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Abstract In the present investigation, we examined the

heat and mass transfer analysis for the peristaltic flow of

nanofluid through eccentric cylinders. The complexity of

equations describing the flow of nanofluid is reduced

through applying the low Reynolds number and long

wavelength approximations. The resulting equations are

highly nonlinear, coupled and nonhomogeneous partial

differential equations. These complicated governing equa-

tions are solved analytically by employing the homotopy

perturbation method. The obtained expressions for veloc-

ity, temperature and nanoparticle phenomenon are sketched

through graphs for two as well as three dimensions. The

resulting relations for pressure gradient and pressure rise

are plotted for various pertinent parameters. The stream-

lines are drawn for some physical quantities to discuss the

trapping phenomenon.

Keywords Heat and mass transfer � Peristaltic flow �
Nanofluid � Eccentric cylinders � Analytical solutions �
Homotopy perturbation method

Introduction

Nanofluid is a type of fluid having nanometer-sized particles

(having size less than 10-2) known as nanoparticles. In

nanofluid, nanoparticles are suspended in customary heat

transfer basic fluids. The nanoparticles used in nanofluid are

normally composed of metals, oxides, carbides or carbon

nanotubes. Water, ethylene glycol and oil are common

examples of base fluids. Nanofluid have their major appli-

cations in heat transfer, including microelectronics, fuel

cells, pharmaceutical processes and hybrid-powered

engines, domestic refrigerator, chiller, nuclear reactor

coolant, grinding, space technology and in boiler flue gas

temperature reduction. They demonstrate enhanced thermal

conductivity and convective heat transfer coefficient coun-

terbalanced to the base fluid. Acquaintance of the rheological

properties of nanofluid is found to be very momentous in

measuring their capability for convective heat transfer uti-

lizations. Nanofluid have been the core of attention of many

researchers for new production of heat transfer fluids in heat

exchangers, plants and automotive cooling significations,

due to their enormous thermal characteristics. A large

amount of literature is available which deals with the study of

nanofluid and its applications (Akbar et al. 2012; Manca et al.

2012; Wang and Mujumdar 2007).

Many researchers have been interested in analyzing the

applications of peristaltic flow through different geometric

shapes. A large number of articles (Srinivas and Kothandapani

2008; Nadeem and Akbar 2009; Sobh et al. 2010; Tripathi

2011a, b; Mekheimer and Abdelmaboud 2008; Mekheimer

2008) have been presented which reveal the properties and

behavior of various types of fluids in peristalsis. Due to the non-

Newtonian attributes of most of the biofluids, researchers have

introduced different models of non-Newtonian fluids depend-

ing on their rheological properties (Ellahi and Hameed 2012;
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Malik 2011; Mahomed and Hayat 2007; Nadeem and Akbar

2010). The three-dimensional analysis of peristaltic flow has

also been presented by some of the researchers to describe the

peculiarity of different kinds of fluid in space. The influence of

lateral walls on peristaltic flow in a rectangular duct has been

described by Reddy et al. (2005). Mekheimer et al. (2012)

have studied the mathematical model of peristaltic transport

through an eccentric cylinders. The concept of nanofluid in

peristalsis has been explored by some of the researchers. Na-

deem and Maraj (2012) have presented the mathematical

analysis for peristaltic flow of nanofluid in a curved channel

with compliant walls under the constraints of long wavelength

and low Reynolds number. Recently, Akbar and Nadeem

(2011) have produced endoscopic effects on the peristaltic flow

of a nanofluid. It is to be noted that in the studies (Mahomed and

Hayat 2007; Nadeem and Akbar 2010), the flow is taken in a

two-dimensional geometry. The peristaltic flow of nanofluid

has not been discussed in three dimensions so far.

To observe the effects of space on the peristaltic flow of

nanofluid, we intend to study the peristaltic flow of nano-

fluid through eccentric cylinders. The three-dimensional

analysis is made in cylindrical coordinates to observe the

flow in tubes. The constitutive equations are simplified by

employing the assumptions of low Reynolds number

and long wavelength. The graphs for velocity, temperature

and nanoparticles concentration are plotted both in two and

three dimensions. The expressions for pressure gradient

and pressure rise are sketched under the impact of various

physical parameters. The trapping bolus phenomenon is

also elaborated through streamlines against different

quantities.

