
J Internet Serv Appl (2012) 3:329–346
DOI 10.1007/s13174-012-0072-0

SI: DATA INTENSIVE COMPUTING

Large-scale volunteer computing over the Internet

Fernando Costa · João Nuno Silva · Luís Veiga ·
Paulo Ferreira

Received: 10 July 2012 / Accepted: 4 October 2012 / Published online: 25 October 2012
© The Brazilian Computer Society 2012

Abstract Cycle sharing over the Internet has increased in
popularity during the last decade, with increasingly powerful
machines being made available to existing projects. In this
paper, we present GiGi-MR, a framework that allows non-
expert users to run CPU-intensive jobs on top of volunteer
resources over the Internet. GiGi-MR has several distinctive
features: it allows non-expert users to easily partition their
jobs in several parallel tasks; such Bag-of-Tasks (BoT) are
executed in parallel as a set of MapReduce applications; the
volunteer resources that provide the best match for the tasks
being executed are chosen (using attenuated bloom filters);
it provides a portable checkpointing fault-tolerance mecha-
nism based on virtualization; it does not rely exclusively on
a central server (or servers) at all times (thus minimizing the
bottleneck effect); it deals with malicious participants (pos-
sibly byzantine) using an efficient partial replication mecha-
nism to validate the results obtained; and it is compatible
with BOINC (one of the most popular open-source soft-
ware platforms for computing using volunteered resources).
We describe GiGi-MR’s architecture and evaluate its perfor-
mance by executing several MapReduce applications on a
wide area testbed. Furthermore, we use micro-benchmarks
to assess each one of GiGi-MR’s components independently.
The system’s overhead is minimal. When compared to an
unmodified volunteer computing system, GiGi-MR obtains a
performance increase of over 60% in application turnaround

This work was partially supported by national funds through
FCT-Fundação para a Ciência e Tecnologia, under projects
PTDC/EIA-EIA/102250/2008, PTDC/EIA-EIA/108963/2008,
PTDC/EIA-EIA/113993/2009 and PEst-OE/EEI/LA0021/2011.

F. Costa · J. N. Silva · L. Veiga · P. Ferreira (B)
Distributed Systems Group, INESC-ID , Technical University
of Lisbon, R. Alves Redol, 9, 1000-029 Lisboa, Portugal
e-mail: paulo.ferreira@inesc-id.pt

time, while reducing the bandwidth used by an order of mag-
nitude.

Keywords Volunteer computing · Distributed systems ·
MapReduce · Adaptive middleware

1 Introduction

The use of volunteer PCs across the Internet to execute
distributed applications has been increasing in popularity
since its inception in the early 1990s, with the creation of
projects such as Distributed.net,1 Seti@home [3] or Fold-
ing@home [19]. These Volunteer Computing (VC) systems
harness computing resources from machines running com-
modity hardware and software, and perform highly parallel
computations, also called Bag-of-Tasks (BoT), that do not
require any interaction between network participants.

Existing VC systems support over 60 scientific projects,2

and have over amillion participants, rivaling supercomputers
in computing power. The most popular middleware, BOINC
[2], is currently beingusedbyover 40projects, fromscientific
fields ranging from climate prediction to protein folding.

Projects must have a large visibility to attract enough
cycle donors and be composed of hundreds of individual
tasks or workunits. Furthermore, project creators must have a
large knowledge onC++or Fortran programming. To achieve
fault tolerance during task execution, developers must mod-
ify their application code and insert explicit checkpoints.
Users not satisfying these requirements cannot take advan-
tage of available remote cycles. Even if the user has enough

1 Distributed.net website. http://www.distributed.net.
2 List of active VC projects. http://www.distributedcomputing.info/
projects.

123

http://www.distributed.net
http://www.distributedcomputing.info/projects
http://www.distributedcomputing.info/projects


330 J Internet Serv Appl (2012) 3:329–346

programming knowledge to create a project, if the project is
short lengthened or not capable of attracting enough donors,
the gains will be low. This kind of operation greatly limits
the scope of users capable of creating projects to be remotely
executed.

1.1 Goal

Our goal is to create a framework (called GiGi-MR) that
allows non-expert users to create jobs and submit the cor-
responding Bag-of-Tasks to a VC system, supporting the
MapReduce paradigm and making an efficient usage of the
resources available, while being fault-tolerant and resilient
to byzantine clients and compatible with BOINC.

There are several challenges and requirements to consider,
in order to achieve our goal. First and foremost, GiGi-MR
must be able to take advantage of the huge amount of VC
resources that we previously mentioned. We must consider
both the hardware capabilities of individual machines and
the network bandwidth that is at our disposal, at the last mile
of the Internet. The platform needs to be portable, in order to
handle the heterogeneity of machines, and adaptable to envi-
ronmental changes (i.e., resource availability). To that end, it
must able to organize clients into a virtual network, and have
them exchange information that is then used by the server.

Our system must also be compatible with existing VC
solutions (e.g., BOINC [2]). Developing a whole new plat-
form from scratch would be of no practical use. Therefore,
we must take into account existing systems and use their
existing infrastructure to come up with a final prototype that
can actually be used, in a real-world scenario. In fact, our
solution would undoubtedly bring significant disadvantages
if it required that only our system’s clients were attached to
a project.3 To avoid this situation, we must guarantee com-
patibility with existing projects. Any client must be able to
run any project application. On the other hand, our solution
must support existing applications, and successfully sched-
ule tasks on existing clients.

To include non-expert users as job creators, two key
requirements are to be met: (1) the users should be allowed
to use the applications or programming languages they are
literate on, and (2) there should be enough cycle donors
to speed even small jobs. The system must also be able to
take sequential applications representative of BoT problems
(with iterations that process different data sets) as input, and
modify them into parallel tasks without user intervention.
Some applications, due to beingmore complex and not easily

3 A VC Project runs on top of existing middleware (e.g., BOINC) by
developing an application and defining all parameters concerning its
execution.Project developers only have to make sure their tasks are
properly configured and provide a publicly accessible machine to act as
the VC server.

transformed into a set of map and reduce tasks, do require
some manual intervention. This is provided by means of a
simple interface that non-experts users can use (e.g., to define
which executable should run with which set of data).

The execution of our system on unreliable, non-dedicated
resources requires fault tolerance mechanisms. This means
it must account for unreachable clients, which have discon-
nected from the server, or are simply offline. Our solution
must be able to withstand transient server failures. This is
particularly important in our case because we will be dealing
with long running applications, with a potentially high level
of server interactions. We need to prevent the execution on
the clients to come to a halt, as theywait for the server to come
back up. Finally, we must also consider byzantine behaviour.
Clients may maliciously return incorrect results, or inadver-
tently produce an incorrect output by encountering errors
during the computation or data transfers. Therefore, we must
provide result validation that accounts for this environment
and provides reliability.

1.2 Shortcomings of current solutions

Existing solutions do not fulfill our goal while ensuring the
requirements mentioned above. We highlight some of those
shortcomings in this section (more details in Sect. 4).

Although creation, distribution and execution of tasks over
the Internet are handled by existing middleware, there is still
a steep entry barrier for anyone trying to start a VC project.
This makes cycle sharing over the Internet a one-way deal.
Computer owners only have one role in the process: to donate
their computers’ idle time.

The development of Bag-of-Tasks applications for execu-
tion on multiprocessors or clusters requires the use of APIs
not designed for this kind of problem. For instance, MPI
[29] allows the parallel execution of tasks, but was developed
for much more complex parallel applications, with high data
communication between tasks. The use of suchAPIs requires
the programmers to learn them, and add complexity to the
final parallel solution. Existing VC systems typically do not
provide any tool to convert simpler, sequential applications
to parallel BoT.

A considerable limitation of existing VC systems is their
focus on BoT applications, with little communication and
without dependencies between the tasks. As parallel and dis-
tributed computing becomes the answer for increased scala-
bility for varied computational problems, several paradigms
and solutions have been created during the last decade. In
particular, MapReduce [11] has taken its place as one of
the most widely used paradigms in cloud computing envi-
ronments, such as Amazon’s EC2.4 Its wide use, simplicity,
and scalability make it a prime candidate for execution on

4 Amazon EC2. http://aws.amazon.com/ec2.

123

http://aws.amazon.com/ec2


J Internet Serv Appl (2012) 3:329–346 331

VC systems. None of the current VC platforms support
MapReduce, a programming model that adapts well to a
data-intensive class of applications. Supporting MapReduce
requires fundamental changes on existing algorithms, and the
introduction of on-the-fly task creation. This is currently not
available on any present system.

To deal with BoT applications, scheduling and resource
discovery algorithms are designed with the least complex-
ity possible. Despite reducing the probability of introducing
errors in computation or validation, this approach underes-
timates the benefits of taking advantage of user resources.
Current systems are limited to specifying the minimum hard-
ware requirements for each computation, and typically do
not consider adaptive algorithms to deal with ever-changing
machine availability and resources.

A server in existing VC systems is only capable of using
host information periodically reported by each client when
requesting work. After assigning a work unit, the scheduler
can make an educated guess on when the client will finish
execution and request further work, based on past behaviour
and task deadlines. However, there is no further update of this
schedule until there is another request. This greatly reduces
the system’s capacity to predict future work requests and
schedule tasks accordingly.

