparation of metal NPs (Karthik et al. 2016; Khan et al.

2016, 2017a). In this decade, green synthesis of metal NPs

has become a growing need to develop nontoxic, clean,

environmentally friendly nanoparticles in the field which is
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called as green’ chemistry (Ahmad et al. 2003; Khan et al.

2016). Therefore, it is very essential and need of hour to

synthesize and detailed study of metal NPs. To fulfill this

research gap regarding AuNps, we synthesized stable L-

methionine protected gold nanoparticles (AuNps) in the

present study by in situ reduction of HAuCl4 using sodium

borohydrate in an aqueous medium. Different parameters

(pH, capping agent, precursor salt, and heating time) were

optimized to see the effect on the size of particles. To

confirm the formation of AuNps, SEM and UV–Vis spec-

tral study were performed. FTIR analysis was practiced to

get insight about the interaction of AuNps with L-methio-

nine. The primary theme of this study is to offer a com-

prehensive synthetic and spectroscopic description of

AuNps.

Materials and methods

Chemicals

Tetrachloroauric acid (HAuCl4) was purchased from

Sigma-Aldrich Chemicals, while L-methionine (C5H11-

NO2S) from Fluka Chemicals. Sodium borohydride (98%),

acetone (97%), sodium hydroxide pellets (99%), and

hydrochloric acid (37%) of analytical grade were acquired

from Merck (Germany).

Synthesis of L-methionine-AuNps

Glassware was rinsed with HNO3 and then with detergent,

tape water, and finally three times with deionized water.

All glassware was dried in oven. All solutions were pre-

pared in deionized water. Stock solutions of 0.015% gold

chloride (HAuCl4), 0.03% L-methionine, and 1 mM 4-ni-

trophenol were prepared by dissolving each compound in

deionized water. The pH (3–11) was regulated using 1 M

NaOH and 3 M HCl Solutions. The solution of 0.01 M

sodium borohydride was prepared fresh each time in

deionized water. The solution of L-methionine protected

AuNps was prepared taking 0.015% gold chloride

(HAuCl4) in 10 ml flask. The pH of solution was adjusted.

Then, 10 mM NaBH4 was added to the solution of HAuCl4

followed by addition of 0.03% L-Methionine solution, and

total volume was made 10 ml by adding deionized water.

Analysis of resultant solution was made using Lambda 2

UV–visible spectrometer of Perkin Elmer in the range of

400–1100 nm to observe resulting AuNps.

The effect of various parameters including pH of

HAuCl4 solution, molar ratio of LM/Au, and molar con-

centration of NaBH4 on the synthesis process was also

investigated. Optimization of pH, molar ratio, and molar

concentration was carried out in the range from 3 to 13 1:1

to 6:1 and 1 to 50 mM, respectively. In kinetic study, LM-

AuNps were first synthesized at optimum conditions of pH,

HAuCl4 concentration, L-methionine concentration, and

NaBH4 concentration, and then, their stability was checked

by taking the UV spectra after different intervals of time in

range from 2 h to 1 week.

Monitoring and characterization of AuNps

Double beam spectrophotometer (Perkin Elmer model

Lambda 35) was used to carry out the spectroscopic stud-

ies. Baseline correction was first made by putting blank (in

1 cm2 quartz cell) in both compartments. Then, the blank

from working compartment was replaced by AuNps solu-

tion. In most cases, a range between 400 and 1100 was

selected to record the UV/Vis spectra of analysts. The

FTIR spectra of standard L-methionine protected AuNps

were recorded using FTIR (Nicolet 5700 of Thermo). The

SEM images were taken using Analytical Scanning Elec-

tron Microscope (Jeol, JSM 6380 Japan).

Catalytic reduction of 4-nitrophenol and recovery

and reuse of Au nanocatalyst

Sufficient deionized water was used to dilute the 0.2 ml of

1 M 4-nitrophenol solution in quartz cell (1 cm). Then,

added 0.3 ml of NaBH4 (0.1 M) solution and 0.4 ml of

L.M-AuNps solution to a final volume of 3.5 ml. Replica

procedure was adopted in case of other types of L.M-

AuNps. UV–visible spectra were taken against a blank just

after adding the last solution. A relatively faster scan of

1920 nm min-1 was taken after short intervals to check the

progress.

The 100 lL of 1-butyl-3-methylimidazolium hexafluo-

rophosphate (bmim, PF6) was added to the L.M-AuNps

treated 4-nitrophenol solution and shake well. Ionic liquid

was used to collect the AuNps where these were appeared

as light blackish spots on the surface of solution and sep-

arated by decantation. The AuNps were washed deionized

water and used it once again for successive five cycles for

catalytic reduction of 4-nitrophenol solution doing the

same procedure.