Mathematical formulation of the problem

Let us consider the peristaltic flow of an incompressible

nanofluid between two vertical eccentric cylinders. The

geometry of the flow is described as the inner tube being

rigid and the sinusoidal wave propagating at the outer tube

along its length. The radius of the inner tube is d, but we

would like to discuss the motion to the center of the outer

tube. The center of the inner tube is now at the position

r ¼ �; z ¼ 0; where r and z are coordinates in the cross

section of the pipe as shown in the Fig. 1. Then the

boundary of the inner tube is described to order � by r1 ¼
d þ � cos h; where � is the parameter that controls the

eccentricity of the inner tube position. Further, we assume

that the boundary of the inner tube is at the temperature T0

and the outer tube is maintained at temperature T1. The

nanoparticle concentration is described as C0 and C1 at the

walls of the inner and outer cylinders correspondingly.

The equations for the two boundaries (Mekheimer et al.

2012) are

r1 ¼ d þ � cos h;

r2 ¼ a þ b cos
2p
k
ðz � c1tÞ

� �
;

where d and a are the radii of the inner and outer tubes, b is the

amplitude of the wave, k is the wavelength, c1 is the propa-

gation velocity and t is the time. The problem has been con-

sidered with the system of cylindrical coordinates (r, h, z) as

radial, azimuthal and axial coordinates, respectively.

The equations for the conservation of mass, momentum,

energy and nanoparticle concentration for an incompress-

ible nanofluid are described as (Akbar and Nadeem 2011)

div V ¼ 0; ð1Þ

qf

oV

ot
þ V � rV

� �
¼ �rp þ ldiv Vþqfga T � T0ð Þ

þ qfga C � C0ð Þ; ð2Þ

qcð Þf

oT

ot
þ V � rT

� �
¼ r � krT

þ qcð Þp DB rC � rTð Þ þ DT

T0

rT � rTð Þ
� �

; ð3Þ

Fig. 1 The simplified model of geometry of the problem
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oC

ot
þ V � rC

� �
¼ DBr2C þ DT

T0

r2T; ð4Þ

where qf is the density of the incompressible fluid, qcð Þf is

the heat capacity of the fluid, qcð Þp gives the effective heat

capacity of the nanoparticle material, k implies thermal

conductivity, g stands for constant of gravity, l is the

viscosity of the fluid, d/dt gives the material time deriva-

tive, P is the pressure, C denotes the nanoparticle con-

centration, DB is the Brownian diffusion coefficient and DT

is the thermophoretic diffusion coefficient.

We introduce a wave frame (r, z) moving with velocity

c1 away from the fixed frame (R, Z) by the transformations

z ¼ Z � c1t; r ¼ R; w ¼ W � c1; u ¼ U; p ¼ P: ð5Þ

Let us assume that the velocity field for the flow is V ¼
ðu; 0;wÞ: The dimensionless parameters used in the

problem are defined as follows

p0¼ a2

lck
p;w0¼w

c
;u0¼ k

ac
u;V 0¼V

c
;z0¼ z

k
;r0¼ r

a
;h0¼h;

t0¼c

k
t;/¼b

a
;�0¼ �

a
;Re¼qca

l
;d0¼d

a
;�h¼ T�T0

T1�T0

;

r¼ C�C0

C1�C0

;Pr¼
l
qa

;Sc¼
l

qDB

;d0¼
a

k
;Br¼

qfgaa2

lc
C1�C0ð Þ;