Most VC systems have a centralized architecture, with
all communication going through a single server (or clus-
ter). There are few exceptions and they were created with
a smaller scope or environment in mind [8]. In BOINC [2],
XtremWeb [5] and Folding@home[19], the server or coordi-
nator must fulfill the role of job scheduler, by handling all the
task distribution aspects and result validation. This approach
inevitably creates a bottleneck, as projects expand and stor-
age and network requirements become more demanding.
Existing projects such as Climateprediction.net and Milky-
Way@home have encountered scalability problems when
dealing with large files or having the same data shared by
many clients [9]. Although some potential solutions have
been proposed [10,13], they have not been deployed in the
most widely used systems.

Fault tolerance is mostly confined to the client-side in
current VC systems. Although some projects do have a set
of mirrors that act as data repositories, all client requests and
task scheduling goes through the central server. Therefore,
any server fault that prevents it from communicating with
clients has a very high probability of disrupting clients and
stopping further task execution.

Finally, there is a considerable limitation with respect to
result validation mechanisms. Most existing systems are
content with providing integral replication of data, without
considering communication overhead or potentially more
attractive alternatives. There is also little or no use of redun-
dant task execution (we call this sampling technique - more
details in Sect. 2.3) which can constitute definite proof in

cases of malicious behaviour (user returning an incorrect
result).

In summary, existing VC solutions allow the execution of
BoT in a master/worker model, with simple replication and
fault tolerance mechanisms. They guarantee valid results but
do not take advantage of the ample client resources, and cre-
ate a high entry barrier for anyone wishing to take advantage
of their platform.

1.3 Our solution: GiGi-MR

In this paper we present GiGi-MR, a framework that allows
ordinary users to execute MapReduce tasks over the large
scale Internet, on top of volunteer resources. MapReduce is
a fitting choice for running data-intensive applications on
top of volunteer resources, since it is a popular paradigm,
representative of different tasks.

MapReduce leverages the concept of Map and Reduce
commonly used in functional languages: a map task runs
through each element of a list and produces a new list; reduce
applies a new function to a list, reducing it to a single final
value or output. InMapReduce, the user specifies amap func-
tion that processes tuples of key/values given as input, and
generates a new intermediate list of key/value pairs. This
map output is then used as input by a reduce function, also
predefined by the user, that merges all intermediate values
that belong to the same key. Therefore, all reduce inputs are
outputs from the previous map task. Throughout the rest of
the paper, we will refer to them as map outputs.

Our system is compatible with existing solutions (in par-
ticular BOINC), and provides users with the ability to sub-
mit jobs through a web interface. GiGi-MR supports client
to client transfers, thus minimizing the volume of data sent
through the server. This also allowsGiGi-MR to tolerate tran-
sient server failures, as the clients depend merely on other
peers for data. It is also capable of tolerating VC clients’
failure using replication (i.e., running the same task on sev-
eral VC machines). By increasing the replication factor, the
probability of a failure of all clients running a certain task is
lowered.

Byzantine client behaviour is controlled through the use
of task validation in the server. Different data partitioning
flavours among the tasks are supported, and the use of sam-
pling on the server further increases security. By replicating
each task, it is possible to compare the outcome and accept
only the results in which a quorum has been reached.

Our framework follows a layered approach, ranging from
top-level user interaction tools to lower-level modifications
that arrange clients into a connected topology. We decen-
tralize some of the mechanisms of existing systems that
place an excessive burden on the central server, by taking
advantage of user resources. Additionally, we introduce new

123



332 J Internet Serv Appl (2012) 3:329–346

algorithms for scheduling and validation that increase our
system’s adaptability and usefulness.

Task scheduling is improved through the use of informa-
tion provided by running clients, which are organized in an
overlay network [27]. Several criteria, such as bandwidth or
resource availability, are subject to analysis for the choice of
neighbours. Bloom filters [4] are used to identify different
types of resources, from applications to libraries or services.
The system’s resource discovery mechanism is coupled with
a resource evaluation algorithm that uses fuzzy logic and
combined utility functions to prioritize hosts [28].

This paper is organized as follows: GiGi-MR is presented
in more detail in Sect. 2; Sect. 3 describes some implementa-
tion details, and presents micro-benchmarks and experimen-
tal results, conducted with several MapReduce applications,
on a large scale testbed [7]; related work is discussed in Sect.
4; and Sect. 5 concludes.

2 GiGi-MR architecture

GiGi-MR’s high-level architecture is presented in Fig. 1. A
server is responsible for scheduling and validating tasks,
while taking advantage of information provided by host
clients. Clients are organized into a network overlay, which
allows them to exchange information independently from the
server.

GiGi-MR is compatible with BOINC (Berkeley Open
Infrastructure for Network Computing), the most successful
and popular volunteer computing middleware to date. Con-
sequently, our client can participate in GiGi-MR as well as
in BOINC projects, and borrows many primitives and algo-
rithms available to BOINC clients.

The GiGi-MR client software in shown in Fig. 1. The top
layer, User Interface, is responsible for user interface on the
client. Users can use it to transform sequential applications
into parallel tasks, thus making them runnable on GiGi-MR.
In addition, this layer also lets ordinary users submit their
jobs from their machine, by registering the application’s exe-
cutable file. On the server, the Web Interface provides a web
page for users to submit jobs, and define their parameters and
input files (which are then uploaded to the Data Server). The
RPC Interface is responsible for interacting with the client
when registering new applications.

The MapReduce VC layer enables the execution of
MapReduce tasks on the system. The server stores informa-
tion on each job’s parameters (e.g., number ofmap and reduce
tasks) in a configuration file, which is accessed when creat-
ing tasks. Map tasks are distributed to clients, and once all
mappers have returned their result, the reduce tasks are cre-
ated and scheduled for execution on reducers. As previously
mentioned, the transfer of map outputs to reducers is done
through inter-client transfers, without server interference.

Fig. 1 GiGi-MR model

The following layer, Checkpoint and Replication, pro-
vides a checkpointing mechanism, through the use of virtual
machines (VMs), and provides several options for partition-
ing and replicating input data. Using VMs removes the need
for changes to the application source code to achieve task
fault tolerance.

Resource Discovery is used for enhancing the server’s
scheduling performance. Clients exchange messages within
their overlay network, concerning their current availability
and volunteered resources. This information is then sent to
the Resource Updates module whenever there is an interac-
tion with the server (e.g., work request).

The bottom layer, Overlay Management, is responsible
for routing and addressing in the overlay network. When
changes in volunteered resources occur, they are announced
to thenodes of the local nodeneighbour set throughout update
messages. The neighbour set is established and managed at
this level. Moreover, this layer maintains all the informa-
tion about the availability of resources that each node of its
neighbour set has. This layer separates the system from the
overlay network used, thus providing the freedom of choos-
ing the most appropriate solution (e.g., CAN [25], Chord
[30], Pastry [27], etc).

123



J Internet Serv Appl (2012) 3:329–346 333

Each layer is described in more depth in the following
subsections.

2.1 User Interface

The top layer provides two features: (1) transformation of
sequential applications into parallel tasks, and (2) their sub-
mission to GiGi-MR by ordinary users.

To perform a transformation, the user must define which
methods and classes should be parallelized. This information
is saved in a configuration file, which is read by the GiGi-MR
client. Afterwards, it loads the application, and transforms it
in run-time so that the specified methods are executed con-
currently. The transformation itself is performedwithout user
intervention. The resulting tasks are submitted to the system
and executed remotely. This layer is responsible for spawn-
ing the necessary threads, and synchronizing the invocation
of the methods.

The proposed solution is implemented in Python and uses
metaclasses, allowing themodification of the code to be done
in run-time, without any need to transform and recompile
the source code. The developed metaclass intercepts all class
creations and modifies the implementation of those that are
to be parallel, without any user intervention: the user must
only state what classes have methods that can be executed
concurrently with the rest of the code.

The distribution of work among several computers or
processors by existing systems can be done using libraries
such as MapReduce, but requires the programmer to know
their API. Our system removes this burden from the applica-
tion developer through run-time code adaptation, and allows
the submission of sequential applications. It is worth noting
that users may skip the transformation step, as our system
supports the deployment of parallel tasks and MapReduce
applications.

To submit tasks, and make them available for execution,
a developer would typically have to run scripts and console
commands from the server. However, an ordinary user can
take advantage of the User Interface layer, which provides a
client GUI and a web interface on the server to facilitate the
submission process.

GiGi-MR supports efficient execution of user submitted
jobs, while allowing any user to have two complementary
roles: owner of the jobs that are executed on remote com-
puters and owner of the computers where jobs will be exe-
cuted. To accomplish this, we modified both the client and
server software, and developed a custom application. The
data processing code used by these jobs comprises commod-
ity applications that are installed in the remote computers,
only after their owners allow their use.

The job submission process is shown in Fig. 2. To submit
and create new jobs, users must: (1) select the commodity
application that should beused to process the data and register

Fig. 2 User job submission to GiGi-MR

Fig. 3 User job submission interface

it through the Application Registrar GUI; (2) provide the
input files (data or code) to the Data Server, and (3) use
the server’s Web Interface to define the number of tasks to
create, the name of the output files and the arguments that
should be used to invoke the commodity application. For a
MapReduce job, the user must provide both the map and
reduce application to be used.

The web interface is shown in Fig. 3. In this page, the user
uploads the input files and selects the application that should
be used to process them. In the example, the user wants to
process a file (anim.pov) with the POVray ray tracer and gen-
erate a movie with 200 frames. In order to submit a MapRe-
duce job, the user must provide additional information such
as the number of map and reduce tasks.