Results and discussion

Several methods are available for the synthesis of gold

nanoparticles; however, environmental issues change the

trend toward green synthesis. Keeping in view, we syn-

thesized the gold nanoparticles through green chemical

route using L-methionine (amino acid) as protecting agent

and sodium borohydride as reducing agent for gold chlo-

ride salt to AuNps.
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Effect of the initial pH on synthesis of AuNps

The pH has tremendous correlation with size of metal

particles. UV/visible spectra showed a red shift which was

related with an increase in size and aggregation of

nanoparticles or combination of both (Sato et al. 2003)

(Fig. 1).

Distortion of electronic cloud occurred due to abundant

heavier core of ionic AuNPs and interaction of light of

smaller wavelength. Hence, an oscillation of electron

dipolar was created and absorption of surface plasmon

band was attained (Link and El-Sayed 2000). Most blue

shifted peak (i.e., 505 nm) was obtained at pH 6. However,

when pH of solution gradually changed from 6 to 3, broad

bands along with decrease in peak intensity were observed.

The decrease in peak intensity at extreme acidic conditions

was due to rapid adsorption of AuNps or more interaction

of L-methionine with cell walls (Kalwar et al. 2011),

whereas broadening of visible spectrum at extreme acidic

conditions was indication of particles formation with broad

distribution in size. When pH moved to basic conditions, a

red shift along with a gradual increase in peak intensity was

observed. Red shift indicates the aggregation of AuNps

(Link and El-Sayed 2000). At higher basic conditions,

more aggregation due to more number of hydroxyl ions in

solution, this caused the precipitation of AuNps and

resulted in aggregation. The gradual increase in peak

intensity indicated that more numbers of particles were

present in solution. Three changes were observed at pH 12:

(1) most red shift, (2) appearance of a significant peak with

greater intensity at 963 nm which was the indication of Au

nanoflower formation, and (3) significant decrease of peak

intensity at 534 nm. The UV/visible spectra at pH 12 were

quite sharp and red shifted (at 534 nm), indicating that

most of the particles present were bigger in size. The

bigger size of the particles resulted in aggregation of Au

nanoflowers along nanoparticles.

Effect of reducing agent

Most blue shifted peak was observed with 10 mM NaBH4

whereas, most red shifted peaks were observed with 1 and

50 mM concentration of NaBH4 (Fig. 2).

Effect of capping agent concentration

The size of particles can be monitored by simple adjusting

the molar ratio of L-methionine/Au. UV/Vis absorption

peaks of AuNPs solutions showed a blue shift with

increasing molar ratio of L-methionine/Au from 1:1 to 2:1

and then almost keep constant with further increasing L-

methionine/Au ratio from 2:1 to 6:1. This indicates that the

particle sizes decrease with increasing the molar ratio of L-

methionine/Au from 1 to 2 and then keeps constant with

further increasing L-methionine/Au ratio from 2 to 6

(Fig. 3).

Kinetic study

No noticeable variations in UV/visible spectra were

observed over 1 week stability period which revealed that

the L-methionine protected AuNps were stable for a long

time. The gradual decrease in absorbance with time can be

correlated with the adsorption of some particles due to

interaction with cell walls. Furthermore, any SPR shift was

not recorded in case of these nanoparticles. This was
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insignificant change in peak position and indicated that the

capping reagent is playing a key role in stability of

nanoparticles in solution (Rouhana et al. 2007) (Fig. 4).

Characterization of the particles

The FTIR spectroscopy revealed the interaction between L-

methionine and newly fabricated AuNps. The broad band

in the range of 3400–3000 cm-1 was due to stretching of

NH (Ramachandran and Natarajan 2006). Some research-

ers also reported it at 3431 cm-1 (Lee et al. 2007). Inter-

action of AuNps with oxidized L-methionine caused blue

shift. The encapsulation of L-methionine over AuNps sur-

face leads to variation in IR-spectral bands, and this is in

relation with ZnS: Mn nanocrystals capped with amino

acids where strong peaks around 2950 and 1600 cm-1 were

assigned to Zn coordinated by amino group via NH2 (Lee

et al. 2007). In this case, these bands were seen at 2920 and

1580 cm-1 in L-methionine capped AuNps suggesting the

encapsulation of newly formulated AuNps with L-me-

thionine via NH2 group. The broadband at 2580 and

2621 cm-1 in b-DL-methionine also supported the evidence

(Ramachandran and Natarajan 2006). This was due to

presence of intermolecular hydrogen bonding between

carboxyl and amino groups (N–H� ��O). Hence, this band

was absent in the AuNps spectra due to encapsulation via

amino linkage. This affirmed the dissociation of zwitteri-

onic binding (Fig. 5).

SEM images of LM-AuNps, synthesized at various ini-

tial pH values of HAuCl4, showed that the particle size

increases when pH moves from acidic (pH 6) to basic

conditions. In case of pH 6 samples, small spherical par-

ticles were observed with 25 nm particle sizes. In case of

pH 9 samples, relatively bigger spherical particles were

observed with particle 100 nm particle size. However, for

pH 12 sample, nanoflowers were observed along with rel-

atively bigger spherical particles. The results of these

images were in good agreement in UV/visible spectra

(Fig. 6).

