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Abstract
Providing useful inflow forecasts of the Manantali dam is critical for zonal consumption and agricultural water supply, power 
production, flood and drought control and management (Shin et al., Meteorol Appl 27:e1827, 2019). Probabilistic approaches 
through ensemble forecasting systems are often used to provide more rational and useful hydrological information. This paper 
aims at implementing an ensemble forecasting system at the Senegal River upper the Manantali dam. Rainfall ensemble 
is obtained through harmonic analysis and an ARIMA stochastic process. Cyclical errors that are within rainfall cyclical 
behavior from the stochastic modeling are settled and processed using multivariate statistic tools to dress a rainfall ensemble 
forecast. The rainfall ensemble is used as input to run the HBV-light to product streamflow ensemble forecasts. A number of 
61 forecasted rainfall time series are then used to run already calibrated hydrological model to produce hydrological ensem-
ble forecasts called raw ensemble. In addition, the affine kernel dressing method is applied to the raw ensemble to obtain 
another ensemble. Both ensembles are evaluated using on the one hand deterministic verifications such the linear correlation, 
the mean error, the mean absolute error and the root-mean-squared error, and on the other hand, probabilistic scores (Brier 
score, rank probability score and continuous rank probability score) and diagrams (attribute diagram and relative operating 
characteristics curve). Results are satisfactory as at deterministic than probabilistic scale, particularly considering reliability, 
resolution and skill of the systems. For both ensembles, correlation between the averages of the members and corresponding 
observations is about 0.871. In addition, the dressing method globally improved the performances of ensemble forecasting 
system. Thus, both schemes system can help decision maker of the Manantali dam in water resources management.

Keywords Senegal river · Manantali dam · ARIMA · Ensemble forecasting · Affine kernel dressing

Introduction

Synthetic precipitation time series can be used in forecast-
ing hydrological variables, particularly in producing likely 
scenarios preserving interchange of dry and wet frequen-
cies. Statistic tools such as stochastic processes and resam-
pling methods based on estimating of a kernel density for 

interested data are often used in hydrological fields (Lall 
et al. 1996; Wang et al. 2005). Above statistic tools are gen-
erally involved in forecasting hydrometeorological data. In 
studies toward ensemble prediction systems, these tools 
are either used to provide input perturbations or to process 
ensembles for assessment of system performances and qual-
ity of the forecasts at deterministic or probabilistic scale. 
These approaches are also used in hydrological ensemble 
forecasting. As a history, hydrological ensemble forecasting 
systems (HEFSs) were initiated in the 1970s by the National 
Weather Service of the USA in an attempt of providing prob-
abilistic forecasts that should take into account uncertain-
ties of the models in forecasting streamflow (Jeong et al. 
2005; Velázquez et al. 2011; Nousu et al. 2019). Otherwhere 
HEFSs have been increasingly developed and improved 
through the world to overcome flooding threats (Wetterhall 
et al. 2013; Schaake et al. 2010; Samaniego et al. 2019). In 
addition, HEFSs may constitute good tool for assessment of 
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the climate change impacts on hydrological variables (Her 
et al. 2016). Hydrological ensemble forecasting consists 
of several forecasts of future values of a variable, namely 
ensemble members (Bröcker et al. 2008). Ensemble mem-
bers are then used to develop some probabilistic statements 
of related variable such as the probability of a flooding event 
(fraction of the ensemble members exceeding the flooding 
threshold). In fact, ensemble methods are very adequate for 
warning droughts and floods, because of the implication of 
probabilistic interpretation in the forecasting approach (Sam-
aniego et al. 2019; Roux et al. 2020). It is also used to extend 
the forecasting period of hydrological models (Li et al. 
2019). Probabilistic approaches in hydrological forecast-
ing are yet popular and progressively substitute determin-
istic approaches, particularly within worldwide renowned 
services acting upon flood forecasting (Cloke et al. 2009; 
Wetterhall et al. 2013; Jaina et al. 2018; Li et al. 2019). 
Such approaches have been used to simulate an ensemble of 
Senegal River discharge upstream the Manantali dam (Ndi-
one et al. 2018). Besides, one can found some international 
organization promoting the use of ensemble forecasting sys-
tems, namely hydrological ensemble prediction experiment 
(HEPEX) (Schaake et al. 2006). Several studies showing 
performances and effectiveness of HEFSs are available in 
the literature. For example, Verkade et al. (2017) estimated 
predictive hydrological uncertainties at the Meuse and the 
Rhine basins by dressing deterministic forecasts using esti-
mates of both hydrological and meteorological forecast; 
results show through scores that ensemble from dressing 
deterministic forecasts is more reliable than one produced by 
dressing ensemble from meteorological model. Hydrologi-
cal ensemble forecasting has been used at the USA in 2017, 
in order to provide rationally some short- to medium-range 
streamflow forecast through a combination of a meteorologi-
cal ensemble forcing with a distributed hydrological ensem-
ble forecast (Siddique and Mejia 2017; Sharma 2018). Her 
et al. (2016) studied uncertainties inherent to an ensemble 
forecast from multi-GCMs (multi-model) and uncertainties 
from an ensemble involving estimated multi-parameters of 
one hydrological modeling scheme under climate change 
effects; they found that uncertainties from multi-GCMs may 
be more important in magnitude and that attention should 
be paid in selecting hydrological input models. Jeong et al. 
(2005) used both single neural network (SNN) and ensemble 
neural network (ENN) to improve already existing hydrolog-
ical forecasting system runs with the TANK rainfall–runoff 
model in dry season at the Daecheong multipurpose dam 
in Korea. Results reported that the scheme involving the 
ENN improves considerably winter and springer streamflow 
forecasts. Pappenberger et al. (2011) reveal that the National 
Hydrological Service produces long-term probabilistic flood 
forecasting using ensemble prediction from the European 
Flood Alert System (EFAS) runs every week upon ten years 

