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Abstract
The paper presents possibilities of application of selected regression methods (classification trees, support vector machines, 
K-nearest neighbours, artificial networks) for classification of sewers’ damages. Operational data from the time span 2006–
2011 obtained from water utility were used for deterioration analysis. On the basis of the following independent variables, 
the modelling was carried out: diameter, depth, year of construction, material and season of damage’s occurring. The fol-
lowing kinds of damages were classified: corrosion, crack, longitudinal crack, displacement, unsealing, failure, collapse. The 
main aim of the paper was to check if prediction methodology could be useful for classification of different kinds of sewers’ 
damages. The obtained results pointed out that proposed classification methods are not appropriable in quality analysis of 
registered damages of sewers. Moreover, it is recommended for water and sewerage companies to register types of failures 
using unified notation which make easier preliminary classification before applying modelling approach. The calculations 
were performed in Statistica 13.1 software.
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Introduction

Sewage removal systems belong to the critical infrastruc-
ture, and their proper operation and maintenance are very 
important tasks from the point of view of both the operators 
and the users. For many years in Poland and in the world, 
quantitative research has been conducted to analyse in depth 
the causes and effects of failures and the number of fail-
ures and abnormalities occurring in sewers (Kuliczkowska 
2017, 2016; Caradot et al. 2018; Miszta-Kruk 2016; Ana 
et al. 2009). The quality and moisture of soil surrounding the 
buried infrastructure have a great influence on the technical 
condition of pipes (Iwanek 2018). Much attention is devoted 
to problems relating to the renovation or upgrading of sew-
ers (Ariaratnam and MacLeod 2002; Madryas and Wysocki 

2008; Duchesne et al. 2014) and to planning and carrying 
out video camera pipe inspections (Plihal et al. 2016; Har-
wey and McBean 2014).

The main aim of this paper is to show how selected 
regression methods could be used to classify and predict 
types of sewer damage. Recently, an attempt was made to 
use modelling based on the multicriteria decision process to 
select sewer sections for replacement and renovation (Kes-
sili and Benmamar 2016). Moreover, artificial intelligence 
assumptions (Tran et al. 2006) were used to analyse the fail-
ure rate of a storm sewer system. Such a system (drainage 
structure at urban areas) should be designed on the basis of 
the latest data concerning the amount of precipitation in the 
analysed area (Wartalska et al. 2020). Prediction methods, 
used to model phenomena which are difficult to describe 
because of the dynamically changing interdependences 
between the variables, are currently increasingly often used 
in the broadly understood environmental engineering (Czap-
czuk et al. 2015), e.g. to analyse the failure frequency of 
pumping units (Bevilacqua et al. 2003), to locate water-pipe 
network leakages (Candelieri et al. 2014), in hydraulic calcu-
lations of water distribution networks (Czapczuk et al. 2017; 
Piasecki et al. 2018) and to predict the hydraulic conductiv-
ity of the ground (Elbisy 2015). The prediction methods 
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include: classification trees (CT), support vector machines 
(SVM), K-nearest neighbours (KNN) and artificial neural 
networks (ANN). The particular methods are based on dif-
ferent assumptions and entail the proper selection of model 
parameters. In the case of artificial neural networks, it is 
necessary to determine the number of neurons in the hidden 
layer and select an appropriate training method. Classifica-
tion trees are based on the proper division of variables at the 
particular tree levels. The KNN method uses the notion of 
the distance of the dependent variable from the independ-
ent variable. The SVM method is based on the notion of 
decision spaces. The prediction of variables (by means of 
regression and classification methods) is a two-stage process 
consisting in creating a model describing the investigated 
phenomenon and then in applying the model to predict the 
selected dependent variable on the basis of the independ-
ent variables (predictors). More information about the 
above methods can be found in (Hastie et al. 2008; Breiman 
et al. 1984; Cristianini and Shawe-Taylor 2000). Further, in 
this paper the terms “regression method” and “modelling 
method” are used interchangeably. The sewerage systems 
are relatively old and exploiters all over the world as well as 
scientist should pay more attention to proper maintenance, 
rehabilitation and active damage localization. Investigations 
using statistical models in the assessment of damage to sew-
ers have been done in the world, e.g. sewer pipe condition 
was established by means of neural networks (Hassan et al. 
2019), diagnosis of sewer defects was based on support vec-
tor machines (Yang and Su 2008), random forest was used to 
model sewer deterioration (Hansen et al. 2020). Neverthe-
less, the literature on the subject indicates that so far broadly 
understood regression and classification methods (prediction 
methods) have not been used to evaluate the condition and 
failure frequency of sewerage networks in Poland. Consid-
ering this fact, the authors decided to undertake research in 
this area. Proper appointment of the most important param-
eters of models and selection of number and kinds of inde-
pendent variables influencing predicted values of dependent 
variable seem to be the crucial problems during mathemati-
cal modelling using machine learning approach. Moreover, 
it is necessary to check if application of selected prediction 
methods could be useful for rational management of buried 
infrastructure. Carried studies pointed out that appropriate 
arrangement of operational data registered in water and sew-
erage companies is necessary and should result in greater 
possibilities of using such information for construction of 
reliability model in the future.