Gr¼
qfgaa2

lc
T1�T0ð Þ;Nb¼

sDB

af

C1�C0ð Þ;Nt¼
sDT

T0af

T1�T0ð Þ;

af ¼
k

qcð Þf

;s¼
qcð Þp

qcð Þf

; ð6Þ

where V, /, Re, d0, Pr, Nb, Nt, Gr and Br represent the

velocity of the inner tube, amplitude ratio, Reynold’s

number, dimensionless wave number, Prandtl number,

Brownian motion parameter, thermophoresis parameter, local

temperature Grashof number and local nanoparticle Grashof

number, respectively. After using the above non-dimensional

parameters and employing the assumptions of long

wavelength d0!0ð Þ and low Reynolds number Re!0ð Þ;
the dimensionless governing equations (without using primes)

for nanofluid in the wave frame take the final form as

ou

or
þ u

r
þ ow

oz
¼ 0; ð7Þ

o2w

or2
þ 1

r

ow

or
þ 1

r2

o2w

oh2
þ Brr þ Grh ¼ dp

dz
; ð8Þ

o2�h
or2

þ 1

r

o�h
or

þ 1

r2

o2�h

oh2
þ Nb

o�h
or

or
or

þ 1

r2

o�h
oh

or
oh

� �

þ Nt

o�h
or

� �2

þ 1

r2

o�h
oh

� �2
 !

¼ 0; ð9Þ

o2r
or2

þ 1

r

or
or

þ 1

r2

o2r

oh2
þ Nt

Nb

o2�h
or2

þ 1

r

o�h
or

þ 1

r2

o2�h

oh2

� �
¼ 0: ð10Þ

The non-dimensional boundaries will take the form as

r1 ¼ d þ � cos h; r2 ¼ 1 þ / cos 2pz: ð11Þ

The corresponding boundary conditions are described as

w ¼ V at r ¼ r1; w ¼ 0 at r ¼ r2; ð12Þ
�h ¼ 0 at r ¼ r1; �h ¼ 1 at r ¼ r2; ð13Þ
r ¼ 0 at r ¼ r1; r ¼ 1 at r ¼ r2: ð14Þ

Solution to the problem

We use the homotopy perturbation method (He 2006) to solve

the above nonlinear, nonhomogeneous and coupled partial

differential equations of the second order. The deformation

equations for the given problems are manipulated as

1 � qð Þ L ew½ � � L ew0½ �ð Þ

þ q L ew½ � þ 1

r2

o2ew
oh2

þ BrX þ GrH � dp

dz

� �
¼ 0; ð15Þ

1 � qð Þ L H½ � � L eh0

h i� �

þ q L H½ � þ 1

r2

o2H

oh2
þ Nb

oH
or

oX
or

þ 1

r2

oH
oh

oX
oh

� ��

þNt

oH
or

� �2

þ 1

r2

oH
oh

� �2
 !!

¼ 0; ð16Þ

1 � qð Þ L X½ � � L �r0½ �ð Þ þ q L X½ � þ 1

r2

o2X

oh2

�

þ Nt

Nb

o2H
or2

þ 1

r

oH
or

þ 1

r2

o2H

oh2

� ��
¼ 0: ð17Þ

The linear operator is chosen as L ¼ 1
r
o
or

r o
or

� 	
: We suggest

the following initial guesses for w; �h and r

ew0¼
V log rð Þ�log r2ð Þð Þ

log r1ð Þ�log r2ð Þ ;eh0¼
log r1ð Þ�log rð Þ
log r1ð Þ�log r2ð Þ¼er0: ð18Þ

Now, we describe

ew r; h; z; qð Þ ¼ w0 þ qw1 þ � � � ð19Þ

H r; h; z; qð Þ ¼ �h0 þ q�h1 þ � � � ð20Þ
X r; h; z; qð Þ ¼ r0 þ qr1 þ � � � ð21Þ

Combining Eqs. (19)–(21) with Eqs. (15)–(17) and comparing

the terms of the first two orders, we have the following systems.

Zeroth order system

L w0½ � � L ew0½ � ¼ 0; ð22Þ
w0 ¼ 0; at r ¼ r2; w0 ¼ V ; at r ¼ r1; ð23Þ

L �h0


 �
� L eh0

h i
¼ 0; ð24Þ

�h0 ¼ 1; at r ¼ r2; �h0 ¼ 0; at r ¼ r1; ð25Þ
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L r0½ � � L er0½ � ¼ 0; ð26Þ
r0 ¼ 1; at r ¼ r2; r0 ¼ 0; at r ¼ r1; ð27Þ

The solutions of the above zeroth order systems can be

obtained by using Eqs. (18), (22)–(27) and are found as

w0 r; h; z; qð Þ ¼ V log rð Þ � log r2ð Þð Þ
log r1ð Þ � log r2ð Þ ;