ahead. They show that beyond the efficiency of the probabil-
istic forecast in comparison with classical methods, ensem-
ble forecast is sensitive to the geographical position and to 
the considered catchment spread. Moreover, their analyses 
reveal that the use of an ensemble has enhanced the skill of 
the river discharges forecast system. Pagano et al. (2013) 
dressed raw ensemble forecasts from 120 catchments using 
inherent error distributions; results show that the dressing 
processes can enhance reliability of the raw ensemble fore-
cast. In Addor et al. (2011), the COSMO-7 deterministic 
model and the probabilistic COSMO-LEPS have been cou-
pled with the PREVAH model to help managers of the Sihl 
River in decision making (Addor et al. 2011).

In this paper a hydrological ensemble forecast system is 
tested for flow discharges of the Senegal River upper the 
Manantali dam. The system is composed of a rainfall ensem-
ble provider (dressing rainfall deterministic forecast) and a 
hydrological model performed using above rainfall ensemble 
pattern. Deterministic forecast is done using classical time 
series analysis theories: harmonic analysis is carried out to 
simulate the periodic component of daily rainfall at the Baf-
ing catchment; an ARIMA (4,1,4) process has been identi-
fied to model the stochastic component of associated data. 
Errors from the stochastic modeling are sorted to obtain 
error pattern reflecting the cyclical behavior of rainfall in the 
study area. Thus, at each calendar date, error is constituted 
of ensemble members designed upon one year. Then, a mul-
tivariate normal distribution is used to enhance error mem-
bers after filtering the raw error pattern through the Box-Cox 
the transformation (Bickel and Doksum 1981; Sakia 1992; 
Ndione et al. 2018). Statistical errors pattern with enhanced 
member to 61 is afterward passed on reverse Box-Cox 
transformation in order to restore initial features of the raw 
error scheme. Rainfall ensemble forecast is produced using 
statistical errors to perturb a deterministic forecast from 
ARIMA model. Further calibrated HBV-light hydrological 
model is forced with the rainfall ensemble forecast leading 
to hydrological ensemble forecast referred in this manuscript 
to as the raw ensemble (RAWEns). In addition, affine kernel 
dressing (AKD) method is applied to the RAWEns in the 
purpose of improving quality of RAWEns (Jha et al. 2015; 
Lucatero et al. 2017; Silverman 1998; Li et al. 2019). Appli-
cation of the AKD method leads to an additional ensemble 
referred to as the affine kernel dressing ensemble (D-Ens). 
Rainfall ensemble is verified by exploratory analysis of time 
series of the ensemble mean and associated coefficient of 
determination. Concerning hydrological ensembles (RAW-
Ens and D-Ens) verification is made at deterministic scale 
using criteria such as the correlation coefficient (Corr), 
the mean error (ME), the mean absolute error (MAE) and 
the root-mean-squared error (RMSE) (Quilty et al. 2019). 
At probabilistic scale, scores (Brier score, rank probabil-
ity score, continuous rank probability score) and diagrams 



Applied Water Science (2020) 10:126 

1 3

Page 3 of 15 126

(attribute and ROC) are used. Both ensembles (RAWEns and 
D-Ens) present good performances. Nevertheless, results 
show that the dressing process globally improves the forecast 
quality, particularly in terms of the resolution and the skill. 
Improvement has also been highlighted by verifications at 
deterministic scale.

Materiel and methods

Study area

The Bafing shown in Fig. 1 is the main tributary of the upper 
catchment of Senegal River which is the second longest river 
of West Africa. Its area is about 343,000 km2 (Michel. 1973). 
The Bafing spreads over 38,000 km2, shared between Mali 

and Guinea countries (Sane et al. 2017; Ndione et al. 2018). 
It provides about 60% of the Senegal inflow gauged at Bakel 
station. Its slope and length are about 5 m/km and 670 km, 
respectively (Maïga et al. 1995). The main source of the Baf-
ing catchment is mountains of Fouta Djallon in Guinea. The 
climate is of sub-Guinean type in Southern of the Bafing and 
Sudanese in Northern part (Sane et al. 2017). A multipurpose 
dam, namely the Manantali one, has been built on the Bafing 
River for hydropower, low flow support, irrigation, navigabil-
ity support and flow lamination function (Bader et al. 2015). 
However, the Manantali dam provides about 12% of electric 
power consumption in Senegal. The data used in this study are 
composed of rainfall from the database of the National Civil 
Aviation and Meteorological Agency of Senegal (ANACIM) 
and daily flow from the Organization for the Development of 
the Senegal River (OMVS) database. Daily flow is recorded at 

Fig. 1   The study area
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the Bafing Makana stream gauge located upstream the Manan-
tali dam. Time series are ranged from 1963 to 1976.