Material and methods

Operational data for the years 2006–2011, obtained from 
one of the water and sewerage companies in a selected 
Polish town (number of citizens exceeds 300,000), con-
cerning the recorded sewerage network failures were used 
to classify and predict types of sewerage network damage 
by means of the four regression methods mentioned above. 
Sewerage network is built in gravitational separate system. 
There are several pumping stations due to differences of 
altitude. Sanitary sewers (the total length was equal to 
almost 568 km at the end of 2011) collect and transport 
sewage to wastewater treatment plant. The length of sewer 
laterals amounted nearly to 198 km at the end of 2011. 
Some parts of the network were constructed in the begin-
ning of XX century. Sewerage network is still expanding 
and renovated, and is made mainly from vitrified clay, con-
crete, reinforced concrete and PVC. Almost 81% of the 
total number of damages occurred on sewers made from 
vitrified clay. The rest failures were registered on concrete 
sewers (ca. 16%) and on PVC conduits (ca. 3%). The most 
deteriorated (circa 60% of all failures) were sewers built 
in the time span 1970–1990. The average value of sewers’ 
failure rate equalled to 0,0444 fail./(km·a). Considering 
their different roles in the system and different damage 
occurrence determinants, separate classification models 
were built for sewers and sewer laterals. Such abnormali-
ties in sewerage pipe functioning as clogups, chokings or 
blockages were not taken into account. The focus was on 
typical damage, such as pipe breakage, corrosion and loss 
of integrity (leakage) and sewer cave-in. In some cases, the 
type of damage was not precisely defined. It was merely 
noted in the documentation that a failure occurred. In 
such cases, the general term “damage” was used without 
going into details as to the type and quality of the dam-
age. That assumptions mean that not all damages were 
taken into account during statistical modelling. For further 
investigations, the total number of sewers’ failures varied 
between 8 in 2011 and 29 in 2006. The type of damage 
(TD) was the dependent variable while the independent 
variables (predictors), on the basis of which the classifica-
tion was made, were the following parameters describing 
sewerage conduits: (1) quantitative parameters—conduit 
diameter (D), conduit laying depth (LD), year of conduit 
construction (YC) and (2) qualitative parameters—season 
in which failure occurred (SE: winter (W), summer (SM)) 
and conduit material (M: vitrified clay (VC), cast iron (CI), 
concrete (C), PVC). The summer (non-heating) season 
comprised the months from March to October inclusive. 
Because of the relatively small sample size, V-fold cross-
validation was used. In the case of the CT method, the 
following model parameters were adopted: equal wrong 
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classification cost, Gini coefficient (a measure of random 
variable distribution concentration) as goodness of fit, a 
priori estimated probability, tree pruning at wrong clas-
sification, node count-5, maximum 10 tree levels and 
maximum 1000 nodes. Four types of basis functions: 
linear (L), sigmoidal (S), polynomial (P) and radial basis 
functions (RBF) were used in SVM modelling. The maxi-
mum number of iterations-1000, the capacity-10, training 
ended at an error of 0.001. Rescaling of predictors and 
data narrowing were used. The number of support vectors 
and localized vectors is given when analysing the results 
for the selected SVM model. Four distance measures: 
Euclidean distance (KNN-E), squared Euclidean distance 
(KNN-E2), Manhattan distance (KNN-M) and Cheby-
shev distance (KNN-C) were used in the KNN method. 
The number of nearest neighbours was determined by the 
trial-and-error method to be 10. The other nearest neigh-
bour values would result in worse classification results. 
ANN models based on radial basis functions, in which 
the minimum and maximum number of hidden neurons 
amounted to, respectively, 10 and 14 (sewers) and 6 and 
8 (sewer laterals), and multilayer perceptrons for which 
the minimum and maximum number of hidden neurons 
amounted to 1 and 20, were built. Sum square and mutual 
entropy as the error function and the following activation 
functions: linear, logistic, hyperbolic tangent, exponential 
and sine functions were used. Altogether 20 ANN models 
were built. 95 failures of sewers and 39 failures of sewer 
laterals occurred in the analysed period. The whole data 
set was randomly divided into a training set (70% of the 