�h0 ¼ log r1ð Þ � log rð Þ
log r1ð Þ � log r2ð Þ ; r0 ¼ log r1ð Þ � log rð Þ

log r1ð Þ � log r2ð Þ : ð28Þ

First order system

L w1½ � þ 1

r2

o2w0

oh2
þ Brr0 þ Gr

�h0 �
dp

dz
¼ 0; ð29Þ

w1 ¼ 0; at r ¼ r2; w1 ¼ 0; at r ¼ r1; ð30Þ

L �h1


 �
þ 1

r2

o2�h0

oh2
þ Nb

o�h0

or

or0

or
þ 1

r2

o�h0

oh
or0

oh

� �

þ Nt

o�h0

or

� �2

þ 1

r2

o�h0

oh

� �2
 !

¼ 0; ð31Þ

�h1 ¼ 0; at r ¼ r2; �h1 ¼ 0; at r ¼ r1; ð32Þ

L r1½ � þ 1

r2

o2r0

oh2
þ Nt

Nb

o2�h0

or2
þ 1

r

o�h0

or
þ 1

r2

o2�h0

oh2

� �
¼ 0; ð33Þ

r1 ¼ 1; at r ¼ r2; r1 ¼ 0; at r ¼ r1: ð34Þ

The solutions of the above nonlinear ordinary differential

equations are found as

u1 ¼ð�2ðr � r1Þðr � r2Þðr1 � r2Þð2ðr2 � dÞ2ðBrðr þ r1 þ r2 � 3dÞ þ Grðr þ r1 þ r2 � 3dÞGrðr þ r1 þ r2 � 3dÞ

þ 3
dp

dz
ð�r2 þ dÞÞ þ ðBrðr þ r1 þ 7r2 � 9dÞ þ Grðr þ r1 þ 7r2 þ Grðr þ r1 þ 7r2 � 9dÞ þ 9

dp

dz
ð�r2 þ dÞÞ�2Þ

þ � 3 Br þ Gr �
dp

dz

� �
ðr � r1Þðr � r2Þðr1 � r2Þ�2 cos½3h� þ 36V�ððr1 � r2Þðr þ r2Þ logðrÞ

�

� ðr � r2Þðr1 þ r2Þ logðr1Þ þ 2ðr � r1Þr2 logðr2ÞÞ þ cos½h�ððr � r1Þðr � r2Þðr1 � r2Þð4ðr2 � dÞ

� 2Brr þ 2Grr þ 2Brr1 þ 2Grr1 þ 5Brr2 þ 5Grr2 � 9r2

dp

dz
� 9 Br þ Gr �

dp

dz

� �
d

� �

þ 9 Br þ Gr �
dp

dz

� �
�2

�
þ 24Vðr2 � dÞð�ðr1 � r2Þðr þ r2Þ logðrÞ þ ðr � r2Þðr1 þ r2Þ logðr1Þ

þ 2ð�r þ r1Þr2 logðr2ÞÞÞ � 2� cos½2h�ð6ðr1 � r2Þðr þ r2ÞV logðrÞ � 6ðr � r2Þðr1 þ r2ÞV logðr1Þ

þ ðr � r1Þððr � r2Þðr1 � r2ÞðBrðr þ r1 þ 7r2 � 9dÞ þ Grðr þ r1 þ 7r2 � 9dÞ þ 9
dp

dz
ð�r2 þ dÞÞ

þ 12r2V logðr2ÞÞÞÞÞ=ð24ðr1 � r2Þðr2 � d � � cos½h�Þ3Þ; ð35Þ

h1 ¼� logðrÞ � logðr2Þð Þ logðrÞ � logðr1Þð Þ Nb�
2ðlog rÞ2 þ Nt�

2ðlog rÞ2 þ 4�2 logðrÞ logðr2Þ
��

� 3Nb�
2 log rð Þ log r2ð Þ � 3Nt�

2 log rð Þ log r2ð Þ þ 12Nbd
2 log r2ð Þ2þ12Ntd

2 log r2ð Þ2

� 8�2 log r2ð Þ2þ9Nb�
2 log r2ð Þ2þ9Nt�

2 log r2ð Þ2�4�2 log rð Þ log r2ð Þ2þ8�2 log r2ð Þ3

þ 4d� cos½h�ðlog r2ð Þ � log r1ð ÞÞ2ð6Nb þ 6Nt � log rð Þ þ 2 log r2ð Þ � log r1ð ÞÞ
� 4�2 log rð Þ log½d þ � cos½h�� þ Nb�

2 log rð Þ log r1ð Þ þ Nt�
2 log rð Þ log r1ð Þ

� 24Nbd
2 log r2ð Þ log r1ð Þ � 24Ntd

2 log r2ð Þ log r1ð Þ þ 12�2 log r2ð Þ log r1ð Þ
� 15Nb�

2 log r2ð Þ log r1ð Þ � 15Nt�
2 log r2ð Þ log r1ð Þ þ 8�2 log rð Þ log r2ð Þ log r1ð Þ

� 20�2 log r2ð Þ2
log r1ð Þ þ 12Nbd

2 log r1ð Þð Þ2þ12Ntd
2 log r1ð Þð Þ2�4�2 log r1ð Þð Þ2

þ 7Nb�
2 log r1ð Þð Þ2þ7Nt�

2 log r1ð Þð Þ2�4�2 log rð Þ log r1ð Þð Þ2þ16�2 log r2ð Þ log r1ð Þð Þ2

� 4�2 log r1ð Þð Þ3��2 cos½2h�ððNb þ NtÞ log rð Þ2�ð8 þ 3Nb þ 3NtÞ log r2ð Þ2

þ 3ð4 þ 3Nb þ 3NtÞ log r2ð Þ log r1ð Þð Þ � ð4 þ 5Nb þ 5NtÞ log r1ð Þð Þ2þ log rð Þðð4 � 3Nb � 3NtÞ log r2ð Þ

þð�4 þ Nb þ NtÞ log r1ð Þð ÞÞÞÞÞ=ð24ðr1Þ2ððlog r2ð Þ � log r1ð Þð ÞÞ4
��

; ð36Þ

r1 ¼ ðNb þ NtÞ�ðlog rð Þ � log r2ð ÞÞð ��þ � cos½2h�þð ð�þ d cos½h�Þðlog r2ð Þ � log r1ð ÞÞÞðlogðrÞ
� log r1ð ÞÞðlog rð Þ � 2 log r2ð Þ þ log r1ð ÞÞÞ=6Nbr1

2ðlog r2ð Þ � log r1ð ÞÞ3:
ð37Þ
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For q ! 1; we approach the final solution. So from Eqs.

(19)–(21), we get

w r; h; zð Þ ¼ w0 þ w1; ð38Þ
�h r; h; zð Þ ¼ h0 þ h1; ð39Þ
r r; h; zð Þ ¼ r0 þ r1; ð40Þ

where w0, h0, r0, w1, h1 and r1 are defined in Eqs. (28)

and (35)–(37), respectively. The instantaneous volume flow

rate �Q is given by

�Q ¼ 2p
Zr2

r1

rwdr: ð41Þ

The mean volume flow rate Q over one period is given as

[16]

Q z; tð Þ ¼
�Q

p
� /2

2
þ 2/ cos 2p z � tð Þ½ � þ /2 cos2½2p z � tð Þ�:

ð42Þ

Now we can evaluate the pressure gradient dp/dz by

solving Eqs. (41) and (42) and is elaborated as

The pressure rise Dp in the non-dimensional form is

defined as

Dp ¼
Z1

0

dp

dz
dz: ð44Þ

δ =0.1

δ =0.3

δ =0.2

Gr 1

Gr 3

2 1 0 1 2

40

20

0

20

40

Q

p

Fig. 2 Variation in pressure rise Dp with d and Gr for fixed

h ¼ 0:8; / ¼ 0:1; Br ¼ 0:2; Nb ¼ 0:5; Nt ¼ 0:2; � ¼ 0:1; V ¼ 0:3

dp

dz
¼ 1

60pðr1 � r2Þ3ðr1 þ r2Þðr2 � d � � cos½h�Þ3
ð15�3ð24Q � ðBr þ GrÞpðr1 � r2Þ3ðr1 þ r2Þ

