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Abstract Pure ZnO and Al-doped ZnO nanomaterial

have been successfully fabricated using zinc acetate dihy-

drate in a basic aqueous solution of KOH through solution

precipitation method then treated at 600�C in air. The XRD

analysis confirms the Wurtzite hexagonal crystal structure

of the product with crystallite size in 32–53 nm range. The

morphology of the product has been studied under

scanning electron microscopy (SEM). The simultaneous

differential scanning calorimetry and thermogravimetric

analyses were used to investigate thermal decomposition

temperature and different phase transitions up to 800�C.

The optical properties and variation in band gap of ZnO

by Al doping were investigated by ultraviolet–visible

spectroscopy.

Keywords ZnO � Band gap � Nanomaterial �
Lattice strain � Al doping

Introduction

ZnO nanomaterials are extensively used in many applica-

tions, which have attracted much attention in the present

years. Bulk ZnO have a direct band gap of 3.37 eV (at bulk

state) and a larger exciton binding energy (60 meV). The

electronic band gap of ZnO has been predicted theoreti-

cally and calculated by many people (Oshikiri and Aryas-

etiawan 2000; Muscat et al. 2001; Usuda and Hamada

2002; Uddin and Scuseria 2006; Shishkin and Kresse 2007;

Christoph Friedrich et al. 2011; Dixit et al. 2011; Yan et al.

2011), and lot of experimental work have been done to find

out the band gap of ZnO (varying 2.9–3.7 eV) (Alhamed

and Abdullah 2010; Ma et al. 2011; Sakthivelu et al. 2011;

Zandi et al. 2011; Tan et al. 2005; Bandyopadhyay et al.

2002; Inamdar et al. 2007; Ananthakumar et al. 2010). ZnO

is very useful in several opto-electronic field such as

optical sensors and light emitters (RF Service 1997;

Makino et al. 2000), etc. In addition, ZnO is also very use-

ful in gas detecting devices and piezoelectric application

(Fortunato et al. 2005; Gong et al. 2006; Song et al. 2006;

Jeong et al. 2003; Zhang et al. 2006). In fact, many

application and devices having bulk ZnO, and ZnO nano-

material have been established (Ma et al. 2011; R.F.

Service 1997; Makino et al. 2000; Fortunato et al. 2005;

Gong et al. 2006; Song et al. 2006; Jeong et al. 2003;

Zhang et al. 2006; Yu et al. 2006).

There are many methods to synthesize ZnO nanoma-

terial such as, preparation by sputtering (Yan et al. 2011),

chemical vapor deposition (Park et al. 2006), molecular

beam epitaxy (MBE) (Fons et al. 2006), spry pyrolysis

(Joseph et al. 1999), laser deposition (Chen et al. 2005),

and the soft chemical method (Ristic et al. 2005; Kuo

et al. 2006). Alhamed and Abdullah (2010) has discussed

structural and optical properties of ZnO:Al films prepared

by the sol–gel method. The solution precipitation method

is predominantly gorgeous because of its simplicity, low

costs, and obtained product of good crystalline quality,

which makes it superior to the other methods. Here, we

report a very simple solution precipitation method to

synthesize ZnO nanomaterial and Al-doped ZnO with

different doping concentration (3, 5, and 10%) to study the

effect of doping concentration on structural and optical

properties.
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Experimental work

Materials

All chemicals used in this experiment having analytical

grade purity were obtained from the commercial market,

used without further any purification. For all the reactions,

zinc acetate dihydrate Zn(CH3CO2)2�2H2O, aluminum

hydroxide acetate AlOH(CH3CO2)2, and potassium

hydroxide KOH were used for synthesis.

Calculated stoichiometric ratio of zinc acetate dihydrate

Zn(CH3CO2)2�2H2O was taken in a beaker containing dis-

tilled water and stirred for 30 min. Potassium hydroxide

KOH mixed in distilled water was added to the acetate

solution. In case of Al-doped (3, 5, and 10%) ZnO nano-

material different concentrations of aluminum hydroxide

acetate AlOH(CH3CO2)2 were added into the zinc solution

before potassium hydroxide KOH solution. The reaction

was stirred for 30 min at room temperature. When reaction

was completed, we filtered the resultant white suspension

using the centrifuge machine. Each centrifuge step had

5 min of rotation with the speed of 2,500 rpm. We obtained

the white precipitates and then washed with distilled water

and ethyl alcohol many times. The obtained white precipi-

tates of zinc hydroxide/aluminum hydroxide were dried at

Table 1 Reaction scheme for synthesis

Zn(CH3CO2)2�2H2O ? AlOH(CH3CO2)2

? KOH

Zn(CH3CO2)2�2H2O

? KOH

; Stirring ; Stirring

xZn(OH)2 ? 1-xAl(OH)3 Zn(OH)2

; 600�C ; 600�C
Znx Al1-x O ? H2O ZnO ? H2O

Fig. 1 DSC/TGA for precursor for ZnO
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Fig. 2 a XRD pattern of ZnO/