Application of AuNps as catalyst in 4-nitrophenol
reduction

The 4-nitrophenol was used as a model to check the cat-

alytic ability of three types of LM-AuNps.

AuNps with avg. Size 25 nm (Au Nano Catalyst-I),

Spherical AuNPs with avg. Size 100 nm (Au Nano Cata-

lyst-II), Nano Flowers along with bigger spherical AuNPs

with size[100 nm (Au Nano Catalyst-III). 4-aminophenol

(4-AP) was formed upon catalytic hydride reduction of

4-nitrophenol (4-NP) with sufficient amount of NaBH4
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allowed a rapid comparison of catalytic activities of all

three types. For each type of Au nanocatalyst, the spectral

studies revealed that the 400 nm peak progressively

decreased to 300 nm with time due to absorption of 4-AP

(Dotzauer et al. 2009; Kuroda et al. 2009). The conversion

of 4-NP to 4-AP was studied spectrophotometrically in

time-dependent absorption.

Reduction of 4-nitrophenol in absence of Au

nanocatalyst

The absorption of 4-NP was recorded at 317 nm in UV/

visible spectra after addition of NaBH4. The spectrum

underwent a red shift at 400 nm, which changed the color

from light yellow to dark yellow. This indicated the

nitrophenolate anion generation. Figure 7 showed unal-

tered peak of absorption at 400 nm which confirmed that

the reduction is not achievable in absence of catalyst (Liu

et al. 2006).

Reduction of 4-nitrophenol in the presence of Au

nanocatalyst-I

When reduction of 4-nitrophenol was done in presence of

Au nanocatalyst-I, a very quick decrease in peak intensity

of 4-nitrophenol was observed at 400 nm (Fig. 8). Almost

100% reduction of 4-nitrophenol was observed in less than

60 s, indicating the activeness of catalyst.

Fig. 6 SEM images of LM-AuNps at different pH. a Spherical 25 nm particles at pH 6; b relatively bigger 100 nm spherical particles at pH 9;

c nanoflowers and spherical particles at pH 12; d nanoflowers 2.7 lm at pH 13
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Reduction of 4-nitrophenol in the presence of Au

nanocatalyst-II

When reduction of 4-nitrophenol was carried out in the

presence of Au nanocatalyst-II. A slightly decrease in

efficiency was recorded and 100% reduction of 4-nitro-

phenol was carried out in 240 s (Fig. 9).

Reduction of 4-nitrophenol in the presence of Au

nanocatalyst-III

When reduction of 4-nitrophenol was carried out in pres-

ence of Au nanocatalyst-III, gradual stepwise decrease in

peak intensity of 4-nitrophenol was observed at 400 nm

(Fig. 10). Almost 100% reduction of 4-nitrophenol was

observed in 660 s.

Fastest reduction was observed with smaller nanoparti-

cles and this reduction rate was decreased as size of the

particles increases. Figure 11 represents a comparison of

reduction efficiencies of all three types of Au

nanocatalysts.

Recovery and reuse of Au nanocatalyst

After reduction of 4-nitrophenol, AuNps were recovered

from treated solution with a water insoluble ionic liquid.

AuNps recovered at surface of ionic liquid were washed

three times with deionized water and used again for
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reduction of 4-nitrophenol with the same concentration of

NaBH4 and 4-nitrophenol as true for above cases. This

procedure was repeated for successive five cycles. Fig-

ure 12 shows stepwise reduction efficiency of reused

AuNps for 4-nitrophenol collected at surface of ionic liquid

for 5 cycles. The efficiency of reused ionic liquid loaded

AuNps for cycles 1–5 was good but not as much efficient as

it should be. The reason may be the use of very dilute

concentration of gold salt for synthesis of AuNps. There-

fore, the quantity of AuNps present in the volume (0.4 ml)

used was very less as catalyst for reduction. However,

efficiency of IL recovered AuNps can be increased using

concentrated solution of AuNps. Moreover, 100% reduction

in first cycle indicated the comprehensive uses of active

sites for catalytic reduction of 4-nitrophenol. The agglom-

eration of AuNPs decreased the catalytic stepwise effi-

ciency at ionic liquid surface after each cycle.

Conclusions

It could be concluded that size and shape of AuNps can be

monitored by controlling the pH, and concentration of

capping and reducing agent. In slightly acidic conditions,

small spherical particles are formed, whereas at extreme

basic conditions, bigger spherical particles along with

A
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B

Fig. 11 Comparison of reduction efficiencies of all three types of Au nanocatalyst
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nanoflowers are formed. Furthermore, AuNps particle with

average size of 25 nm provides 100% reduction of 4-ni-

trophenol in just 60 s which prove that the particles with

smaller size have best catalytic potential. This study pro-

vided an economical solution to aquatic environment for

reduction of organic toxic pollutant in terms of time saving

and use of small volume of catalytic solution.
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