Harmonic analysis of a time series

Time series can be separated into deterministic and stochas-
tic components. The deterministic component is composed 
of trend and periodic components. The stochastic component 
characterizes rdom oscillatory behaviors in time series (Kot-
tegoda 1980; Zakaria 2011; Bhakar et al. 2006; Jhajharia et al. 
2014). Let us set Xt the studied time series. An additive decom-
position of the original time series, namely Xt , is formulated 
as follows (Dabral et al. 2016):

where Tt  represents the trend component, Pt the periodic 
cone and �t the stochastic component. N characterizes num-
ber of observations. In this study, the trend component of 
the daily rainfall time series has been neglected because of 
its non-significance according to the Mann–Kendall (M–K). 
The M–K test (Ndione et al. 2017) has been applied to the 
daily rainfall series. Result reveals that this time series is 
trend free: the M–K p value is 0.065. Thus, in the modeling 
scheme only periodic and stochastic components are ana-
lyzed to forecast daily rainfall at the Bafing Makana catch-
ment. It should be kept in mind that for modeling purpose, 
the different components of the time series are treated sepa-
rately. Periodic signals such as seasonality in a time series 
are deterministic in nature. In this paper, the periodic signal 
is the seasonal behavior in daily rainfall time series. Sea-
sonality in hydrological time series is mainly induced by the 
rotation and revolution of the earth (Kottegoda 1980) and 
is modeled in this case of study using harmonic analysis. 
Considering a time series recorded at regular time step Δt , 
autocorrelogram analysis is further carried out to highlight 
the periodic behavior within the time series data before per-
forming harmonic analysis for modeling the periodic com-
ponent. The periodic component referred to as Pt is given by 
the following equation:

where � defines the average of the daily rainfall; L deter-
mines the possible harmonics in the year (fundamental 
period) which value is obtained by: L = n∕2 if n is even and 
L = (n − 1)∕2 if n is odd number. Characteristic coefficients 
of the basic periodic component are estimates of ai and bi 
of the ith harmonic. The parameter p represents the funda-
mental period and p∕i = �i , the wavelength of associated 
harmonic with i∕p corresponding to its frequency (Kotte-
goda 1980). It is important to mention that harmonic analy-
sis at daily scale has more outstanding non-steady frequency 

(1)Xt = Tt + Pt + �t (t = 1, 2,…… ,N)

(2)Pt = � +
∑p∕2

i=1
ai sin

[
2��

p
i

]

+
∑p∕2

i=1
bi cos

[
2��

p
i

]

shortness than monthly consideration and is strengthened 
by an ARIMA process. The fundamental period of the daily 
rainfall time series is p = 365 days. Then, the mean rainfall 
of the � calendar date is calculated by Eq. (3):

n∕p is the number of years in the whole time series.
Estimated parameters �̂� , âi and b̂i are obtained using the 

least square method and by setting to zero the derivatives of 
the associated objective function versus fixed parameter ak 
or bk . The estimate noticed by �̂� represents the average of 
the daily rainfall. Estimates are calculated with Eqs. 4, 5 and 
6 (Kottegoda 1980)

These estimates constitute the basis of the periodic com-
ponent of the time series which harmonic constitutive vari-
ance is given by Eq. (7):

Exploratory analysis of the periodogram drawn from 
variances is done to detect significant harmonics. The peri-
odogram of oscillations is obtained by plotting cumulative 
variance against rank of associated harmonic. Harmonic sig-
nificance is weighed by its contribution to the total variance. 
The number of significant harmonics is obtained considering 
consecutives ones contributing considerably to the overall 
variance (Bhakar et al. 2006; Fontin 1987; Kottegoda 1980; 
Jhajharia et al. 2014).

Modeling of the stochastic component 
through an ARIMA process

Stochastic component in time series is characterized by ran-
dom and irregular fluctuations of the series. This component 
may include deterministic features that are not completely 
random (Bhakar et al. 2006). The random component in 
time series cannot be completely determined by physical 
and deterministic approach. Then, mathematical schemes 
are performed to model such component (Kottegoda 1980; 
Fontin 1987, Jhajharia 2014; Quilty et al. 2019). In this 
paper, the stochastic component of the daily rainfall series 
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p
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is referred to as �t . If �t presents a periodicity of 365.25-day 
or 12-month correlations between data can be taken into 
account by an autoregressive integrated moving average pro-
cess with parameters p, d and q ARIMA(p, d, q) (Eq. 8) with 
a strictly random residual �t . A backshift operator noticed 
by Bs with Bs�t = �t−s introduced to consider existing peri-
odic correlations. ARIMA (p, d, q) process of the stochastic 
component is defined such that:

�p and Θq are the autoregressive and moving average 
parameters, respectively, and p, d and q are orders of the 
stochastic process.