After creating and storing the information for each job, the
server waits for client work requests to distribute tasks. Once
it receives awork request from a clientwith the required com-
modity application, it replies with task information (input
files and arguments). Once all required files have been down-

123



334 J Internet Serv Appl (2012) 3:329–346

loaded from the server, the client invokes the correct com-
modity application to process the input files. After each job
completion, the client submits the output to the server, as a
normal application.

In general, the applications that our system handles best
are those which can be easily decomposed in a set of map
and reduce tasks; thus, as an example, Monte-Carlo based
applications are good candidates.

2.2 MapReduce VC

This layer is responsible for handling all aspects of execu-
tion and management of MapReduce jobs on the system. As
previously mentioned, a user must define the parameters of
the MapReduce job through the User Interface layer. This
information is stored in the GiGi-MR server. Once all the
MapReduce job characteristics have been defined, the server
creates themap tasks, and stores this information in theGiGi-
MR server’s database—theGiGi-MRdatabase is responsible
for holding all persistent information on tasks, clients, and
applications being executed.

The overall GiGi-MR execution model for a MapReduce
job is presented in Fig. 4. We consider two types of clients
in GiGi-MR: mappers, which are responsible for bag-of-
tasks in the map stage; and reducers, which perform the
aggregation of all map output in the reduce step. A group of
mappers first requests work from the server (1). The server
follows a scheduling procedurewhich takes into account host
resources and availability (see Sect. 2.4 for further details)
when selecting which available task is assigned. Whenever
it receives a work request, it matches each task’s predefined
hardware or software requirements to the client’s machine
characteristics. If the client is the most suitable for the task,
the server assigns it the task and saves this information in
its database. After selecting an appropriate map task for the
requesting mapper, the server sends back information on the
task that the mapper must execute. This information includes
the location of input and executable files, the deadline for task
completion and the previously mentioned task requirements.
The machines holding input and executable files are called
data servers. Although some VC projects do use a set of mir-
rors to act as data servers, most store the data in the central
server, as represented in Fig. 4.

The mapper must then download the required data from
the data server (2) before starting the computation (3). After
the task execution is completed, the mapper creates an MD5
hash for each of the map output files. Therefore, at the end
of the computation, each mapper is left with both the map
output files and the same number of corresponding hashes.
These hash sums are sent back to the server in place of the
output files (4) (so it is compatible with current VC solutions,
e.g., BOINC). It’s worthy to note that this greatly reduces the
upload volume from mappers to the server.

Fig. 4 GiGi-MR MapReduce job execution

The hashes are compared at the server to validate each
corresponding task (5). If the result is valid, the mapper’s
address is stored in GiGi-MR’s database (6). Each time a
map result is validated, the GiGi-MR server checks if all map
tasks have been executed andvalidated.Once this condition is
met, the server creates the predefined number of reduce tasks.
Upon receiving a work request from a reducer (7), the server
follows task scheduling procedure mentioned earlier in this
section and looks through the database to find a task that can
be assigned. Once it has ascertained that the reducermeets all
the hardware and availability requirements, the server replies
with a reduce task that fits the request.

MapReduce jobs require communication between map
and reduce stages since map outputs are used as input for
reduce tasks. In the reduce step, each task performs join oper-
ations on the map outputs. Therefore, each reduce task must
obtain all themapoutputs that correspond to the key range it is
responsible for. To achieve good performance inMapReduce
jobs, we leverage clients’ resources by moving as much of
the communication as possible to the client-side. This helps
reduce the load on the central server, and creates a more suit-
able decentralizedmodel for data-intensive scenarios, typical
of MapReduce.

Note that, as previously stated, in current VC systems all
data would have to be uploaded and downloaded from the
server. However, the GiGi-MR server stores the address of
all mappers that returned valid map results. This information
is included in the work request reply, and allows reducers to
download the map output directly from the mappers, without
having to go through the server (8). Once the input files have
been downloaded, the reduce task is executed (9) and the
final result is returned to the server (10) for validation.

2.3 Checkpoint and replication

This layer is responsible for: (1) checkpointing tasks to
account for task failure and allow restarts in remote nodes,

123



J Internet Serv Appl (2012) 3:329–346 335

without any source code modification, through the use of
VMs; (2) providing different options for partitioning input
data, chosen by the user; (3) local sampling at the server
(more details afterwards in this section), for validation pur-
poses. In Fig. 1, the Replication and Sampling modules rep-
resent this layer in the server.

An application can be checkpointed if we run it on top of
a virtual machine (VM) with checkpoint/restart capabilities
(e.g., qemu5), as the application’s state is saved within the
virtual machine’s state. This also provides some extra secu-
rity to the clients, since they will be executing untrusted code
with a high level of confinement.

Furthermore, using virtual machines allows us to reduce
the impact of byzantine behaviour, caused by the different
software and hardware configurations found at eachmachine.
By running tasks on top of VMs, the same software drivers
and programs are used during execution. This guarantees that
each task produces the same result regardless of the under-
lying system. VMs also help developers by removing the
need for building multiple application versions for different
architectures.

Currently, there are many VMs available that can be used
in desktop computers. The overhead of such a VM, when
compared to a case in which there is no such software layer,
is negligible as ismostly proved by the large amount of instal-
lations used both in academic and non-academic settings.

The major drawback of this approach is the size of the
checkpoint data, incurring considerable transmission over-
head. To attenuate this: (1) we assume that one base-generic
running checkpoint image is accessible to all the clients; (2)
the applications start their execution on top of this image
once it is locally resumed; and (3) at checkpoint time, we
only transmit the differences between the current image and
the base image.

GiGi-MR provides redundant computing in which each
computation is performed on multiple clients through the
replication of input files. When a sufficient number of suc-
cessful results have been returned, the GiGi-MR server com-
pares them and sees if there is a consensus. In that case, the
corresponding outputs are considered valid.

Each replication method provided by GiGi-MR is based
on a different data partitioning technique, which consists of
dividing a task into multiple subtasks that execute separately.
This is achieved by splitting the initial input file into several
smaller chunks, and requires the application to be completely
parallel. For an application to be amenable to distributed
computation, it must be possible to have its work partitioned
in multiple tasks that run separately.

Through the use of data partitioning and task replication,
GiGi-MR is able to detect collusion and validate results by

5 Qemu is a generic and open source machine emulator and virtualizer.
http://wiki.qemu.org/

Fig. 5 The same work divided differently, creating an overlapped par-
titioning

comparing the outputs of redundant computations. However,
the techniques used to identify incorrect results incur con-
siderable overhead. None of the existing result verification
techniques is able to ensure with 100% certainty that a result
is correct, though in some cases they can identify an incorrect
one. The degree of certainty that a result is correct usually
grows along with the overhead the technique incurs. There-
fore, a compromise between the overhead and the reliability
of the results can be found, and must be dynamically adapt-
able to the variable conditions/resources of the system.

This layer proposes a number of data partitioning
approaches and a complementary sampling technique, which
give the user ample choice on how to reach the desired com-
promise. The supported partitioning techniques are presented
in the following sections.

2.3.1 Overlapped partitioning

Using overlapped partitioning, the tasks are never exactly
equal, even though each individual piece of data is still repli-
cated with the predetermined factor. Colluders must always
execute part of the task, even when they are trying to return
forged results. Figure 5 depicts the same work (input file)
divided into two different overlapped partitionings, with two
different sets of partitions. The file is divided into six chunks,
but following different division offsets (where to split the
initial file). There are 11 different comparison points (com-
mon chunks between two partitions) between each set of
partitions, instead of the typical 6 of an integral replication
(assuming a division of the file in six different partitions).
These overlapped partitions can use a random offset and
require strong communication among the colluders to iden-
tify the common part of the job. Although it is more probable
for colluders to have common parts of the tasks, these com-
mon parts are smaller.

2.3.2 Relaxed partitioning

Overlapped partitioning can be implemented in a relaxed
flavour, where only some parts of the job are executed redun-
dantly. This lowers the overhead, but also lowers the relia-
bility of the results. However, it can be useful if the system
has low computational power available. Malicious partici-
pants are able to detect the common part of the job, however
they can never be sure that the non-common part is not being

123

http://wiki.qemu.org/


336 J Internet Serv Appl (2012) 3:329–346

Fig. 6 Overlapped tasks for relaxed replication

Fig. 7 Meshed partitioning using replication factor 2

executed redundantly. Figure 6 depicts a relaxed overlapped
partitioning. We can see that in each partitioning scheme, the
file is divided into three partitions. However, those partitions
do not encompass the whole file (i.e., there are parts of the
file that are not replicated). Therefore, the comparison points
in which we can validate the output are much smaller than
the whole file.

2.3.3 Meshed partitioning

Some applications can have their work divided in more than
one dimension. Figure 7 depicts the partitioning of the work
for a ray-tracer. The initial input file is split horizontally to
create the first four partitions, and then vertically to create
the remaining 4. When validating the results, there are 16
(4× 4) comparison points between partitions. Like the over-
lapped partitioning, this influences theway colluders are able
to introduce bad results: more points where they can collude,
with a smaller size too. This partitioning provides a num-
ber of points of comparison, which are used to establish the
“reputation” of a result. Each task’s output is compared to
4 other tasks’ outputs, according to the existing comparison
points, and is evaluated according to the number of consen-
sual results. For example, in Fig. 7 the 1st partition of “Par-
titioning 1” will have comparison points 1, 2, 3 and 4 (each
one for a different partition of “Partitioning 2”).