Al:ZnO nanomaterials.

b Average crystallite size

variation with doping

concentration. c Average lattice

strain variation with doping

concentration

50 Appl Nanosci (2013) 3:49–55

123



60�C. Finally the thermal decomposition of zinc hydroxide/

aluminum hydroxide was done to obtain the nanocrystals of

ZnO and ZnAlO. We placed these zinc hydroxide and

aluminum hydroxide in furnace chamber at 600�C for 1 h.

The involved reactions are shown in Table 1.

Characterization of the product

Powder X-ray diffraction (XRD) data were recorded and

collected on the XRD model MPD X’PERT PRO of PAN-

alytical Company Ltd., Holland using Cu–Ka as character-

istic radiation (k = 0.15418 nm) with h–h configuration.

The measurements were made in 2h ranging from 20 to 70�.
Study was mainly done by the software X’Pert HighScore of

the same company. Scanning electron microscopy (SEM)

images were taken on a scanning electron microscope

(JEOL JSM-6480). A differential scanning calorimetery

(DSC) and thermal thermogravimetric analyses (TGA) were

performed by SDT Q600 of TA Instrument; the optical

properties were investigated by ultraviolet–visible spec-

troscopy using UV/Vis spectrophotometer CECIL2700.

TGA and DSC analysis

To determine the thermal decomposition temperature of

zinc hydroxide/aluminum hydroxide, differential scanning

calorimetery (DSC) and thermal thermogravimetric anal-

yses (TGA) were carried out by SDT Q600 of TA Instru-

ment; the thermal decomposition curves (DSC/TGA) of

zinc hydroxide/aluminum hydroxide are depicted in Fig. 1.

The specimen was heated from room temperature to 800�C
with an increment of 20�C/min in air. The TGA data plots

the weight variation of the specimen, DSC designates

whether reaction is endothermic or exothermic and weight

derivative (temp) gives information about the rate of

change of weight with respect to temperature.T
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2 Table 3 Average crystallite size and lattice strain for ZnO/Al:ZnO

nanomaterials

Sample Average crystallite

size (nm)

Average lattice

strain

Pure ZnO 32 0.280

3% Al-doped ZnO 39 0.236

5% Al-doped ZnO 48 0.186

10% Al-doped ZnO 53 0.171

Table 4 Band gap for ZnO/

Al:ZnO nanomaterials
Sample Band gap

Eg (eV)

Pure ZnO 3.01

3% Al-doped ZnO 2.99

5% Al-doped ZnO 2.97

10% Al-doped ZnO 2.94
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The specimen suffered the weight losses at 100 and

250�C, respectively, which is due to evaporation of ethyl

alcohol, water, and organic by products. The evaporation is

endothermic reaction; corresponding peaks emerge at DSC

curve, weight derivative peaks also confirm the said con-

version, we can observe another weight loss in TGA curve

at 400�C, analogous large exothermic peak and weight

derivative peaks are also exhibited at same temperature;

due to the formation and crystallization of ZnO. Therefore,

the crystallization of ZnO nanomaterial occurred at tem-

peratures over 400�C. For this reason, we used 600�C for

the thermal decomposition of prepared precursors.

Structural analysis

X-ray diffraction

Figure 2a shows the XRD patterns of ZnO/Al:ZnO nano-

material annealed at 600�C for 1 h. All ZnO/Al:ZnO sam-

ples are polycrystalline and correspond to hexagonal

structure that can be indexed by comparison with data from

JCPDS file no. 03-065-3411 with lattice constants a =

3.2495 Å, b = 3.2495 Å, and c = 5.2069 Å. No diffraction

peaks of Al2O3 or other impurities are observed, which show

that the Al ions successfully reside in the lattice site rather

than interstitial ones.