Ensemble dressing process

In dressing methods, an independent and larger ensemble is 
drawn from a raw one (Brocker et al. 2008). It is done using 
an adequate kernel dressing (Gogonel 2013). In the dress-
ing process, ensemble members for given data simulation 
are dressed by an adequate statistic kernel which mean and 
variance are either or not fitted (Silverman 1998; Broecker 
and Smith 2008; Rajagopalan et al. 1997; Li et al. 2019). In 
addition, dressing methods are used transforming ensemble 
issues into a continuous distribution function. In this presen-
tation, a dressing method that may overcome shortcomings 
of the Gaussian density function (Broecker et al. 2008) is 
used. It is referred to as affine kernel dressing (AKD). The 
method involves five parameters ( r1 , r2,s1 , s2 , a) to dress a 
new statistical ensemble using estimate mean and variance 
of the Gaussian kernel (Broecker et al. 2008). Parameters are 
fitted by minimizing the continuous rank probability score 
(CRPS) in which process, a logarithm barrier is interposed 
to overcome problems that are non-negativity of the variance 
requirement related. The basis of the AKD dressing is to 
smooth a raw ensemble from an ensemble modeling system. 
Mean and variance of the kernel dressing are fitted using 
the five free parameters in addition to the Silverman factor 
(4∕3K)0.4 (Silverman 1998; Ndione et al. 2018):

The AKD allows drawing a new continuous distribution 
function from the K members of the raw ensemble (Eq. 11). 
The new distribution function of the dressed ensemble is 
obtained through the following equation expressed as a con-
ditional probability density function such as:

(8)�p(B
s)∇d

s
�t = Θq

(
B
s
)
�t with ∇d

s
�t =

(
1 − B

s
)d

(9)Xd = r1 + r2

[
X
]
+ a[X]

(10)
∑

��

= (4∕3K)0.4
(
s1 + s2 × a2 × var[X]

)

where Kd denotes the Gaussian kernel density.
Ensemble from the AKD process which parameters are 

fitted minimizing the continuous rank probability score 
(CRPS) is referred to as D-Ens. Logarithmic barrier that 
has been introduced to overcome case of negative variance 
of the Gaussian kernel in the process (Ndione et al. 2018) 
is given by:

The HBV‑light hydrological model

The HBV-light was set up in 1995 and bettered by Jan 
(Seibert at Uppsala University, Oregon State University, 
the Swedish University of Agricultural Sciences, Stock-
holm University and the University of Zurich). It is a 
semidistributed model in which the studied catchment is 
divided into subcatchment relatively to different eleva-
tions and vegetations. The HBV-light is run using differ-
ent routines such as the snow routine including snow melt 
and rainfall, the soil routine based upon the groundwater 
recharge, the soil storage and the evapotranspiration. A 
response routine is computed as a function of the water 
storage (Seiber et al. 2012) to give the runoff of the catch-
ment. Further, another routine–routine one computing the 
runoff at the catchment outlet is involved in the modeling 
process. The main inputs are constituted of daily scale 
data file such as the PTQ file containing precipitation 
([mm/Δt]), temperature ([ºC]) and flow discharges ([mm/
Δt]). Monthly estimates of long-term variables such the 
evapotranspiration and the temperature are also involved. 
These monthly data are linearly interpolated during the 
simulation process. Explicit description of the model can 
be found in Bergström (1995), Lindström et al. (1997) and 
Seibert (1999). The HBV scheme is summarized in Fig. 2.

The model process is briefly described below. Precipita-
tion to be considered depends upon a threshold tempera-
ture noticed by TT (ºC). If the temperature is above the TT 
as noticed in West Africa countries, rainfall is obviously 
considered. The flux to the ground water box noticed by 
F(t) (mm d−1) is partitioned according to the input to the 
soil I(t) (mm d−1) at a given time step. Each partition is 
defined as a function characterized by the ratio between 
the current amount of water in the soil box SSOIL(t) and its 
maximum PFC (Eq. 13):

(11)p(y∕[X]) =

[

K det

(
−1∑

��

)]−1(∑K

i=1
Kd

(
Xd

))

(12)
CRPSd = CRPS([X], Obs) ×

[
1 + 0.01 ×max(0 − log (minVar(X))

]
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Estimate of actual evapotranspiration from the soil 
box is simply equal to the potential evapotranspiration if 
the ratio of SSOIL∕PFC is above a value from multiplying 
maximum water in the soil box and the reduction factor of 
the evapotranspiration noticed by PLP . When above ratio is 
below PFC ⋅ PLP , estimated actual evapotranspiration ( Eact ) 
is defined by the following linear reduction:

(13)
F(t)

I(t)
=

(
SSOIL(t)

PFC

)�

(14)Eact = Epot ⋅min

(
SSOIL(t)

PFC ⋅ PLP

, 1

)

Runoff from the groundwater boxes is computed as the 
sum of linear daily outflows characterized by three param-
eters noticed by Pk0,Pk1 and Pk2 that depends on the upper 
groundwater box SUZ (mm) being above or below a thresh-
old value referred to as PUZL (mm). Runoff of the ground-
water box ( QGW(t) ) is given by Eq. (15). Global runoff is 
transformed into weighted triangular hydrograph function 
noticed by C(i) (Eq. 16). Finally, the simulated daily runoff 
is obtained by summing the triangular hydrograph scaled by 
runoff of the groundwater (Eq. 17).