The algorithm for calculating the “reputation” of a result
must take into account the outcome of comparison points
(i.e., equal or different output). Since the majority of the par-
ticipants is expected to be honest, finding the same result
(equal) adds positive reputation while a different outcome
adds negative reputation. For the acceptance of each point,
equal outputs from both tasks are accepted on the fly, while
disparate outputs are disambiguated according to the com-
bined reputation of the two tasks that produced it. For
example, if task 1 produces 4 correct outcomes, while task

2 produces 2 incorrect and 2 correct, then task 1 would have
a better reputation (considering other tasks also produced
correct results). Thus, in the discrepant comparison point
between task 1 and 2, task 1’s output would be accepted. If
the reputation of both tasks is the same, the common por-
tion of both results must be re-executed to achieve a voting
quorum.

2.3.4 Samplification

Sampling consists on the local (in the server, in our case)
execution of a fragment, as small as possible, of each task to
be compared with the returned result. In essence, sampling
points act as hidden embedded quizzes. Replication bases
all its result verification decisions in results/info provided
by third parties, i.e., the participant workers. In an unreli-
able environment, this may not be enough. Therefore, local
sampling by the server can have an important place in the
verification of results.

Sampling ensures that the malicious participants execute
part of the task for this to have any chance of being accepted.
Although random sampling can only ensure that a result is
correctwith a givenprobability (basedon the size of thework,
the number of samples and the percentage of the work that
is corrupted), it can identify wrong results with certainty and
deliver very useful information to a reputation mechanism.

WedefineSamplification as the combination of replication
and random sampling, used sequentially to achieve higher
reliability of the results: the winning result of the voting quo-
rums is considered correct if it matches a random sample that
was executed by the server. This technique is applicable to
MapReduce jobs by having the server run a small part of
a map input and then check against the returned outputs.
For example, if running a word count application, the server
would count the words present in a small part of an input file,
and check if they were present in at least the same number
inside the returned output files. Samplification allows the sys-
tem to take advantage of the best of both mechanisms, while
adding only marginal overhead (defined by the application
owner).

Finally, samplification is also used to make sure that the
parallelization of sequential tasks (provided in theUser Inter-
face layer, Sect. 2.1) does not alter the expected result. To that
end, the GiGi-MR periodically executes the original appli-
cation in the background, offline, sequentially and compares
its results with the distributed version.

2.4 Resource discovery

This layer is responsible for implementing the Resource Dis-
covery mechanisms on the GiGi-MR clients (that execute
either map or reduce tasks). It is extremely important for the
scheduling algorithmused by the server since the information

123



J Internet Serv Appl (2012) 3:329–346 337

obtained by the clients, through the exchange of resource and
availability data, is sent back to the server, to the Resource
Updates module. This module updates the server database
with hosts’ updated data, and is accessed by the Scheduler
whenever replying to a client work request. This way, the
server is more frequently updated with current knowledge
on hosts, and is able to perform more reliable scheduling
decisions.

Our Resource Discovery layer is also capable of searching
not only for physical resources (e.g., CPU,Memory, etc.), but
also services (e.g., facial recognition, high-resolution ren-
dering, etc.) and applications (e.g., ffmpeg video encoder,
programming language compilers, etc.)

In the GiGi-MR client, each type of resource is assigned
a value from 0 to 1, where 0 means that the resource is
unavailable and 1 that the resource is powerful and has good
availability. The global (among all types of resources) avail-
ability value of a remote node may be obtained through a
simple additive model [15]. In this way, we define the rela-
tive importance of each type of resource by defining weights
(using methods like the swing weights). With them, it is then
possible to make a weighted sum and obtain the global avail-
ability value, which would be the node rate.

As already mentioned in Sect. 2.2, GiGi-MR supports
inter-client transfers, which reduce the burden on the server,
and improve performance on more data-intensive scenar-
ios, such as MapReduce jobs. Therefore, determining the
available bandwidth between nodes can be of the utmost
importance (e.g., when scheduling reduce tasks). However,
measuring bandwidth of a single node in these environments
can yield disparaging results. Our approach is to check the
time for a message to travel from one node to another and
back again (i.e., the round-trip time, RTT). To avoid flooding
the network, we only have each client contact a small sub-
set of remote nodes, called its neighbour set. Within a short
period of time, the minimum RTT value obtained is kept and
the bandwidth is calculated. The results obtained from this
process are then passed on the server.

Without proper neighbour selection, this information
would not be very helpful. Slower nodes could be coupled
with far away nodes, or machines with faster connections
that would not be taken advantage of. Therefore, this layer
provides GiGi-MR clients with a neighbour selection mech-
anism that maximizes the system performance metrics.

Our algorithm considers two parameters as significant:
proximity and resource availability. Proximity is measured
through RTT, and includes bandwidth. Each peer contacts
other nodes upon bootstrap and, periodically, once it has
entered the network, records the RTT. The available band-
width is inferred from these contacts, as well as from any
inter-client transfers that occur when executing a MapRe-
duce job. The resource availability parameter is defined
through the previously mentioned node rate (additive model

of a remote node’s resources), and is included in these con-
tact messages. The selection of neighbours is then based on
a weighted measure of both proximity and node rate. The
weight of each parameter is defined by the application devel-
oper (defaults to 0.5 each).

Once reported to the server, the neighbour set information
is extremely useful for the server when scheduling tasks. As
an example, when submitting a reduce task, the server is
able to check if any of the neighbours of the node requesting
work is executing a map task. If this is true, and the available
bandwidth between both is large enough, the server canmake
this node a reducer. If, on the other hand, the requesting node
has very low bandwidth to all its neighbours, the server is
able to deduce that this node has low upload bandwidth. It is
marked as unfit for a data-intensive reduce task, and a more
compute intensive application is selected instead.

2.4.1 Using bloom filters

Attenuated bloom filters (ABF) were proposed in [26] to
optimize location performance. It uses an array of Bloom
Filters with depth d, where each row i, for 1 ≤ i ≤ d, cor-
responds to the information stored at nodes i hops away. As
the depth increases, more information will be stored in that
Bloom Filter row, making the respective filter more attenu-
ated and resulting in a higher probability of false positives.
Therefore, information closest to the node is more accurate,
and becomes less so as the distance between nodes increases.
Using it in our system, each node in the network keeps a
cached version of the ABF of its neighbours. This informa-
tion is then combined into one single ABF by calculating the
union of each Bloom Filter at the same depth from all neigh-
bours. For instance, say node A receives the following ABF
from its neighbours with depth d = 2: (00011, 10000) and
(11001, 00001). To combine the information, the OR opera-
tion is performed for each depth. So, for d = 1, the resulting
information is 11011, and for d = 2 it is 10001.

These aggregated ABF are sent to the server, once in every
n work requests (if there have been no changes since the last
requests, they are not included), and saved by the Resource
Updates module. This module orders them according to the
node’s expected availability (how soon it is expected to be
available for execution), and the Filters’ depth (lower to
higher). Saving all the received ABF would be impossible,
and create incredible overhead. Therefore, the server uses
timestamps to mark the validity of each one. Whenever an
ABF has been in the system for more than the time-out inter-
val specified, it is discarded. This keeps the number ofABF to
a reasonable number, while still being useful for scheduling.

Whenever the server receives a work request, it checks the
available tasks and, if there are any good matches with the
requesting host, they are sent in reply. However, in the case
of a mismatch, the Scheduler contacts Resource Updates and

123



338 J Internet Serv Appl (2012) 3:329–346

checks if there is any node which is a better match, and that is
expected to become available within a short time frame. This
search is conducted by starting with an ABF with a depth of
1 (neighbours to the node that submitted them). If there is
a hit, the server looks in the Database (DB) for other tasks
more suitable for this host. However, if the query does not
return any matches, the tasks whose minimum requirements
are fulfilled by the requesting client are submitted. In this
way, the typical scheduling algorithm serves as a fail-safe
method, ensuring that tasks are executed even if there are no
optimal hosts to run them.

Information about resources, applications, and services
offered by each node are represented inside a Bloom Filter.
However, because a Bloom Filter is only capable of perform-
ing membership tests given a key, we need to store informa-
tion about those resources in the actual key. For example, say
a node has a CPU of 3 GHz, we cannot simply store the name
“CPU” in the Bloom Filter, as the only information we can
extract from that is that a node has a CPU. We need to add
information about the actual resource (e.g., its value: 3,000
MHz) to the key that is inserted in the Bloom Filter for it to
be useful. Bloom Filter keys store resource information by
following a naming convention, and are used to differentiate
between resources and their values. Our naming convention
uses a 3-level namespace, each separated using the colon
(“:”) as a delimiter, with the following rules: Level 1—Name
of the Resource, Service, or Application (e.g., CPU, ffmpeg,
etc); Level 2—Type of the Resource, Service, or Applica-
tion (e.g., MHz, version, etc.); Level 3—Actual value of the
Resource, Service, or Application. For instance, if wewanted
to store the fact that a node has a CPU of 3 GHz, the key we
would insert into the Bloom Filter would be: “CPU:GHz:3”.
The namespace definition in stored in a configuration file in
the server, which is provided to the clients.