cases) and testing set (30% of the cases). The training set 
data were used to build models while the testing set data 
were used to verify the modelling and its quality. Tables 1 
and 2 show dependent variable and predictor values for, 
respectively, training and testing. The calculations were 
performed using Statistica 13.1.

Results and discussion

Figures 1 and 2 present the classification accuracy results 
for all the types of damage to the sewers and to the sewer 
laterals for the modelling methods: CT; SVM-L, SVM-S, 
SVM-P, SVM-RBF (the support vector machine method 
based on linear, sigmoidal, polynomial and radial basis 
functions); ANN-4 and ANN-5 (the selected optimal ANN 
models). The results of classification by means of the 
K-nearest neighbours method are for only the testing data. 
Therefore, they are presented in a tabular form (Table 3). 
The results for the training data for the KNN model are not 
available in Statistica.

The model and method most suitable for the classifica-
tion of the types of damage to the considered sewerage 
conduits were selected on the basis of an analysis of clas-
sification accuracy. The latter is a ratio (expressed in per 
cent) of the accurately classified failures (with no division 
into the particular types) to all the failures, separately for 
the training data and the testing data. Another parame-
ter which should be taken into account when selecting a 
prediction method is the architecture of the given model. 

Table 1  Ranges of predictors 
and dependent variable—sewers

SE M LD, m D, mm YC TD

Training set (67 cases)
W, SM C, VC, PVC 1.0–6.5 110–600 1926–2001 Corrosion, breakage, 

longitudinal breakage, 
shift, leakage, damage, 
cave-in

Testing set (28 cases)
W, SM C, VC, PVC 1.2–4.2 150–450 1926–1995 Corrosion, breakage, 

longitudinal breakage, 
shift, leakage, damage, 
cave-in

Table 2  Ranges of predictors and dependent variable—sewer laterals

SE M LD, m D, mm YC TD

Training set (29 cases)
W, SM C, VC, PVC, CI 1.2–4.3 110–200 1926–1995 Breakage, longitudinal breakage, shift, leakage, 

damage, cave-in
Testing set (10 cases)
W, SM VC, PVC, CI 1.2–3.5 150–250 1938–2008 Longitudinal breakage, leakage, damage, cave-in
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However, since four different methods were analysed as 
part of this study, a comparison of their structures is not 
a clear-cut task. Each of the regression methods is based 
on different assumptions and comprises different training 

parameters, which makes a comparative analysis quite dif-
ficult. Therefore, only a preliminary comparison based on 
the classification accuracy mentioned above was made.