(15)
QGW(t) = Pk2 ⋅ SLZ + PK1 ⋅ SUZ + PK0 ⋅max

(
SUZ − PUZL, 0

)

Fig. 2   Structure of the HBV model
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The long-term potential evapotranspiration is corrected 
in the running process, using a weighting coefficient 
noticed by PCET and the deviation between daily tempera-
ture T(t) and associated mean temperature (TM).

The performance of the model is evaluated by calculat-
ing objective functions such as the model efficiency, the 
intrinsic flow weighted efficiency and the coefficient of 
variation given by Eqs. 19, 20 and 21, respectively.

Verification scores (Brier score, rank 
probability score and continuous rank 
probability score)

Brier score

For binary events, the Brier score is used to assess reli-
ability and resolution of predicted probability. The Brier 
determines the mean squared errors between predictive 
probabilities pi at time period i(i = 1,… ,N) and the 
binary observations oi which value is 1 when observation 
is below the threshold value xt and 0 otherwise at time 
period (Addor et al. 2011; Randrianasolo et al. 2011; Ndi-
one et al. 2018; Sharma et al. 2018). The Brier score that 
corresponds to the mean squared error in deterministic 
forecasts is given by the following formula:

(16)C(i) = ∫
i

i−1

2

PMAXBAS

−
|
|
|
|
u −

2

PMAXBAS

|
|
|
|
⋅

2

P2
MAXBAS

du

(17)QSim(t) =
∑PMAXBAS

i=1
C(i) ⋅ QGW(t − i + 1)

(18)

EPOT(t) =
(
1 + PCET ⋅ T

(
t − TM

))
⋅ EPOT,M

with 0 ≤ EPOT(t) ≤ EPOT,M

(19)Reff = 1 −

∑�
QObs − QSim

�2

∑�
QObs − QSim

�2

(20)Reff weighted = 1 −

∑
w
�
QObs

��
QObs − QSim

�2

∑
w
�
QObs

��
QObs − QSim

�2

(21)R2 = 1 −

∑��
QObs − QObs

��
QSim − QSim

��2

∑�
QObs − QObs

�2 ∑�
QSim − QSim

�2

Mathematically, the lower the Brier score value, the 
best is the ensemble forecasting system. Thus, optimum 
Brier score corresponds to zero for perfect forecasting that 
means all expected scenarios are observed. The BS can be 
decomposed into three components: reliability, resolution 
and uncertainty (Murphy 1973; Candille 2005; Ndione 
et al. 2018). The decomposition consists of considering NK 
clusters among the K ensemble members which is probabil-
ity ps . It is done to show characteristics of model quality. 
The decomposition is such that: BS = reliability − resolu-
tion + uncertainty. Reliability assesses the distance between 
forecast ensemble and mean of observations. The resolution 
measures how different predicted distribution categorized 
the observations. Thus, wide resolution means possibly clus-
tering observations to categories with considerable differ-
ence. Uncertainty in the BS decomposition highlights the 
variability of forecast data and does not impact the model 
reliability. The BS has been generalized to multiple catego-
ries (discrete rank probability score) and continuous scalar 
variables (continuous rank probability score). The RPS is 
based on comparison between cumulative distribution func-
tions of the forecasts and one of observations in subsequent 
percentiles. The cumulative distribution function of the 
observations is represented by a cumulative function which 
is probability density taken the value of 1 when the prob-
ability threshold is exceeded and 0 otherwise (Epstein 1969; 
Murphy 1973; Vincendon 2011; Ndione et al. 2018). The 
RPS is obtained by summing the Brier score at different 
percentiles (10%,…, 30%,…, 90%). This approach is useful 
for categorizing the river discharges. For example, in flow 
classification, the following decomposition can be retained: 
low flows (< 10%), medium flows (10% < Q < 90%) and high 
flows (> 90%) (Zalachori 2013). Thus, different probabilities 
can be obtained for an ensemble according to chosen per-
centiles. Let N be the spread of the ensemble forecast which 
Brier score is calculated for M categories of the ensemble 
determined containing m members. The rank probability 
score at lead time i is given by:

Pi,j denotes the forecast probability of category m at 
time i, oi,j represents binary variable which value 1 when 
the category m is observed and 0 if associated category is 
not observed at time i . Thus, the RPS over the forecasting 
period is obtained through the following formula (Ndione 
et al. 2018; Shin et al. 2019):

(22)BS =
1

N

∑N

i=1

(
pi − oi

)2

(23)RPSi =
∑M

m=1

(∑m

j=1

(
pi,j − oi,j

)2)