By comparing with undoped ZnO, the doped samples

show lowering of intensity and decrease in full width at

half maxima (FWHM). Average crystallite size calculated

from XRD peaks is about 32 nm for undoped sample which

goes up to 53 nm for the Al-doped samples.

We find the major diffraction peaks decreasing as the Al

concentration increases, which indicates Al-doping effects

and decreases the crystalline quality. Comparing the crys-

tallization of ZnO with Al:ZnO, a large amount of Al

dopants produce lattice disorder, which is linked with the

reduction in lattice strain in ZnO. Moreover, the stain

reduction, the grains grew much easier when Al dopants

were included with ZnO.

To understand the crystalline mechanism of ZnO/

Al:ZnO, the crystallite size of the ZnO/Al:ZnO nanomate-

rial has been estimated from the FWHM of diffraction peak

using the Scherrer formula(Klug and Alexander 1974).

D ¼ 0:9k=b cos h

where D is crystallite size, k, h, and b are the wavelengths

of X-ray, the Bragg’s diffraction angle and full width at

half maximum (FWHM) of the diffraction peak, respec-

tively. The graph between average crystallite size and

doping concentration is shown in Fig. 2b.

The lattice strain (e) has been determined by using the

tangent formula (Klug and Alexander 1974). The graph

Fig. 3 a SEM image for ZnO nanomaterial. b SEM image for 3% Al:ZnO nanomaterial. c SEM image for 5% Al:ZnO nanomaterial
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between average lattice strain (eav) and doping concentra-

tion is shown in Fig. 2c.

e ¼ b=ð4 tan hÞ:

The position (2h), FWHM (b), crystallite size, and

lattice strain of ZnO/Al:ZnO thus obtained are listed in

Tables 2 and 3.

SEM results

The structural morphologies of the synthesized product

were observed by the scanning electron microscopy model

JSM 6480LV JEOL Japan. SEM images are collected at

high magnifications to investigate the morphology of
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samples. Figure 3a shows the SEM image for pure ZnO

nanomaterial.

The magnification of this image is 25,000 times and

reference bar of 1 lm. SEM micrograph shows that parti-

cles are random in shape with average particle size

125 nm, estimated by pixel analysis using ImageJ and

Micro-Manager 1.4 softwares. Figure 3b, c show SEM

images for 3 and 5% Al-doped ZnO nanomaterial, also

having same magnification and reference bar, average

particle sizes estimated are 150 and 176 nm, respectively.

These SEM images show a narrow particle size distribution

and particle size is growing as Al doping increases.

Optical analysis

Figure 4 shows the absorbance spectra of the undoped and

Al-doped ZnO films for wavelength 200–800 nm The

optical band gap (Eg), was estimated from the extrapolation

of the linear portion in a plot of (Aht)2 against ht, where

A is the absorbance and ht is the photon energy Table 4. It

is observed that Eg in the undoped ZnO nanomaterial is

*3.01 eV which is lower than value of bulk ZnO

(3.37 eV). This deviation may be due to the structural

defects takes place at the time of synthesis and thermal

treatment of precursor, On doping at 3% of Al, Eg is found

to decrease to the 2.99 eV because of big crystallite size

and small lattice strain as observed in the X-ray study.

Further Eg decreases and becomes 2.97 and 2.94 eV, in the

case of 5 and 10% Al doping, respectively. Similar type of

Eg behavior have been reported by different researchers for

sol–gel spin-coating to develop ZnO thin film(Natsume and

Sakata 2000) and pulsed laser ablation (3.1 eV) (Nara-

simhan et al. 1999).

Figure 4a, b, c, d show the graph for the calculation of

the band gap of undoped ZnO and doped ZnO with 3, 5,

and 10% Al concentration. The graph between band gap

and doping concentration is shown in Fig. 4e.

Conclusion

We have fabricated zinc oxide and aluminum-doped zinc

oxide nanomaterial of different sizes. XRD data confirms

the hexagonal phase of the synthesized materials. The

crystallite size increases with increase in the doping con-

centration. The surface morphologies of the synthesized

product were observed by the scanning electron microscopy

(SEM). DSC/TGA analysis was done to study the phase

changes during fabrication of materials. In DSC/TGA

analysis it was found that Zn(OH)2/Al(OH)3 decompose to

form the required product. A spectrophotometer was used to

attain the absorption spectrum in ultraviolet–visible region.

It was found that absorption is maximum for highest doping

and band gap of the materials was also calculated.
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