An analysis of Fig. 1 and Table 3 shows that none of 
the proposed methods is a tool accurately classifying types 
of sewer damage. In the KNN models, the classification 
accuracy results are the same for different measures of 
distance, which is surprising since each of the distance 
measures uses a different relation between the depend-
ent variable and the predictors. This problem looked dif-
ferently when predicting water conduit damage intensity 
(Kutyłowska 2018). Thus, the above results put a question 
mark over the use of the KNN method for both regression 

Fig. 1  Classification accuracy 
of sewers’ damages

Fig. 2  Classification accuracy 
of sewer laterals’ damages

Table 3  Classification accuracy (%) of damages—KNN method

Model Sewers Sewer laterals

KNN-E 24.1 25.0
KNN-E2 24.1 25.0
KNN-M 24.1 16.7
KNN-C 24.1 16.7
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and classification tasks. The best classification results were 
obtained using the support vector machine method based 
on the linear basis function (SVM-L) (Fig. 1). The dam-
age type classification accuracy amounted to just under 
42% and 32% for, respectively, the training data and the 
testing data. Detailed results of the classification of the 
particular types of damage by the SVM-L method, for 
which the number of support vectors and localized vec-
tors amounted to, respectively, 67 and 0, are presented in 
Table 4. Even though the general classification accuracy 
result is at the level of 42% (training), the detailed results 
are not so promising. Only corrosion and cave-in were cor-
rectly classified by the model, whereas such abnormalities 
as shift, breakage and general damage were incorrectly 
classified. Unfortunately, the classification results for the 
training data (Table 5) are even worse. The few types of 
damage which were correctly classified are in bold. The 

testing data set contained 28 cases of which only 9 were 
unequivocally classified by the SVM-L model.

From the two longitudinal breakages, one was classified 
correctly while corrosion and cave-in were assigned cor-
rectly in 100%. Table 5 shows results for only the selected 
model. The results of classification by means of other meth-
ods and models were even worse.

The failures of the sewer laterals were somewhat better 
classified (Fig. 2). Also SVM-L was chosen as the optimal 
model since the classification results for both the training 
and testing data were acceptable for all the types of damage. 
Even if accuracy for the training data was higher in the case 
of SVM-RBF and SVM-P, the results for the testing data 
were slightly worse than for the model based on the linear 
basis function. Similarly as in the case of sewers, the SVM-L 
model had no localized vectors while the number of support 
vectors was 29, i.e. it was equal to the sample size. Tables 6 

Table 4  Classification of 
sewers’ damages—model SVM-
L, training set

Class name Totally Correct Incorrect Correct, % Incorrect, %

Corrosion 4 4 0 100.0 0.0
Shift 11 0 11 0.0 100.0
Breakage 4 0 4 0.0 100.0
Longitudinal breakage 6 2 4 33.3 66.7
Leakage 11 1 10 9.1 90.9
Damage 8 0 8 0.0 100.0
Cave-in 23 21 2 91.3 8.7

Table 5  Classification of 
sewers’ damages—model SVM-
L, testing set

Observed Model SVM-L

Damage Longitudinal 
breakage

Leakage Cave-in Shift Corrosion Breakage

Damage (6) 0 0 0 6 0 0 0
Longitudinal 

breakage (2)
0 1 0 1 0 0 0

Leakage (6) 0 1 0 3 0 2 0
Cave-in (6) 0 0 0 5 0 1 0
Shift (2) 0 0 0 2 0 0 0
Corrosion (3) 0 0 0 0 0 3 0
Breakage (3) 0 0 0 3 0 0 0

Table 6  Classification of sewer 
laterals’ damages—model 
SVM-L, training set

Class name Totally Correct Incorrect Correct, % Incorrect, %

Shift 3 0 3 0.0 100.0
Breakage 1 0 1 0.0 100.0
Longitudinal breakage 2 1 1 50.0 50.0
Leakage 7 1 6 14.3 85.7
Damage 7 7 0 100.0 0.0
Cave-in 9 5 4 55.6 44.4
Shift 3 0 3 0.0 100.0
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and 7 show classification accuracy for the particular types of 
damage for the training data and the testing data.

Only the abnormality generally referred to as “damage” 
was correctly classified in all the considered cases. Cave-
in and longitudinal breakage were classified correctly in 
50%, whereas most of the other types of damage were not 
predicted (classified) correctly by the chosen model. In the 
case the results for testing, three of the four types of abnor-
malities (leakage, cave-in, damage) were classified correctly 
in about 50%, which is not a wholly satisfying result. One 
should look for the causes of so poor results of classification 
by means of the selected regression methods in the peculi-
arities of the problem, as discussed below. In order to thor-
oughly investigate the problem of the unsatisfactory results 
of the classification of types of damage, one can use a table 
containing operational data. Table 8 shows a few illustrative 
cases (for training and testing) for sewer laterals. This quite 
representative sample is enough to demonstrate certain inter-
dependences (or their absence) which had an unquestionable 
influence on the quality of the modelling of the classification 
problems by means of the regression methods.