(24)RPS =
1

N

∑N

i=1
RPSi
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For continuous variables, the continuous rank probabil-
ity score that is an extension to infinity of the discrete rank 
probability score is often used. The CRPS computes the 
global quality of issued ensemble forecast. It measures the 
distance between the ensemble forecast and the observed 
events. In the CRPS computing, the M categories of the 
RPSi (Eq. 2) are stretched to infinity (Matheson and Winkler 
1976; Hersbach 2000; Zalachori 2013). Variables involved 
in the estimating of the CRPS are: the cumulative distribu-
tion function of the forecasted values noticed by Ff

i
 and other 

one cumulative distribution function, noticed by F0
i
 , which 

value is 0 when the forecast is lower than the observation 
and 1 otherwise (Heaviside function). The equation of the 
continuous rank probability score (CRPS) is formulated as 
follows (Marty 2013; Casati et al. 2008; Bellier and Win 
2017; Ndione et al. 2018; Awol et al. 2019):

F
f

i
(x) is the cumulative distribution function of the fore-

casts, F0
i
(x) is the Heaviside function, N is the number of 

the time step.

Verification diagrams (attribute diagram and ROC 
curve)

Reliability, resolution and skill of an ensemble forecast-
ing system can be visualized through the attribute diagram. 
The diagram shows the position of a curve representing the 
predictive probabilities against the relative frequency of 
the occurrences relatively to the no-resolution line, perfect 
forecast (line 1:1) and no skill ones. Attribute of ensemble 
forecasting shows the reliability of implemented system, 
its resolution (skill of the system in considering higher and 
lower probability of events) and the uncertainty of issued 
ensemble with reference to observations. Attribute diagram 
is obtained by plotting the relative frequency of the observa-
tions against the forecast probabilities (Wilks 2006; Ndione 
et al. 2018; Shin et al. 2019). Relatively to attribute diagram, 
a perfect forecast exactly fits the first bisector (line 1:1). 
Uncertainties are defined for a given threshold, by the dis-
tance between categories and the first bisector characterizing 
perfect model. The resolution estimates how forecasts differ 
to the climatological mean probabilities of the events (sam-
ple climatology), and how the systems get it right. More, it 
defines the ability of the model to issue reliable probabilistic 
forecast close to 0 and to 1.

The ROC (relative operating characteristic curve) curve 
allows evaluating separation of means of conditional distri-
bution of some simulated data and is a very popular tool in 
decision-making approaches. The ROC is positive when the 
curve is beyond the first bisector which area under the ROC 

(25)CRPS (x) =
1

N

∑N

i=1 ∫
x=−∞

x=+∞

(
F
f

i
(x) − F0

i
(x)

)2

dx

(AUC) is of 0.5. Perfect modeling corresponds to AUC of 
1. The AUC defines the probability of successfully discrimi-
nating an event from a non-event (Mason 1982; Atger 2006; 
Awol et al. 2019). Given a threshold probability, forecasts 
are sorted into hits, misses, false alarm and correct rejec-
tions classes. Then, the ROC curve is obtained by plotting 
the false alarm rate against hit rate. This is a popular tool in 
decision-making supports. Thus, false alarm and hit rates 
are given as follows:

Results and discussion

Assessment of deterministic and ensemble forecast

The coefficient of determination between the mean forecast 
rainfall series to be used as HBV input and observations is 
of about 0.92 (Fig. 3). Further, correlation between them is 
also shown in Fig. 3. Analysis of these results shows that the 
ARIMA (4,1,4) is capable of providing likely daily rainfall 
of the Bafing catchment. The coefficient of determination 
exhibits adequacy in time between simulations and observa-
tions. Deterministic forecasts for daily rainfall of year 1976 
and simulations in the calibrating period are summarized in 
Fig. 4. Analysis of the figure confirms good representation 
of daily rainfall by the retained stochastic model. Stochastic 
model of the daily rainfall is perturbed to obtain rainfall 
ensemble forecast represented in Fig. 5. It globally fits rain-
fall behavior at the Bafing catchment.
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Assessment of the hydrological ensemble forecast

The HBV model has been calibrated in advance to fix 
optimum parameters before ensemble forcing procedure. 
Evolution of simulated deterministic flow discharges and 
forecasts (Qsim) against observations (Qobs) is shown in 
Fig. 6 with a model efficiency of about 0.74, coefficient of 
determination of about 0.77 and flow weighted efficiency 
of about 0.8. According to evaluating parameters, the HBV 
model is well calibrated in comparison with results from 
Ali et al. (2018), where R2 and Reff are about 0.92 and 0.85, 
respectively. Further, calibrating HBV in this study is more 
representative than ones given in Mendez et al. (2016) 
concerning three catchments: Reventado (R2 = 0.547), 
Purires (R2 = 0.716) and Toyogres (R2 = 0.638). In fact, 
the HBV model has been performed in this study to issue 
hydrological ensemble forecast. It is important to high-
light that the same parameters have been retained through-
out the process of the ensemble issuing. Variation of the 
ensemble forecast and observations is shown in Fig. 7. 