Some resources are mostly static and do not change often,
like the Operating System, or CPU and Disk speed. How-
ever, there are other resources whose values can change quite
often, such as amount of RAM occupied, or the amount of
CPU in use. For those cases, if we used a classic Bloom
Filter then it would need to be rebuilt periodically since it
does not support the removal of elements. Moreover, this
rebuilding procedure would require resending information
about resources that are not expected to change, thus wast-
ing bandwidth. Therefore, instead of using a classic ABF to
store the information about the dynamic resources, a separate
Counting ABF [12] is used.

2.5 Overlay management

As we mentioned previously, this layer acts as an interface
between the system and an underlying network that connects
GiGi-MR clients. This requires the use of a robust P2P over-
lay. In our example, we use Pastry [27], a generic, scalable

and efficient Distributed Hash Table (DHT), but any other
could be used. Node identifiers are randomly generated and
assigned to a precise location on the circular addressing space
of Pastry. By doing so, the machines holding adjacent nodes
could be completely geographically dispersed.

As a bootstrap mechanism, the GiGi-MR server provides
to new clients a list of entrypoints (boot nodes’ IP address and
port), corresponding to some hosts with high uptime (possi-
bly servers). Each node inside the overlay receives informa-
tion on the resources of a small number of remote peers, part
of their neighbour set. The neighbour set is extremely impor-
tant for our system since, aswementioned before, it identifies
which remote nodes’ information is sent back to the server on
each work request. Nodes advertise themselves by sending
update messages to their neighbours whenever there is a sig-
nificant change in resource availability. These messages are
also sent periodically to keep them updated. Therefore, any
changes in resource availability are announced to the node’s
neighbours.

These messages contain the sender node’s related infor-
mation: its identifier, its supported application identifiers,
the time required for this information to expire, and its
resource availability (e.g., CPU, bandwidth). Upon receiving
this information, a neighbour node calculates, with its own
judgement, the global rate of the announcer node. This judge-
ment, as described before, consists of associating weights
with the measured availability of every single resource. The
proximity level between the announcer node and its neigh-
bour is also taken into account.

In summary, this layer handles all communicationbetween
GiGi-MR clients and the overlay network. All messages
received from the upper layers are sent to the network. The
overlay contacts this layerwhenever there is amessagemeant
for the node related to resource updates. Finally, all changes
to the node’s neighbour set (e.g., remote node leaving) are
reported. The Resource Discovery layer deals with those
changes appropriately.

3 Implementation and evaluation

This section reveals some of the implementation details,
presents the results of our experiments and describes the
applications we use.

3.1 Implementation

GiGi-MR is designed on top of aBOINCclient version 6.11.1
and server version 6.11.0.

For the network management, the Overlay Management
layer uses the FreePastry6 tool which is a Java implementa-
tion of the Pastry overlay.

6 FreePastry. http://freepastry.rice.edu.

123

http://freepastry.rice.edu


J Internet Serv Appl (2012) 3:329–346 339

To measure resources so that they could be compared
against each other in a simple additive model (used in the
Resource Discovery layer, described in Sect. 2.4), we have
to convert direct indicators of availability into a common
scale, rated from 0 to 1. Therefore, we rely on the following
expression to do that conversion: fr (x) = min(1, x/MAXr ).
MAXr is the value that we consider as very good for the
resource r, and x is the direct measured value. For example,
if we consider MAXCPU = 500 and x = 250, we obtain
f (250) = 0.5.
In addition, FreePastry provides a proximitymetric (based

on the RTT value) that is also converted to the common scale
and used in the additive model. Therefore, the global avail-
ability value (i.e., the global node rate) is calculated through
the following expression: N R(a) = ∑

kr (a) ·vr (a); kr (a) is
the weight of the resource r in the node a, and vr (a) the value
of the resource r in the node a (i.e., fr (x)). Furthermore, the
user is free to define the weights and the very good reference
value associated with each resource.

To differentiate map tasks from “normal”ones (i.e., non-
MapReduce tasks), the MapReduce VC layer modifies their
templates by adding “< mapreduce >”tags with additional
information such as job id and stage. The GiGi-MR server
uses an additional general configuration file (in XML) to
coordinate between stages and handle task creation. GiGi-
MR clients use TCP for inter-client transfers (between map-
pers and reducers), due to its reliability and simplicity. A
mapper opens a TCP socket to listen for incoming connec-
tions whenever it has finished a map task and its output is
available. Incoming requests from reducers are accepted only
for specified map files, and the socket is closed when there
are no more files available for upload.

In the User Interface layer, the interaction between the
Application Registrar and the GiGi-MR server is made by
XML-RPC calls. Job information organization within the
GiGi-MR server implies onemodification: all user submitted
jobs are processed within the sameGiGi-MR project but may
belong to different user projects. To accommodate this new
information, a new table (User Project) had to be added to
the server database. Furthermore, a Commodity Application
table was added to accommodate the names and versions of
the commodity applications available on remote hosts.

3.2 Evaluation

We evaluate GiGi-MR by running several tests over the Inter-
net, in a scenario that resembles a typical VC environment.
We run experiments with three different MapReduce appli-
cations (word count, inverted index, and N-Gram) to gauge
our system’s performance under different conditions. In addi-
tion, in order to evaluate each component independently we
run micro-benchmarks, tailored to measure the impact and

Table 1 Evaluation of application transformation

Outside GiGi-MR Inside GiGi-MR

Original Modified 1 CPU 2 CPU 3 CPU

Time (s) 60.01 61.93 64.08 32.59 16.97

overhead of the different layers in our system. This section
presents the results of our experiments.

3.3 User Interface

In this section, we present the experiments for the two fea-
tures supported by the User Interface layer: transformation
of sequential applications into parallel BoTs (Sect. 3.3.1);
and submission of jobs by non-expert users (Sect. 3.3.2).

3.3.1 Application transformation

Our evaluation is twofold: (1) functional, developing sample
applications and executing on different environments, and
(2) quantitative, where we show the overhead incurred using
our solution.

We parallelize a Monte-Carlo [23] computation to inte-
grate one function. Instead of treating each random value in
a sequential way, each task is responsible for obtaining part
of the solution. In order to use this feature, the definition of a
class is necessary, while a more simple solution would only
require a loop with the computation code inside. The over-
head incurred using GiGi-MR is minimal and easily outdone
by the parallelization gains. Table 1 shows the overheadwhen
running it on a single machine.

This evaluationwas performed on an Intel(R)Core 2Quad
CPU with 4 cores running at 2.40 GHz. The tested applica-
tion integrates one complex function using the Monte-Carlo
method while generating 50 million random points. As seen
in Table 1, there is an increase of execution time when run-
ning the modified version and using GiGi-MR. One of the
reasons for the execution time increase is from the rewriting
of the application: the inclusion of objects, and the increase of
cycle interaction and method calls. More overhead is added
by our system. In the version with 1 CPU, different threads
for each object were created but serialized with the help of a
lock, guaranteeing that they all executed on the same proces-
sor. It is observable an increase of about 2 s on the execution
time leading to an overhead of about 1/8 of a second for
each parallel object. If tasks are longer, these overheads will
have a lower impact. Furthermore, with concurrent working
processors all overhead is subdued by the gains of concurrent
processing.

123



340 J Internet Serv Appl (2012) 3:329–346

Fig. 8 Animation movie rendering times

3.3.2 Job submission by ordinary users

To evaluate the usability and performance gains,we deployed
a GiGi-MR server and allowed some clients to use it. The
experiments were done on our local network, to pinpoint
the overhead brought on by our system more precisely. The
experiment consists on using a ray tracer to generate an ani-
mation with 100 frames. On a Pentium 4 running at 3.2 GHz
with Linux, each frame took between 3 and 100 s, giving a
total rendering time of about 127 min. The times for the exe-
cution of these jobs on several computers, shown in Figure
8, are measured with identical computers connected by a 100
Mbit/s local network. We present the time to execute the jobs
sequentially on one computer (both locally and by means of
the GiGi-MR infrastructure) and on several computers.

As expected, the speedups are in line with the number of
cycle donor hosts. The overhead incurred using our job dis-
tribution platform is minimal, only 2 min. This is caused by
the job submission and client startup. With the participation
of another host, even during a small period, this overhead is
not noticeable. On an wide area network, or with larger input
files, this overhead is larger but is easily surpassed with the
contribution of another user.

3.4 MapReduce VC

We evaluate the performance of GiGi-MR in terms of appli-
cation turnaround and network use by running several tests
over the Internet, in a scenario that resembles a typical VC
environment. We compare our results with an existing VC
system (BOINC), referred to as VCS throughout this section.
BOINC clients have the limitations mentioned previously (in
Sects. 1 and 2), and do not support inter-client transfers.

The GiGi-MR server is able to support MapReduce jobs
even in an environment composed solely of unmodified
BOINC clients. This means that, even though the server is
not able to leverage clients’ resources (for scheduling and
inter-client transfers), it is still able to distribute map and
reduce tasks and obtain a valid final output. However, all

communication must go through the central server, and as
such there is no tolerance to server transient failures. To eval-
uate this hypothesis, in the VCS scenario we deploy a GiGi-
MR server and unmodified BOINC clients (version 6.13.0).

We run experiments with three different applications
(word count, inverted index, and N-Gram), in order to gauge
our system’s performance under different conditions. Due
to space constraints, we only present the results from the
N-Gram application. Note, however, that the other two appli-
cations show a similar performance.

