
J Internet Serv Appl (2011) 2:229–241
DOI 10.1007/s13174-011-0037-8

S I : C L O U D C O M P U T I N G

Placement of applications in computing clouds using Voronoi
diagrams

Caroline Shouraboura · Pavel Bleher

Received: 23 October 2010 / Accepted: 5 September 2011 / Published online: 23 September 2011
© The Brazilian Computer Society 2011

Abstract The vision of millions of users launching tens
of millions of applications running on millions of glob-
ally scattered servers presents a new challenge for Cloud
Providers: how to assign so many virtual applications to
physical servers, while meeting latency needs, improving
network utilization, and satisfying availability constraints.
Today’s application placement puts too much burden on the
cloud user, lacks scalability and inhibits the global reach of
Public Clouds.

The size, breadth, and dynamic nature of Public Clouds
present a special challenge to the task of placement. Cloud
Providers able to provide rapid decisions and frequent op-
timizations for placement will have significant competitive
advantage. Not only will they provide the best customer ex-
perience, their costs will be lower as they make more effi-
cient use of their network resources. However, given the cal-
culations required, data structures and the algorithms used to
process location-based decisions must be as globally scal-
able as the Public Clouds themselves.

In our study, we define a novel data structure, the Vir-
tual Cloud Model, for modeling global cloud resources. We
adapt a well-known geometric device, Voronoi Diagrams,
and combine it with near-real-time network latency infor-
mation. We then solve the application placement problem
and suggest an API for Cloud Providers to support both
“low-latency” and “high-availability” applications. The al-
gorithms are scalable, parallelizable and distributable.
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1 Introduction

The vision for Cloud Computing is to have millions of users
launching tens of millions of applications running on mil-
lions of globally scattered servers. This presents a new chal-
lenge for Cloud Providers, which requires new data struc-
tures and scalable algorithms for placing and managing user
applications.

Behind the Public Cloud is a physical network of data
centers with millions of servers, hidden from us through vir-
tualization. Virtualization offers Public Cloud providers the
flexibility to assign each application to run on any of its
available physical servers. The primary variables in decid-
ing placement of an application within the Public Cloud are
(1) minimizing latency (and therefore bandwidth consump-
tion) of the compute resource with respect to points on the
network with which it must communicate (other compute
resources, persistence layers, and endpoints outside of the
cloud are a few examples) and (2) availability constraints
specifying a minimum separation compute resources must
have from other resources to avoid correlated failure.

Current research in this area is nascent both because of
cloud computing’s relatively brief history and the breadth
and complexity of applications and their needs. One impor-
tant classification of the problem has been contributed by
[1], where applications with users spread across a global
user community can be optimized by placing data optimally
with respect to their use. This paper deals with the vast set of
applications having close binding with their data such that
both data and application can be treated as a single “Vir-
tual Machine” (VM). Because of the complexity of different

mailto:carolinesh@forestridge.org
mailto:bleher@math.iupui.edu


230 J Internet Serv Appl (2011) 2:229–241

underlying application architectures and assumptions about
data locality, both the Volley approach described in [1] and
the approach we describe here should be useful for those
building cloud applications and providing cloud infrastruc-
ture. A data-oriented approach to placement can and should
coexist with an application-oriented approach.

In this paper we choose latency as the driving variable be-
cause it is a characteristic of the physical layout of the cloud,
dictated by such things as speed of light, network device
limitations, and the network cabling connecting compute re-
sources. Bandwidth is a parallel variable, but is generally
highly correlated with latency [25]. We discuss a case where
bandwidth is an independent constraint in the Future Work
section. In practice cloud providers face many more restric-
tions such as capacity and cost of system resources, cost of
relocating Virtual Machines (VMs) to remote sites, disas-
ter recovery, committed vs. uncommitted quality of service,
and others. In this paper we propose two extensions to our
algorithm for applying geography and capacity constraints.

Traditional techniques for managing application pla-
cement lack the scalability required by Public Clouds [16,
32]. A large-scale private data center might contain tens of
thousands of servers running well-understood applications
statically allocated to servers. Even if the private data cen-
ter is virtualized, the numbers of servers involved and the
slow rates of change limit issues of scale. Public Clouds to-
day are rapidly growing to, and beyond, millions of servers
scattered across different countries and continents, running
dynamically changing application mixes. Many applications
automatically scale up by requesting more resources from
the Cloud and then scale down by releasing resources, as
demand subsides. Frequently, applications must communi-
cate with each other, whether for synchronizing game state,
exchanging intermediate computational results, assembling
web pages, or querying databases. The network in a Public
Cloud supplies substantial network bandwidth in support of
cross-application communication.