þ 12p/ð4 cos½2pð�t þ zÞ� þ / cos½4pð�t þ zÞ�ÞÞ cos½3h�
þ 2�2 cos½2h�ð2pððBr þ GrÞðr1 � r2Þ3ð4r2

1 þ 22r1r2 þ 19r2
2Þ � 5ð8r3

1 � 27r2
1r2 þ 19r3

2ÞVÞ
� 1080Qðr2 � dÞ � 45ðBr þ GrÞpðr1 � r2Þ3ðr1 þ r2Þd þ 60pð36ð�r2 þ dÞ/ cos½2pð�t þ zÞ�
þ 9ð�r2 þ dÞ/2 cos½4pð�t þ zÞ� � r2ð2r2

1 þ 2r1r2 þ r2
2ÞVðlogðr1Þ � logðr2ÞÞÞÞ

þ � cos½h�ð�Brpðr1 � r2Þ3ð4ðr2 � dÞð16r2
1 þ 43r1r2 þ 31r2

2 � 45ðr1 þ r2ÞdÞ
þ 45ðr1 þ r2Þ�2Þ � Grpðr1 � r2Þ3ð4ðr2 � dÞð16r2

1 þ 43r1r2 þ 31r2
2 � 45ðr1 þ r2ÞdÞ

þ 45ðr1 þ r2Þ�2Þ þ 40ðpðr1 � r2Þð28r2
1 þ r1r2 þ r2

2ÞVðr2 � dÞ þ 27Qð4ðr2 � dÞ2 þ �2ÞÞ
þ 60pð36ð4ðr2 � dÞ2 þ �2Þ/ cos½2pð�t þ zÞ� þ 9ð4ðr2 � dÞ2 þ �2Þ/2 cos½4pð�t þ zÞ�
� 4r2ð2r2

1 þ 2r1r2 þ r2
2ÞVðr2 � dÞðlog r1ð Þ � log r2ð ÞÞÞÞ þ 2ð�120ðpðr1 � r2Þ2ð2r1 þ r2ÞV

þ 6Qðr2 � dÞÞðr2 � dÞ2 � 30ðpð8r3
1 þ 3r2

1r2 � 11r3
2ÞV þ 36Qðr2 � dÞÞ�2

þ Brpðr1 � r2Þ3ð2ðr2 � dÞ2ð8r2
1 þ 14r1r2 þ 8r2

2 � 15ðr1 þ r2ÞdÞ
þ ð8r2

1 þ 44r1r2 þ 38r2
2 � 45ðr1 þ r2ÞdÞð�2ÞÞ þ Grpðr1 � r2Þ3ð2ðr2 � dÞ2

� ð8r2
1 þ 14r1r2 þ 8r2

2 � 15ðr1 þ r2ÞdÞ þ ð8r2
1 þ 44r1r2 þ 38r2

2 � 45ðr1 þ r2ÞdÞ�2Þ
þ 180pð�4ðr2 � dÞð2ðr2 � dÞ2 þ 3�2Þ/ cos½2pð�t þ zÞ� � ðr2 � dÞð2ðr2 � dÞ2 þ 3�2Þ
� /2 cos½4pð�t þ zÞ� þ r2ð2r2

1 þ 2r1r2 þ r2
2ÞV�2ðlog r1ð Þ � log r2ð ÞÞÞÞÞ: ð43Þ
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Results and discussions

In this section, we discuss the effects of different

physical parameters on the profiles of velocity,

temperature and nanoparticles concentration. Three-

dimensional analysis is also made to measure the influ-

ence of physical quantities on the flow properties in

space. The variation in pressure gradient and peristaltic

pumping is also considered for various values of perti-

nent quantities. The trapping bolus phenomenon observ-

ing the flow behavior is also manipulated as well with

the help of streamline graphs. Figures 2, 3, 4, 5, 6, 7, 8

and 9 show the impact of different parameters on the

peristaltic pressure rise Dp and pressure gradient dp/

dz, respectively. Variations in velocity profile, tempera-

ture distribution and nanoparticle phenomenon under the

influence of observing parameters are shown in Figs. 10,

11, 12, 13, 14 and 15, respectively. The streamlines for

the parameters Br, Gr, Nb and Nt are displayed in Figs.