During the ensemble discharges forecasting, determin-
istic performance characteristics such as the coefficient 
of variation, the model efficiency and the flow weighted 
efficiency are used to evaluate the HBV runs. Evolutions of 
above characteristics in the process are presented in Fig. 7. 
Indeed, through the ensemble forecasting system perform-
ing, efficiency of the HBV varied from 0.53 to 0.83, the 
coefficient of determination from 0.73 to 0.80 and the flow 
weighted efficiency from 0.65 to 0.81 (Table 1). During 
the procedure, the model efficiency is more subject to 
variations than both other coefficients (determination and 
flow weighted efficiency). Averages of the above HBV 
evaluating criteria are 0.74, 0.8 and 0.77, respectively. 
Faire variation of the coefficients of determination and 
the flow weighted efficiency has been noticed in spite of a 
significant variation of the model efficiency relatively to 
the input variations.

In this paper representation of the hydrological ensemble 
forecast is made to give an overview upon the ensemble 
behavior in time. Evolution of the ensemble is presented in 

Fig. 4   Evolution of determin-
istic simulations and forecasts 
against observations
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Fig. 8. Exploratory analysis of this figure gives an overview 
on the representativeness of the daily ensemble flow dis-
charges forecasts upper the Manantali dam. The ensemble 
is assumed to be of good representativeness with reference 
to ensemble evolution in Bartholmes et al. (2005) and also 
in Quilty et al. 2019. This analysis allows assuming without 
assessment of the statistic verifications the skillfulness of the 
hydrological ensemble forecasting system.

Ensemble characteristics and scores

Globally, analysis of the statistical performances shows that 
the postprocessing method has enhanced the performance 
of the model as at deterministic scale (ME, MAE, RMSE) 
than at probabilistic scale (Brier score, rank probability 
score and continuous rank probability score). Correlation 
(EnsCorr) between time series of the ensemble mean and 
one of observations is the same. Deterministic criteria are 
acceptable when compared with others in the literature such 
as the correlation between forecasts and observations of 0.8, 
ME of 1.04 and RMSE of 5.33 for a long-term forecast study 
in Gelfan et al. (2017). Otherwhere, a ME of about 0.06 has 
been obtained in Davison et al. (2017). Further, in Jeong 
et al. (2005), RMSE of 0.346 has been retained for a single 
neural network (SNN) forecast and of 0.319 for an ensemble 
forecast produced by an ensemble neural network (ENN) 
system. For both systems in this study, the Brier scores are 
approximately the same: 0.094 for the RAWEns and 0.090 
for the D-Ens. From performed ensembles, probabilistic 
issues have been produced applying tertile clustering to 
the ensemble members and binarizing associated observa-
tions. Thus, three categories of the simulations are drawn for 
each calendar date and the first category is retained with its 
associated probability. Probabilistic forecast leads to accept-
able scores for two ensembles (RAWEns and D-Ens). The 
best continuous rank probability score (CRPS) is of 0.149 
(D-Ens). The RPS of the two ensembles is of 0.133 for 
the D-Ens and of 0.282 for the RAWEns. Detailed results 

concerning probability scores of ensembles including reso-
lution and reliability of ensembles schemes are shown in 
Table 2 and Table 3. In the literature, scores of 0.13 for the 
BS, of 0.28 for the BSS and of 0.054 for the RPS have been 
obtained for a long-term ensemble forecast of snowmelt 
inflow into the Cheboksary reservoir under the differently 
constructed weather scenarios (Gelfan et al. 2017). CRPS of 
0.10 and 1.8 have been obtained for a short-term hydrologi-
cal prediction in Davison et al. 2017. Thus, in terms of accu-
racy, the forecasting systems in this study can be considered 
as very good. Resolution, reliability according to the Brier 
score (BSReli) and the rank probability score (CRPSReli), 
uncertainty and area under the ROC curves (AUC) are given 
in Table 3. Scores are very satisfactory in comparison with 
ones in Hersbach 2000 where the CRPSReli is ranging from 
0.015 to 0.068 and resolution from 0.073 to 0.322 within ten 
days. Evaluating probability scores reveals that the systems 
issuing the raw ensemble in this study and the one produc-
ing D-Ens provide very good performances in terms of reli-
ability, resolution and skill and then can be used in planning 
the flow discharges releases or lamination at the Manantali 
dam. In other words, both ensembles can be used in decision 
making by the dam administrators. Nevertheless, in this case 
of study, the postprocessing (affine kernel dressing) method 
involving enhances model performances.