For a group of applications requiring communication
with each other, placement proximity on the underlying
physical servers is critical. Cloud Providers have a strong
incentive to keep communication paths as short as possible,
because the cost of provisioning bandwidth increases with
distance. Latency also increases significantly with distance,
so customers of a Cloud receive a better experience with
shorter network paths. In order to find two or more servers
which are “close” to each other, it would seem necessary
to examine the latencies between all pairs of servers in the
Cloud to compute an optimal placement. The calculation of
latencies must be executed frequently given the network is a
shared resource and is therefore subject to regular changes
in performance. This would mean a running time of O(n2),
where n is the number of servers in the cloud. Public Clouds
might have millions of servers running tens of millions of

applications owned by different companies and individuals.
This kind of scale requires a high-performance algorithm
capable of running in near-real time.

In this paper we describe a viable model of the Cloud
precomputed in O(n logn) time and a scalable O(k + logn)

algorithm to solve the application placement problem, where
k is the number of servers required by the application and n

is the number of servers in the Cloud. The model is based
on Voronoi Diagrams.

2 Voronoi diagrams

In this paper we use a 2-dimensional Voronoi Diagram com-
puted for a set of n points on a plane. It is defined as follows.

Definition 1 The set of all points closer to a given point in
a point set than to all other points in the set is the Voronoi
Polygon for the point. The collection of all the Voronoi Poly-
gons for a point set is called its Voronoi Diagram.

The dual graph to the Voronoi Diagram (Fig. 1) is a De-
launay Triangulation (Fig. 2). By definition, the Delaunay
Triangulation contains an edge connecting two points if and
only if their Voronoi regions share a common edge. The De-
launay Triangulation DT (P ) for a set P of points in the
plane possesses a remarkable property such that no point
in P is inside the circumcircle of any triangle in DT (P ).
This property characterizes a DT uniquely [29]. Shamos
and Hoey [31] described a divide-and-conquer algorithm to
compute the Voronoi Diagram in O(n logn) time. Subse-
quently, many other usable and efficient algorithms and data
structures were discovered [2] and implemented for com-
puting Voronoi Diagrams [3, 4, 10, 13, 24, 27]. Voronoi Di-
agrams found their application in many different fields, in-
cluding computer science [3, 4, 12, 24, 26, 27].

Public Clouds have a new problem of optimizing the cost
and experience of tens of millions of simultaneous applica-
tions running on a network of millions of servers distributed
world-wide. In our study we tackle the novel problem of
carving up the space within a Computer Cloud. Our ap-
proach allows rapid allocation of a set of virtual machines
for each application that reflect low latency and bandwidth,
reducing the consumption of physical network paths in the
Cloud. Our method is based on the idea that the more appli-
cations communicate with each other, the “closer” they need
to be placed in the Cloud. Our research consists of three
steps. First, we will define a Virtual Cloud Model (VCM),
a novel, efficient structure to model the Cloud. Second,
we will describe two algorithms for assigning applications
to servers using the VCM and suggest an API for Cloud
Providers. Lastly, we will describe the process of Cloud de-
fragmentation to maintain healthy application placement in
the Cloud.
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Fig. 1 An example of a
Voronoi diagram

3 Virtual cloud model (VCM)

To reduce the network congestion and latency in communi-
cation between applications, we would like to position con-
nected applications “close” to each other. Several properties
of Voronoi Diagrams make it a relevant and appealing struc-
ture for Cloud partitioning: the linear size of the Voronoi Di-
agram, the proximity information stored in the Voronoi Di-
agram in an explicit and computationally useful manner and
its localized and easily distributable behaviors. This allows
us to store and perform operations on Voronoi Diagrams
locally, utilizing the distributed computing Cloud environ-
ment.

Let {R} be a set of all server racks and {r} be a set of
all routers, switches, load balancers, and other traffic related
network devices in the cloud (Fig. 3). The main objects of
our model are server racks, but we are also going to include
other devices to reflect the actual physical network. Let {D}
be the union of {R} and {r}, representing all relevant devices
in the Cloud. Let us assume that each device has an IP ad-
dress, which is uniquely mapped to its geographic location
using the function Location(D). The geographic location
of a given device is a good approximation of its network
“closeness” to other devices. To best economize cost and la-
tency, Cloud Providers keep physical cabling and network

distances at a minimum, making physical location a reason-
able first-order approximation of network closeness.

For each device D we call function Location(D) and
establish a set of points on the plane, representing geo-
graphical coordinates of all server racks and routers on
the network. We then perform Voronoi tessellation (Fig. 4)
on the points and obtain a Geographic Delaunay Triangu-
lation (Fig. 5) using VoroGlide software [34]. While the
VoroGlide algorithm was sufficient for our study, a paral-
lel algorithm described in [21] could be better suited for the
distributed architecture of the Cloud. We use the precom-
puted Geographic Delaunay Triangulation as the foundation
for building a VCM. We still need to address two important
challenges of modeling the Cloud: first, network traffic be-
tween servers is routed inconsistently with respect to phys-
ical geography due to network engineering factors such as
distances of cabling/fiber runs, over-subscription of band-
width between switches and routers, and routing weights for
cost and redundancy; and second, the “distances” effectively
change as networks become more or less congested.