We measure application turnaround, while differentiating
between map and reduce stages to pinpoint potential bottle-
necks and areas that would benefit most from improvement.
Additionally, we monitor network traffic on the server. This
allows us to identify the benefits of reducing the dependence
on the central server. We run our experiments on PlanetLab,
a wide-area testbed that supports the development of distrib-
uted systems and networks services. In these experiments,
we use 50 nodes that work as the clients, and one node to act
as server.

TheResourceDiscovery (Sect. 2.4) layer employs a neigh-
bour selection mechanism that couples nodes with the best
available bandwidth, promoting an homogenous network
bandwidth; thus, the evaluation results were obtained for a
network download bandwidth of approximately 700KB/s. If
other conditions (e.g., heavy churn or failure rate) are met,
the network bandwidth may change accordingly thus requir-
ing specific techniques to avoid such slow nodes (as shown
in [17]).

3.4.1 Application turnaround

We begin by measuring application turnaround. We measure
the time it took each MapReduce job to finish, starting from
the initial download of map input files, and ending with the
upload of the last reduce output. We separate the map and
reduce steps to identify their respective weight in regards
to the overall application turnaround time. The map stage is
considered to befinishedonce all its output has beenvalidated
in the server.

The results obtainedwithN-Gramare shown in Fig. 9. The
first conclusion is that GiGi-MR is able to finish the MapRe-
duce job in half the time of VCS.We can also observe that the
reduce stage on GiGi-MR is only slightly faster than VCS.
This can be explained by the fast network connection of the
server. Despite its large bandwidth, inter-client transfers still
performbetter than the centralized system.On the other hand,
the differences in the map step are, as expected, much more
significant. GiGi-MR is four times faster in executing the
map stage, which translates to just a quarter of time needed
by VCS to validate all its map tasks. This result shows that
GiGi-MR performs better with applications that create large
intermediate files.

123



J Internet Serv Appl (2012) 3:329–346 341

Fig. 9 Turnaround of N-Gram application by stage

Fig. 10 Upload traffic for VCS and GiGi-MR server with N-Gram
application

3.4.2 Network traffic

We measure upload and download traffic in the server, for
GiGi-MR and VCS while running the applications. Monitor-
ing the network traffic on the server provides a more accu-
rate measure of its overhead. It also allows us to quantify the
impact of our solution concerning the decentralization of the
VC model. We present the amount of data downloaded from
the clients by the server, as well as the amount uploaded by
the server to the clients.

The upload traffic for a server runningN-Gram is shown in
Fig. 10.Note that, asmentioned in the previous section,GiGi-
MR has amuch lower application turnaround thanVCS. This
iswhy theGiGi-MR line in Fig. 10 stops around second 3,000
(the same happens in Fig. 11), while VCS only finishes its
execution much later. It is clear that there is a significant
difference in the amount of data uploaded by GiGi-MR and
VCS. This is due to the large size of intermediate files, which
causes the VCS server to send almost five times more data
to the clients than the GiGi-MR server in the reduce step.

The server’s download traffic is exhibited in Fig. 11. Here,
we can see the benefits of using hashes formap task validation

Fig. 11 Download traffic for VCS and GiGi-MR server with N-Gram
application

(described in Sect. 2.2). Up until second 2000, the GiGi-MR
server has received almost no data from the clients. At around
that time in the experiment, reducers that finished their task
began sending the output back to the server. The GiGi-MR
server downloads a total of 820MB from the clients. On the
other hand, theVCS server is responsible for downloading all
map outputs from mappers, which corresponds to the steep
increase up until second 4000. The VCS server is required to
download six times more data than GiGi-MR.

The inverted index andword count experiments yield very
similar results, so they are not shown here. In inverted index,
GiGi-MR is able to reduce the amount of data sent from the
server from 6.5 to 2.3GB and cut data received by the server
by 96%. In the word count application, the GiGi-MR server
receives amere 250MB, a value ten times smaller thanVCS’s
3GB, and is required to send 2.5GB,whereas theVCS server
sends more than double that amount to clients. Therefore, we
can conclude that GiGi-MR not only performs better than
VCS when running jobs with large intermediate files, but is
also able to alleviate the server’s network connection.

3.5 Checkpoint/restart and partitioning

In this section, we focus on the overhead of distributing tasks
inside Virtual Machines, and the performance of different
data partitioning techniques provided by our system when
validating results.

3.5.1 Virtual machine checkpointing

The most relevant issue of the checkpoint/restart technique
is the size of the checkpoint data. The potentially prohibitive
VM image size is mitigated by the use of differential disk
images (efficient representation of the modifications made to
the virtual disk supported by the VM implementations with

123



342 J Internet Serv Appl (2012) 3:329–346

Table 2 Checkpoint/Restart
through a VM image:
checkpoint data size using
VirtualBox and Ubuntu Desktop
9.10

Data size (KB)

Base Powered off Disk image 2,651,169 2,768,998

Image After Boot Disk image (differential) 33

Volatile state 117,796

Current Running Disk image (differential) 16,417 154,403

Image A Application A Volatile state 137,986

Current Running Disk image (differential) 23,585 209,597

Image B Application B Volatile state 186,012

specific disk image format files, such as QCOW27). Table 2
depicts the size of the checkpoint data from the execution of
a ray-tracer (POV-Ray) on two different inputs, attenuated
with the use of differential disk images.

Checkpoint A reduces the size about 17 times (154,403
KB instead of 2,768,998KB), checkpoint B about 14 times
(209,597KB instead of 2,768,998KB), bringing transmis-
sion and/or storage costs to reasonable values. The differen-
tial disk is an efficient representation of the different amounts
of modifications made to the virtual disk, which explains the
difference we observe.

3.5.2 Result verification through replication

Whenusing replication to validate returned results,GiGi-MR
is able to take advantage of different data partitioning tech-
niques (as described in Sect. 2.3). We present results from
experiments usingOverlapped andMeshed partitioning. Fur-
thermore, our samplification technique is also evaluated.

We analyse the performance of GiGi-MR’s result veri-
fication algorithm by identifying the percentage of wrong
results that are not detected. We use a simulator to test result
verification approaches with large populations. The simula-
tor is a Java application that simulates a scenario where an
n-dimensional job is broken into work units that are ran-
domly assigned. Among the participants, there is a group of
colluders that attempt to return the same bad result (based on
complete or imperfect knowledge, depending on the partition
overlapping), in order to fool the replication based verifica-
tion mechanisms. The simulator returns the percentage of
wrong results that were not detected by the server.

Figure 12 shows the results for overlapped partitioning.
We can see that overlapped partitioning performs as well as
standard partitioning (i.e., exact replicas of the whole file),
in a scenario where the colluders are fully able to identify the
common part and collude it, while still executing the rest of
the task. This is possible in theory, but harder to achieve in

7 The QCOW2 Image Format. http://people.gnome.org/~markmc/
qcow-image-format.html.

Fig. 12 Replication w/ standard partitioning vs. replication w/ over-
lapped partitioning, using replication factor 3

Fig. 13 Percentage of results using bi-dimensional meshed partition-
ing before rescheduling, in a scenario where colluders return results
100% forged

practice as this may require global knowledge and impose
heavier coordination and matching of information among
the colluders. This is the worst case scenario, therefore over-
lapped partitioning may improve the reliability of the results,
depending on how smart the colluders are.

Meshed Partitioning splits the task in more than one
dimension and provides many points of comparison, which
are then used to decide on the correctness of a result.
Figure 13 shows that the percentage of undetected wrong
results is very low, and almost null when dealing with under
40% of colluders. However, a small number of results must
be rescheduled to reach a verdict. The work that has to be

123

http://people.gnome.org/~markmc/qcow-image-format.html
http://people.gnome.org/~markmc/qcow-image-format.html


J Internet Serv Appl (2012) 3:329–346 343

Fig. 14 Samplication: percentage of wrong results not detected in a
scenario where colluders return results 50% corrupted

rescheduled ismostly composed by the portionswherewrong
results overlap. Therefore, those results cannot be accepted,
and rescheduling is the only solution. This technique proves
to be very efficient aswe are only using twice the base amount
of work.

Samplication is a technique that combines sampling and
replication without using voting quorums. Plus, this tech-
nique works with even replication factors. It uses informa-
tion from replication to decide where to choose samples,
rather than selecting samples randomly. It selects the sam-
ples within a replication mismatch area and discards the
results that mismatch the chosen sample. If there is no mis-
match in replication it resorts to random sampling. As seen in
Figure 14, which shows scenarios with different replication
factors (R.F.), this technique is quite effective, as it keeps the
percentage of undetected wrong results very low, even for
environments with up to 60% of colluders.