Attribute and reliability diagrams and ROC plots

The attribute diagram is obtained by plotting the forecast 
probability against relative frequency of the observation. 
Attribute diagram shows simultaneously in a visible man-
ner reliability, resolution and uncertainty of an ensemble 
forecasting system. For perfect forecasting, the plot fits 
the first bisector (line 1:1). Reliability diagrams of the two 
models are presented in Fig. 8a and c. The ROC curve is 
used to assess the rate of successes (Hits) of the model, 
and the one of its failure cases has been plotted for two 
ensemble forecasting schemes. For both systems (RAWEns 
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and D-Ens), hits prevail on false alarm rates. Area under 
the ROC (AUC) is of 0.962 for the system giving the 
RAWEns and of 0.963 for the ensemble from the affine 
kernel dressing method. AUCs values confirm reliability 
of schemes with reference to AUC of about 0.94 in Gelfan 
et al. 2017. Results (AUCs) are in spite of scale and con-
text differences, comparable to better ones in Roux et al. 
2020, where two hydrometeorological ensemble strategies 
for flash-flood forecasting are evaluated. Nevertheless, two 
systems are skillful in forecasting flow discharges upper 
the Manantali dam. Indeed, system skillful is based on the 
prevalence of hits rates on false alarm ones for most of the 
probability thresholds (Fig. 9b and d). Attribute diagrams 
show good performance for the two ensemble systems 
performed with the same baseline equal to 0.333: the raw 
ensemble (RAWEns) and the D-Ens providers. So, dressed 
ensemble scheme providing the D-Ens (Fig. 9c) is better. 
Both ensemble systems (RAWEns and D-Ens) give more 
success than failures for the probabilistic forecast of the 
flow discharges and can be used to enhance flow monitor-
ing at the Manantali dam. Elsewhere, through ROC curves 
decision making can be improved particularly when facing 
to extreme events (drought or flood). Using the probabil-
istic interpretation of the results decision makers of the 
Manantali dam may have argument on the opportuneness 
of engaging flow support or flow lamination.

Conclusion

Hydrological ensemble forecasting system is an ingenious 
way to quantify uncertainties in hydrological forecasting. 
Uncertainties are considered through probabilistic forecasts. 
This is achieved by issuing an ensemble of possible val-
ues of the forecast variables by propagating an ensemble of 
input through a hydrologic model to provide an ensemble 
of output. In this study a hydrological ensemble forecast-
ing system is set up to predict flow discharge of the Baf-
ing Makana River (Senegal) upper the Manantali dam for 
the year 1976 using rainfall forecast from stochastic per-
turbation and HBV-light model. The affine kernel dressing 
method is applied to the raw ensemble in order to improve 
the quality of the forecasts. The HBV model was calibrated 
in the period ranging from 1963 to 1975. Cyclical errors 
from the ARIMA process in forecasting rainfall are used 
to construct error pattern. Error pattern is then used to per-
turb rainfall forecast from ARIMA modeling that leads to 
a rainfall ensemble forecast. Indeed, the error pattern is 
designed on the basis of the periodic behavior of rainfall at 
the Bafing over 365 days. Box-Cox transformation is used 
to normalize the raw error pattern in order to generate wide 
members through a multivariate Gaussian kernel. Reverse 
Box-Cox transformation is afterward applied to restore ini-
tial features of the errors pattern. Drawn rainfall ensemble is 

Fig. 8   Evolution of the hydro-
logical ensemble forecasting 
from the HBV-light model
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Table 2   Deterministic 
verifications and probability 
scores

Ensemble EnsMe EnsMae EnsRmse EnsCorr BS RPS CRPS

RAWEns 0.258 0.350 0.494 0.871 0.094 0.143 0.282
D-Ens − 0.041 0.199 0.330 0.871 0.090 0.133 0.149

Table 3   Attributes of the 
forecasting systems

Ensemble BSReli Res Unc BSS CRPS CRPSReli AUC 

RAWEns 0.006 0.134 0.2222 0.578 0.282 0.128 0.962
D-Ens 0.006 0.139 0.2222 0.594 0.149 0.0072 0.963
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used to force already calibrated HBV-light model to produce 
hydrological ensemble forecast. From the above procedure, 
ensemble streamflow which members are of 61 including the 
ensemble mean is performed. From the postprocessing tools, 
another ensemble (D-Ens) is drawn in addition to the raw 
ensemble (RAWEns) from forcing of the HBV. According 
to different scenarios and both coefficients of determina-
tion and flow weighted, efficiency varies from 0.73 to 0.80 
and from 0.65 to 0.81, respectively; the model efficiency 
is ranging from 0.53 to 0.83. Ensemble forecast verifica-
tion tools are used to evaluate the reliability, the resolution 
and the skill of implemented ensemble forecasting systems. 
Results are well convincing in terms of reliability and skill. 
Correlation between forecasted ensemble and observation 
is of about 0.87 for both processed (D-Ens) and not pro-
cessed ensemble (RAWEns). For both ensembles, correla-
tion between the ensemble mean and the observations is of 
0.871. Brier scores, continuous rank probability scores and 
area under ROC curves are, respectively, 0.094, 0.282 and 
0.962 for the RAWEns model and 0.090, 0.149 and 0.963 
or the D-Ens model. Verification values of both ensembles 

in this study have indeed been compared with others in the 
literature (Ali et al. 2018; Mensez et al. 2016; Bartholmes 
et al. 2005; Gelfan et al. 2017; Davison et al 2017; Hersbach 
2000) for more exhibiting effectiveness the used approaches. 
Then, considering probabilistic scores ensemble can be used 
to improve decision making at the Manantali dam.
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