16, 17, 18 and 19.

Figure 2 represents the effects of parameters d and Gr on

the pressure rise Dp: It is noticed here that pressure rise is

an increasing function of local temperature Grashof num-

ber Gr throughout the domain, but for d, the pressure rise
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Fig. 9 Variation in pressure gradient dp/dz with Nb and Nt for fixed

d¼ 0:05; Gr ¼ 2; Q ¼ 1; h¼ 0:8; /¼ 0:1; Br ¼ 0:2; �¼ 0:01; V ¼ 0:1
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Fig. 10 Variation in velocity profile u with d and Q for fixed �¼
0:1; Nt ¼ 0:5; Nb ¼ 0:1; Br ¼ 0:3; Gr ¼ 1; z ¼ 0; V ¼ 0:3; h¼ 0:8; /¼
0:1 for (a) two-dimensional and (b) three-dimensional

(a)

(b)

V=0.1

V=0.3
V=0.2

=0.1

=0.3

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r

w

∋

∋

Fig. 11 Variation in velocity profile u with � and V for fixed d ¼
0:1; Nt ¼ 0:5; Nb ¼ 0:1; Br ¼ 0:3; Gr ¼ 1; z ¼ 0; Q ¼ 1; h ¼ 0:8; / ¼
0:1 for (a) two-dimensional and (b) three-dimensional
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Dp increases in the retrograde pumping region

Dp [ 0; Q\0ð Þ; while decreasing in the peristaltic

pumping region Dp [ 0; Q [ 0ð Þ and augmented pumping

region Dp\0; Q [ 0ð Þ: Figure 3 shows that Dp decreases

with the increasing effects of Brownian motion parameter

Nb. Figure 4 shows that pressure rise Dp varies linearly

with local nanoparticle Grashof number Br and the effects

of the parameter � are the same as that of d measured in

Figs. 2 and 3. Similarly, variation in the thermophoresis

parameter Nt produces the same behavior on the pressure

rise graph as seen for Gr (see Fig. 5).

We can observe the impact of the parameters local

temperature Grashof number Gr and local nanoparticle

Grashof number Br on the variation in pressure gradient

dp/dz from Fig. 6 when all other parameters are kept

fixed. It is noted that the pressure gradient is directly

proportional to both the parameters. It is also depicted

from the considered graph that the pressure gradient is

wider near the walls, but closer in the central part of the

geometry which means that much pressure gradient is

needed at the boundaries to maintain the flow as compared

with the middle part for the parameters Gr and Br. To

study the influence of radius d and flow rate Q on the

pressure gradient dp/dz, we prepared the graph shown in

Fig. 7. It is seen here that the pressure gradient is a

decreasing function of flow rate Q at all points within the

flow. However, it has also been measured from this graph

that dp/dz decreases in the middle of the flow, but rises at

the boundaries of the container. Figure 8 presents the

effects of velocity of the inner tube V and � on the pres-

sure gradient profile. One comes to know from this graph

that dp/dz changes linearly with V, but for �; the pressure

gradient decreases in the region z 2 0:9; 1:7½ � while an

increment is observed at the walls of the outer cylinder,
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Fig. 12 Variation in velocity profile u with Br and Gr for fixed d¼
0:1; Nt ¼ 0:5; Nb ¼ 2; �¼ 0:01; V ¼ 0:3; z¼ 0; Q¼ 1; h¼ 0:8; /¼ 0:1
for (a) two-dimensional and (b) three-dimensional
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Fig. 13 Variation in velocity profile u with Nb and Nt for fixed d ¼
0:1; Br ¼ 0:9; Gr ¼ 2; �¼ 0:3; V ¼ 0:1; z ¼ 0; Q ¼ 1; h ¼ 0:8; / ¼ 0:1
for (a) two-dimensional and (b) three-dimensional
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i.e., in the range z 2 0:64; 0:9½ � [ 1:7; 1:97½ �. We can

observe the variation in pressure gradient with Brownian

motion parameter Nb and thermophoresis parameter Nt

from Fig. 9. We can observe that the pressure gradient

profile rises directly when the magnitude of both the

parameters is varied throughout the flow.