3.6 Resource discovery

To evaluate GiGi-MR’s discoverymechanism based onABF,
we compare it to a simpler mechanism, random walk (RW)
[24], which acted as our baseline. We chose RW for being a
simple, widely used discovery algorithm. We want to assess
GiGi-MR’s efficiency and effectiveness in finding available
resources, since this can have a direct effect in the server’s
scheduling performance. The tests were ran using the Peer-
Sim8 simulator with its Event Driven capabilities, approx-
imating the simulation more to real-life as opposed to a
Cycle Driven simulation. We use an open source Bloom Fil-
ter implementation from the well known Hadoop project.9

The tests are executed with the random walk protocol and
three variations of our algorithm for scalable and efficient

8 PeerSim. http://peersim.sourceforge.net/.
9 Apache Hadoop. http://hadoop.apache.org/.

Fig. 15 Query satisfaction for static scenarios

resource discovery (SERD): SERD1, SERD2, and SERD3
which correspond to the ABF depths of 1, 2, and 3, respec-
tively. In our experiments, we set the network size to 5,000
or 10,000 nodes, with either three or six neighbours per
node. We define three resource distribution categories: 50%
(very abundant resource), 25% (abundant resource), and 5%
(scarce resource). In addition, we consider the resources to
be of two types: static (e.g., Operating System, or CPU) or
dynamic (e.g., memory used). Every five simulation cycles,
10% of the nodes in the network sent resource queries that
could be satisfied by at least one node in the network, and
we measure the percentage of successful queries.

Regarding the static scenario (see Fig. 15) SERD1 and
SERD2 consistently show a percentage rate above 90%
except for the scarce scenarios with a maximum of three
neighbours. This can be explained by the fact that the depth
of theABFdid not allow the forwarding of querieswithmuch
hindsight, especially in a scenariowhere very fewnodes actu-
ally contain the resource and where each node only has a
maximum of three neighbours, thus further limiting a node’s
knowledge about the network. SERD3 has a satisfaction rate
of 100% in almost all scenarios, and 99% in the rest. As the
algorithm had a greater depth, it was able to direct queries
in the right direction for them to be satisfied. The RW algo-
rithm’s lack of intelligence in the forwarding of queries is
a great contrast, with almost all satisfaction rates below or
around 80%.

Figure 16 shows the query satisfaction for the dynamic
resource scenarios, which are expected to not be as high as
the static scenarios due to the varying values of the resources.
Once again, SERD outperforms the RW protocol, which dis-
play a success rate of 80% and lower. In almost all tests,
the SERD protocols were above 80%, except for the scarce
scenario tests. In those, SERD1 struggled the most because
it has little information about the neighbourhood. SERD2
and SERD3 only display a satisfaction rate lower than 80%

123

http://peersim.sourceforge.net/
http://hadoop.apache.org/


344 J Internet Serv Appl (2012) 3:329–346

Fig. 16 Query satisfaction for dynamic scenarios

when the scarce scenario was combined with a maximum of
3 neighbours, which limited the available options when for-
warding query messages. RW in those cases was hardly able
to reach 20% query satisfaction, making its lack of intelli-
gence ever so apparent.

Analysis: In this section, we presented the evaluation of
GiGi-MR. We summarize briefly its key aspects. First, we
experienced performance improvements (in the execution
and turnaround times) on a set of applications that are rep-
resentative of those currently used, both in academic and
commercial environments, such as e-science (ray tracing,
imaging) and big data analytics (namelyMapReduce as used
by Google and others in production settings). Second, we
obtained significant reductions in network traffic directed to
servers, during execution, which improve server scalability
and allow each server to handle larger computations with
more participant nodes, i.e., scale to larger numbers of slaves
to execute more tasks concurrently. Third, we improve the
reliability of voluntary computing with a set of novel replica-
tion and sampling techniques, that require colluders always
to execute part of their tasks, and by imposing more coor-
dination and overhead to successfully forge results, all this
combined with efficient and low overhead checkpointing.
Finally, we showed how our system can scale to large popu-
lations of volunteers, while achieving efficient resource dis-
covery and high resource utilization, thus taking advantage
of idle resources scattered on the Internet, by means of the
SERD resource discovery protocol.

4 Related work

XtremWeb [5] and Leiden Classical10 are distributed com-
puting projects that allow registered users to submit their
jobs, as opposed to plain BOINC installations where only the

10 University of Leiden. Leiden classical. http://boinc.gorlaeus.net/.

system administrator creates jobs. In Leiden Classical, there
is only one data processing application and users only submit
input files to be processed by that application. XtremWeb
is more versatile as it hosts several installed applications.
In XtremWeb, users provide the input files and define the
command line arguments used to invoke the application.
XtremWeb allows the use of a broader set of applications,
but still requires the system administrator to install them. A
user is not allowed to install a new data processing applica-
tion to solve his problems.

Supercomputing and data centers typically employ MPI
task farmers when running BoT applications [16]. Task farm-
ing follows a master/worker model in which the master coor-
dinates task creation and scheduling, distributes tasks among
workers, and receives the results. In [16], MPI is extended
to support dynamic process management and task creation
in client/server applications. Despite having several common
goals to our solution such as adaptive execution, or maximiz-
ing resource utilization, these systems operate in tightly cou-
pled environments such as clusters. GiGi-MR’s deployment
over the Internet creates an entirely new set of requirements
and challenges, which prevents us from adapting existing
MPI Task Farming solutions.

Nimrod [1] is targeted at parameter sweep applications,
and follows a model similar to task farming. In Nimrod,
the user defines the input files, the type of parameters and
how they vary. Nimrod then generates all parameter com-
binations and assigns each parameter combination to a task.
Even thoughNimrod helps on the combination of all parame-
ters, the user must still have some programming knowledge,
because the processing application must be coded and the
data type of each parameter must be defined.

Combining the concepts of Cloud and Volunteer Comput-
ing has been proposed in [18], in which the authors studied
the cost and benefits of using clouds as a substitute for vol-
unteers or servers.

In [22], the authors define a P2P model under the MapRe-
duce framework. Their system is tailored to a dynamic cloud
environment, creating a cloud of clouds. It has a similar orga-
nization to existing Grid infrastructures, but, much like Our-
Grid [8], is meant to create a federation or cluster of data
centers through a P2P overlay network.

MOON (MapReduce On opportunistic eNvironments)
[20] proposes an extension to Hadoop that implements adap-
tive task scheduling to account for node failure. However,
MOON is tailored for a cluster environment, such as a
research lab, in which nodes are trusted or even dedicated.

MapReducewas also adapted to desktop grids in [31]. The
systemwas designed on top ofBitDew [13], amiddleware the
handles data management through the use of various transfer
protocols. The authors claim that it is able to run MapRe-
duce jobs onXtremWeb [5], over the Internet. However, their
experiments were conducted in a cluster interconnected by

123

http://boinc.gorlaeus.net/


J Internet Serv Appl (2012) 3:329–346 345

Gigabit Ethernet. This environment more closely resembles
the common scenario of XtremWeb, which consists of a fed-
eration of research labs.

BOINC, on the other hand, has million of users, and is
actually tailored for a truly volunteer environment over the
Internet. Bymoving frombenchmarks and proof-of-concepts
to actual applications in a realistic testbed, we can state with
more certainty what are the advantages and shortcomings of
this paradigm on a volunteer computing environment.

Bloom Filters have been applied in a variety of systems
[6], such as dictionaries, databases, and network applications.
They are implemented as bit arrays, therefore, the union of
two sets can be computed by performing the OR operation
between the two, while their approximate intersections can
be computed using the AND operation. To test whether an
element is in the set or not, it has to be passed through all hash
functions and if all the resulting positions in the array are set
to one, then the element hash a high probability of being in
the set. If any position has the value zero, then we know that
it is definitely not in the set. The small false positive rate
arises from the fact that when querying for an element that
is not in the set, some hash functions may result in positions
that were already used (have the value one) for a previously
inserted item. Therefore, the more elements are inserted into
the Bloom Filter, the higher the chance of a query resulting
in a false positive. Another shortcoming is the inability to
remove an element from the Bloom Filter, as simply setting
the positions given by the k hash functions to zero have the
side effect of removing other elements as well.

Our solution is different to the existing systems because it
combines all types of different resources into one discovery
mechanism. It is especially different to the works [14,21]
that also make use of ABF due to to the usage of one aggre-
gated ABF (explained in Sect. 2.4.1), and the fact that all the
different types of basic resources, services, and applications
are encoded in the Bloom Filter.

5 Conclusion

We have presented GiGi-MR, a Volunteer Computing plat-
form that allows ordinary users to create and submit jobs
for execution on volunteer machines over the Internet. Our
system is able to execute MapReduce applications over the
Internet and tolerate volunteer faults, and transient server fail-
ures. Furthermore, it is compatible with existing VC systems
(in particular BOINC). It significantly reduces the depen-
dence on the central server, which is typically overburdened
in current VC platforms, thus allowing it to obtain better
performance.

GiGi-MR enhances task scheduling using information
exchanged by clients within an overlay network. Neighbour
selection is based on resources and availability information is

provided through a novel resource discovery mechanism. It
is capable of locating physical resources, services, and appli-
cations frommany computers connected to the same overlay.
This is done in a novel way by storing all resource, applica-
tion, and service information in ABF. GiGi-MR is able to
distribute tasks inside Virtual Machines, and supports sev-
eral partitioning mechanisms, thus increasing the system’s
adaptability and usefulness.

WeevaluatedGiGi-MRbymeasuring the application turn-
around and server network traffic while running three differ-
entMapReduce applications.We also ranmicro-benchmarks
to assess the impact of each of our system’s components.

The experiments show that the overhead of theUser Inter-
face layer is minimal, and that it is possible to take advantage
of parallel processing environments without the use of com-
plex APIs. We can also conclude that it allows the definition
and execution of a myriad of jobs that can take advantage of
remote idle cycles. We managed to execute a batch of image
rendering, necessary to create an animation video, as well
as process several MapReduce jobs. In general, the applica-
tions that our systems handles best are those which can be
described as Bag-of-Tasks problems, or easily decomposed
in a set of map and reduce tasks; thus, Monte-Carlo based
applications are good candidates.