To address the challenge of considering dynamic network
performance, we measure and incorporate the actual net-
work latency into the model. To avoid measuring network
latency between each pair of devices, which would require
an O(n2) operation, we limit the measurements to the edges
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Fig. 2 Dual Delaunay
triangulation

of our precomputed Geographic Delaunay Triangulation. It
is important to note that the number of edges in Delaunay
Triangulation is O(n). For every edge we capture its la-
tency, defined as the time it takes for a packet of informa-
tion to travel between its vertices in milliseconds. A variety
of network monitoring tools could be used to perform this
task. A Cloud Provider with access to the physical devices
would simply be able to run the probe from each of its de-
vices directly. We then assign weight wl to every edge of
Geographic Delaunay Triangulation equal to the network la-
tency of the edge. The resulting structure is the Virtual Cloud
Model (VCM), which we are going to use next for appli-
cation placement. Note that this diagram is not a physical
representation of how network packets move across the net-
work; rather it reflects the relative latency servers have with
respect to each other.

For scaled up implementation, VCM could be distributed
and the weight of edges could be dynamically updated as
the latency of the network changes due to congestion. Using
VCM, we can now define the “distance” between devices in
the network.

Definition 2 The distance between device D1 and device D2

in the VCM is the sum of weights of all edges on the shortest
path between D1 and D2.

Fig. 3 An example of racks and routers in the cloud

Because over-subscription of network devices which ag-
gregate network traffic creates performance bottlenecks,
Cloud Providers are using network architectures that reduce
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Fig. 4 Geographic Voronoi
diagram

the impact of these devices on the performance of the net-
work. Based on this, we decided to use a simplified model,
which excludes routers, switches, load balancers and other
traffic related network devices.

In our simplified Virtual Cloud Model we only consider
server racks, and we perform the Voronoi tessellation for
the set {R} of all server racks and we obtain a Geographic
Delaunay Triangulation for the set {R}. The algorithm per-
forms in O(n logn) time and requires O(n) space [10],
where n is the number of server racks. We capture the weight
of each edge as a latency of each edge of Delaunay Triangu-
lation for {R} (Fig. 6).

The well-explored algorithmic space of Delaunay Trian-
gulation provides us with readily available methods for effi-
ciently dealing with changes in resource capacity and loca-
tion, such as rack addition or failure. Methods for efficiently
recalculating only a local portion of the triangulation are de-
scribed in [15]. Paper [19] also describes algorithms for dis-
tributing a Delaunauy Triangulation across many separate
computers.

To illustrate VCM using a very small subset of a real-
life Cloud, we selected 12 servers on Amazon’s Cloud in 12
different locations: four servers in Europe running in differ-
ent locations, one server in Asia, in Singapore, one server

on the US West Coast in San Francisco, and six servers
on the US East Coast in different locations. We then es-
timated server locations based on the region information,
provided by Amazon, and constructed Geographic Voronoi
Diagram for 12 servers shown by points in Fig. 7 and corre-
sponding Geographic Delaunay Triangulation (Fig. 8) using
VoroGlide software [34].

We then used “ping” to dynamically capture the actual
network latency between server racks for every edge of Ge-
ographic Delaunay Diagram. Ping is a computer network
utility used to measure the round-trip time for packets sent
from the local host to a destination computer in milliseconds
(ms). We constructed the VCM for 12 servers as an illustra-
tion for our model. For every edge of the Delaunay Triangu-
lation we assigned the weight wl equal to the average round-
trip time between the servers, divided by 2, in milliseconds
(see Fig. 9). Our illustration in Fig. 9 also highlights the op-
portunity to improve our algorithm by considering VCM on
a globe. For example, the latency between AP1 (Asia) and
USW1 (San Francisco) is less than the latency between AP1
(Asia) and EU4 (Europe), which correlates with distances
on the sphere. Since VCM is designed to work for a global
Cloud, we could extend our model to construct Geographi-
cal Voronoi Diagram on a sphere. In [23], the authors show
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Fig. 5 Geographic Delaunay
triangulation

that for a given a set of sites on a sphere, their spherical
Voronoi Diagram can be derived by computing two planar
Voronoi Diagrams of suitably transformed sites in the plane.