It is observed from Fig. 10 that the velocity profile

decreases in the region r 2 0:1; 0:55½ �; but increases in the

rest of the domain with increase in the value of d, while

direct variation in velocity is observed in case of flow rate

Q in every part of the region. We present Fig. 11 to obtain

variation in the velocity profile w for varying magnitudes

of parameters � and V. The velocity directly varies with

V when seen in the range r 2 0:15; 0:6½ Þ; but inverse

behavior is reported in the zone r 2 0:6; 1:05½ � while

totally reverse investigation is made for the parameter �: It

is noticed from Fig. 12 that the velocity profile

w increases when we increase the value of the Grashof

number Gr and the local nanoparticle Grashof number Br

at every point of the flow. The velocity profile obtains the

maximum altitude with the increasing effects of Nt, but

rise in the value of Nb lessens the height of velocity dis-

tribution w (see Fig. 13).

To observe the behavior of temperature distribution h
with the variation in Brownian motion parameter Nb and

thermophoresis parameter Nt, we display Figs. 14a, b and

15a, b, respectively. It may be concluded here that the

temperature increases with the increase in the magnitude of

Nb and Nt. Temperature attains the maximum value at the

boundary of the outer tube and vanishes at the center of the

outer tube. We look at the Figs. 16a, b and 17a, b to

observe the impact of Nb and Nt on the nanoparticles’

Nb 0.0, Nb 0.2, Nb 0.4
Nb 0.6, Nb 0.8, Nb 1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.0

0.2

0.4

0.6

0.8

1.0

r

θ
(a)

(b)

Fig. 14 Variation in temperature profile h with Nb for fixed d ¼
0:1; � ¼ 0:4; V ¼ 0:1; Nt ¼ 0:2; z ¼ 0; h ¼ 0:8; / ¼ 0:1 for (a) two-

dimensional and (b) three-dimensional
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Fig. 15 Variation in temperature profile h with Nt for fixed d¼
0:2; �¼ 0:4; V ¼ 0:1; Nb ¼ 0:5; z ¼ 0; h¼ 0:8; /¼ 0:1 for (a) two-

dimensional and (b) three-dimensional
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concentration r. From these graphs, we observe that

nanoparticles’ distribution increases with rising Nt, but

diminishes when we increase the effects of Nb.

A very interesting phenomenon in the fluid transport is

trapping. In the wave frame, streamlines under certain

circumstances swell to trap a bolus which travels as an

inlet with the wave speed. The occurrence of an internally

circulating bolus stiffened by closed streamline is called

trapping. The bolus described as a volume of fluid

bounded by a closed streamlines in the wave frame is

moved at the wave pattern. Figure 18 shows the stream-

lines for the various values of the parameter local nano-

particle Grashof number Br in the upper part of the outer

cylinder. It is noted that the number of trapping bolus

decreases with increase in the magnitude of Br, while the

bolus becomes large with greater values of Br. From

Fig. 19, it can be seen that boluses increase in number, but

the size of the bolus is reduced with increase in the values

of local temperature Grashof number Gr. The number of

trapping boluses is decreased with the rising effects of Nb,

but the size of the bolus remains steady with varying Nb

(see Fig. 20). Figure 21 reveals the effect of Nt on the

streamlines for wave travelling down the tube. It is

noticed here that number of bolus varies randomly with

Nt, but the bolus expands across the wave with increase in

the magnitude of Nt.
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Fig. 16 Variation in nanoparticles phenomenon r with Nb for fixed

d¼ 0:1; �¼ 0:2; Nt ¼ 0:1; V ¼ 0:1; z ¼ 0; h¼ 0:8; /¼ 0:1 for (a) two-

dimensional and (b) three-dimensional
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Fig. 17 Variation in nanoparticles phenomenon r with Nt for fixed

d¼ 0:1; �¼ 0:4; Nb ¼ 0:5; V ¼ 0:1; z¼ 0; h¼ 0:8; /¼ 0:1 for (a) two-

dimensional and (b) three-dimensional
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