An analysis of the exemplary operational data (Table 8) 
indicates their high variability. For example, a leakage 

occurred in a vitrified clay sewer lateral 150 mm in diam-
eter laid 2.5 m under the ground surface in the non-heating 
season in 1980, whereas in the case of another sewer lat-
eral made of the same material and having the same diam-
eter, but laid 1.6 m below the ground in 1997, a shift of 
the conduit occurred. The classification results indicate that 
the selected regression methods are not flexible enough 
to correctly classify damage when there is a considerable 
discrepancy between the operational data used to build the 
models. Similar problems are encountered in the case of 
operational data and the modelling of types of sewer dam-
age. The variability of the dependence between, e.g., the 
conduit material, its diameter and the abnormality to which 
it was subject in the analysed period, or its absence is quite 
normal from the engineering and operational point of view. 
Nevertheless, such problems as indicated above should have 
no influence on the quality of modelling and the accuracy 
of classification, especially that as many as four different 
regression methods were selected for the modelling. The 
results presented in this paper are one of the first attempts 
at classifying damage types by means of regression meth-
ods, but the obtained results are not promising. Perhaps in 
the future this problem should be approached differently, 
i.e. a preliminary classification of damage should be made 
depending on what class of abnormalities it belong to (e.g. 
a class of structural damage, a class of damage affecting 
conduit operation hydraulics, etc.), which could improve the 
quality of the modelling. Moreover, a separate problem is 
the damage classification system used in water and sewer-
age companies. Its standardization and the use of precisely 
defined abnormalities and damage types would make it pos-
sible to obtain a more representative sample, which could 
significantly improve the quality of the results of analyses 
carried out using the prediction methods.

Table 7  Classification of sewer laterals’ damages—model SVM-L, 
testing set

Observed Model SVM-L

Leakage Cave-in Damage Longitudi-
nal break-
age

Leakage (5) 2 0 2 1
Cave-in (2) 0 0 1 1
Damage (2) 0 0 1 1
Longitudinal 

breakage (1)
0 0 0 1

Table 8  Exemplary operational 
data—sewer laterals

Sample Material Diameter, mm Depth, m Season Year of con-
struction

Type of damage

Training VC 150 2.5 SM 1980 Leakage
Training VC 150 1.6 SM 1977 Shift
Training VC 150 1.8 SM 1971 Cave-in
Training VC 150 1.2 SM 1960 Leakage
Training VC 150 1.4 SM 1995 Damage
Training VC 150 1.8 SM 1982 Damage
Testing VC 150 3.0 SM 1938 Leakage
Training CI 150 2.5 SM 1978 Shift
Training VC 150 1.3 SM 1965 Cave-in
Training VC 150 1.5 SM 1981 Breakage
Testing VC 150 2.2 W 1994 Cave-in
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Conclusions

The obtained results show that the proposed regression 
methods (classification trees, the support vector machine 
method, the K-nearest neighbours method, artificial neural 
networks) do not classify types of damage to sewers in a 
satisfactory way since the accuracy of the classification for 
all the types of abnormalities did not exceed 50% for the 
adopted SVM-L model. At the current stage of this research, 
one cannot unreservedly recommend any of the prediction 
methods for use in the qualitative evaluation of the condi-
tion and damageability of sewerage networks. Undoubtedly 
further, more advanced, research on the classification and 
prediction of qualitative variables is needed, also based 
on other operational data. Moreover, it seems necessary to 
standardize the system of classification and notation of dam-
age types not only within a particular water and sewerage 
company, but also for the whole country. Of course, there 
are world guidelines and Polish recommendations proposed 
by Kuliczkowski and Kuliczkowska (2007) for classifying 
abnormalities occurring in sewerage networks, but their 
implementation in many water and sewerage companies still 
poses a difficulty.
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