GiGi-MR’s discovery mechanism performed well in the
various test scenarios that included static and dynamic
resoures, and outperformed the RW protocol which was our
baseline. Our system proved to be effective in locating vari-
ous types of resources, and scalable as the number of nodes
in the network did not affect the mechanism’s resource query
satisfaction.

Our result verification schemes vary in their complex-
ity and overhead. Replication with overlapped partitionings
makes collusion harder to achieve, while ensuring that the
reliability of the results is the same as using standard parti-
tionings. Replication with meshed partitionings enables the
use of even replication factors and improves the reliability
of the results using its stateless result reputation algorithm.
Samplication combines replication and sampling in an ele-
gant manner, ensuring it takes the best advantage of redun-
dant execution through the comparison with local samples
rather than using voting quorums.

Our checkpoint/restart throughavirtualmachineovercame
its biggest obstacle, checkpoint data size, through differential
disk images and compression. We were able to minimize the
checkpoint size about 17 times, to a transmittable amount of
data.

Our solution was able to improve the performance of all
the MapReduce jobs we tested. The map stage was up to 4
times faster than in an existing VC system. The reduce step
also showed an improvement, thus reducing each MapRe-
duce job’s execution time down to less than half. Our exper-
iments regarding the server’s network traffic also gave us

123



346 J Internet Serv Appl (2012) 3:329–346

some interesting results.Wewere able to reduce server down-
load traffic by an order of magnitude on the word count and
inverted index applications. Therefore, we were able to wit-
ness a decrease in uploaded data to 20% of the existing VC
system server’s value.

Acknowledgments The authors would like to thank students Filipe
Paredes, João Paulino and Raoul Felix, for their work and enthusiasm
during the project.

References

1. Abramson D, Sosic R, Giddy J, Hall B (1995) Nimrod: a tool
for performing parametrised simulations using distributedworksta-
tions. In: Proceedings of the 4th IEEE international symposium on
high performance distributed computing, HPDC ’95. IEEE Com-
puter Society, Washington, DC, USA, pp 112–121.

2. Anderson DP (2004) Boinc: A system for public-resource comput-
ing and storage. In: Proceedings of the 5th IEEE/ACMinternational
workshop on grid computing, GRID ’04. IEEE Computer Society,
Washington, DC, USA, pp 4–10

3. AndersonDP,Cobb J,Korpela E, LebofskyM,WerthimerD (2002)
Seti@home: an experiment in public-resource computing. Com-
mun ACM 45:56–61

4. BloomBH (1970) Space/time trade-offs in hash codingwith allow-
able errors. Commun ACM 13(7):422–426

5. Cappello F, Djilali S, Fedak G, Herault T, Magniette F, Néri V,
Lodygensky O (2005) Computing on large-scale distributed sys-
tems: Xtremweb architecture, programming models, security, tests
and convergence with grid. Future Gener Comput Syst 21:417–437

6. Chazelle B, Kilian J, Rubinfeld R, Tal A (2004) The bloomier fil-
ter: an efficient data structure for static support lookup tables. In:
Proceedings of thefifteenth annualACM-SIAMsymposiumondis-
crete algorithms, Society for Industrial and Applied Mathematics,
SODA ’04, Philadelphia, PA, USA, pp 30–39

7. Chun B, Culler D, Roscoe T, Bavier A, Peterson L, Wawrzoniak
M, Bowman M (2003) Planetlab: an overlay testbed for broad-
coverage services. SIGCOMM Comput Commun Rev 33:3–12

8. Cirne W, Brasileiro F, Andrade N, Costa L, Andrade A, Novaes
R, Mowbray M (2006) Labs of the world, unite!!!. J Grid Comput
4:225–246

9. Costa F, Kelley I, Silva L, Fedak G (2008a) Optimizing data dis-
tribution in desktop grid platforms. Parallel Process Lett (PPL)
18(3):391–410

10. Costa F, Silva L, Fedak G, Kelley I (2008b) Optimizing the data
distribution layer of boinc with bittorrent. In: International sympo-
sium on parallel and distributed processing symposium, pp 1–8

11. Dean J, Ghemawat S (2008)Mapreduce: simplified data processing
on large clusters. Commun ACM 51:107–113

12. Fan L, Cao P, Almeida J, Broder AZ (2000) Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Trans
Netw 8(3):281–293

13. Fedak G, He H, Cappello F (2008) Bitdew: a programmable envi-
ronment for large-scale data management and distribution. In: Pro-
ceedings of the 2008 ACM/IEEE conference on supercomputing,
SC ’08. IEEE Press, Piscataway, pp 45:1–45:12

14. Goering P, Heijenk G (2006) Service discovery using bloom fil-
ters. In: Proceedings of twelfth annual conference of the advanced
school for computing and imaging, pp 14–16

15. Goodwin P, Wright G (2004) Decision Analysis for Management
Judgment. Wiley, New York

16. Gropp W, Lusk E (1995) Dynamic process management in an mpi
setting. In: Proceedings of the seventh IEEE symposium on parallel
and distributed processing, 1995, pp 530–533

17. Guo Z, Fox G, Zhou M (2012) Investigation of data locality in
mapreduce. In: Proceedings of the 2012 12th IEEE/ACM inter-
national symposium on cluster, cloud and grid computing (ccgrid
2012), CCGRID ’12. IEEE Computer Society, Washington, DC,
pp 419–426

18. Kondo D, Javadi B, Malecot P, Cappello F, Anderson DP (2009)
Cost-benefit analysis of cloud computing versus desktop grids. In:
Proceedings of the 2009 IEEE international symposium on parallel
and distributed processing, IPDPS ’09. IEEE Computer Society,
Washington, DC, USA, pp 1–12

19. Larson SM, Snow CD, Shirts M, Pande VS (2002) Folding@home
and genome@home: Using distributed computing to tackle pre-
viously intractable problems in computational biology. Comput.
Genomics.

20. Lin H, Ma X, Archuleta J, Feng Wc, Gardner M, Zhang Z (2010)
Moon: mapreduce on opportunistic environments. In: Proceedings
of the 19th ACM international symposium on high performance
distributed computing, HPDC ’10. ACM, New York, pp 95–106

21. LvQ, CaoQ (2007) Service discovery using hybrid bloom filters in
ad-hoc networks. In: International Conference onwireless commu-
nications, networking and mobile computing, 2007. WiCom 2007,
pp 1542–1545

22. Marozzo F, Talia D, Trunfio P (2008) Adapting mapreduce for
dynamic environments using a peer-to-peer model. In: Proceedings
of the first workshop on cloud computing and its applications (CCA
2008), Chicago, USA

23. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat
Assoc 44(247):335–341

24. Pearson K (1905) The problem of the random walk. Nature 72
25. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001)

A scalable content-addressable network. In: Proceedings of the
2001 conference on applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’01. ACM,
New York, pp 161–172

26. Rhea S, Kubiatowicz J (2002) Probabilistic location and routing.
In: Proceedings of INFOCOM2002. Twenty-first annual joint con-
ference of the IEEE computer and communications societies, vol
3. IEEE, New York, pp 1248–1257

27. Rowstron A, Druschel P (2001) Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In: Guerraoui R (ed)Middleware 2001. Lecture Notes in Computer
Science, vol 2218, Springer, Berlin, pp 329–350

28. Silva J, Ferreira P, Veiga L (2010) Service and resource discov-
ery in cycle-sharing environments with a utility algebra. In: 2010
IEEE international symposium on parallel distributed processing
(IPDPS), pp 1–11

29. Snir M, Otto SW, Walker DW, Dongarra J, Huss-Lederman S
(1995) MPI: the complete reference. MIT Press, Cambridge

30. Stoica I,Morris R,KargerD,KaashoekMF,BalakrishnanH (2001)
Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communi-
cations, SIGCOMM ’01. ACM, New York, pp 149–160

31. Tang B, Moca M, Chevalier S, He H, Fedak G (2010) Towards
mapreduce for desktop grid computing. In: Proceedings of the 2010
international conference on P2P, parallel, grid, cloud and internet
computing, 3PGCIC ’10. IEEE Computer Society, Washington,
DC, pp 193–200

123


	Large-scale volunteer computing over the Internet
	Abstract 
	1 Introduction
	1.1 Goal
	1.2 Shortcomings of current solutions
	1.3 Our solution: GiGi-MR

	2 GiGi-MR architecture
	2.1 User Interface
	2.2 MapReduce VC
	2.3 Checkpoint and replication
	2.3.1 Overlapped partitioning
	2.3.2 Relaxed partitioning
	2.3.3 Meshed partitioning
	2.3.4 Samplification

	2.4 Resource discovery
	2.4.1 Using bloom filters

	2.5 Overlay management

	3 Implementation and evaluation
	3.1 Implementation
	3.2 Evaluation
	3.3 User Interface
	3.3.1 Application transformation
	3.3.2 Job submission by ordinary users

	3.4 MapReduce VC
	3.4.1 Application turnaround
	3.4.2 Network traffic

	3.5 Checkpoint/restart and partitioning
	3.5.1 Virtual machine checkpointing
	3.5.2 Result verification through replication

	3.6 Resource discovery

	4 Related work
	5 Conclusion
	Acknowledgments
	References