4 Placing applications in the cloud using VCM

When a user launches an application in the Cloud, the user
first defines a virtual machine image specifying the software
that will be run upon startup. The user then requests a single
or multiple virtual machines from the Cloud via an API call.
The Cloud Provider allocates a set {Vj } of requested vir-
tual machines and then launches a copy of user-defined soft-
ware image on each virtual machine, thus providing the user
with a set of running “instances”. Typically there are many
instances running simultaneously to provide scalability of
an application. For example, in an online gaming applica-
tion a virtual “world” will be hosted on many instances of
the game’s application. This is important because no single
server could possibly have enough capacity to serve all users
of the game. Each user will be assigned to a particular virtual
machine instance. Instances will communicate state infor-
mation with each other in order to keep the “world” consis-
tent in appearance to all participants. When a user launches

an application, the number of instances required is specified
as an API parameter. These instances can be placed any-
where in the cloud, however, some locations are better than
others stemming from application requirements. For exam-
ple:

1. If an application requires a frequent communication with
computers outside the cloud, it is better to place applica-
tion instances close to user’s anchor location U .

2. If an application requires frequent communication among
instances, it is important to place those instances close to
each other to reduce latency in communication and avoid
performance degradation. In those cases the proximity
of application placement would also benefit the cloud
provider by reducing the consumption of network re-
sources.

3. Some applications require increased availability. In many
cases failures happen on a cluster of servers located in
close physical proximity. Examples of such failures are a
failure of one rack, which brings down all servers in that
rack, a failure of a row of racks due to router failure, or
a failure of a data center, bringing down many rows of
racks, due to a power outage or other major malfunction.
To ensure that parts of an application continue running
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Fig. 6 An example of
simplified virtual cloud model
with weights

Fig. 7 Geographic Voronoi
diagram for 12 servers

under those scenarios, it might be desirable to space the
application across remote servers to increase availability
at the price of latency.

Given the variety of application placement requirements,
the Cloud Provider could offer customers an API to specify

the desired application placement strategy. The conceptual
API for a launch request of k instances could look like:

Launch(k : number,

U : location,A : application,

L : latency,S : separation);
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Fig. 8 Dual geographic
Delaunay triangulation

Fig. 9 An illustration: VCM
for 12 servers

We propose to use VCM for the implementation of different
placement strategies.

4.1 Latency constraint

The following algorithm uses VCM to place instances close
to a user’s location and to each other. Let us assume that a
user defined a desired software image I and requested k in-
stances running the image I , launched in proximity to his lo-
cation U . We first use the VCM to find the triangle with three
server racks as vertices containing U . There are several well-
known algorithms to perform this search in O(logn) time
(see [9] and references therein). Once we found the triangle
containing U , we consider its three vertices and server racks
associated with them and select the server rack Ri closest
to U .

We then allocate virtual machines on Ri to run user ap-
plications until we exhaust the capacity of Ri .

Capacity can be measured and optimized in a number of
ways here, the variety of which is discussed in the Future
Work section below. For the purposes of this algorithm, we
assume that the virtual machine we are placing has an ap-
plication capacity which can be compared to the capacity
available on Ri . We then perform a breadth-first search of
VCM graph to find required capacity, looking for the clos-
est servers to Ri . This placement algorithm reduces latency
and bandwidth consumption, for a given application, placing
parts of the application on neighboring servers by traversing
the VCM and taking into the account actual, near-real-time
network latency.

1. Put all neighbors of Ri in a list.
2. Examine all server racks in the list and select the server

rack Rj closest to Ri using the definition of the “dis-
tance” provided above (as the sum of all weights on the
shortest path).
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3. If Rj has available capacity then allocate available ca-
pacity of Rj to our application.

4. Add all neighbors of Rj to the list.
5. Remove Rj from the list.
6. Repeat steps 2–5 until we find requested capacity to

launch k instances to run the application.

The algorithm performs in O(k + logn) time. We first
find the closest server rack to user location U in O(logn)

time and then we traverse the VCM to place k instances
in O(k) time. Here we make an assumption that the de-
gree of each vertex in the VCM graph is bounded by a con-
stant independent of n. This assumption looks plausible but
it requires an additional verification in concrete Comput-
ing Clouds. In the Poisson-Voronoi probabilistic model, in
which the sites are random points from a standard Poisson
process on the plane (see, e.g., the paper [11] of Hinde and
Miles and the monograph [22] of Møller), there are various
theoretical and numerical results supporting the assumption.
As shown in the classical paper [20] of Meijering, the mathe-
matical expectation of the number N of the site neighbors in
the Poisson–Voronoi model is equal to 6. Calka [6] derives
an exact formula for the probability pk that N = k as a com-
plicated 2k-dimensional integral, but as the author remarks
himself, the integral is very difficult for an asymptotic anal-
ysis as k → ∞. Numerical results of Tanemura [33], Brakke
[5], and others, strongly indicate that pk decay exponen-
tially as k → ∞, and pk is well approximated by a gener-
alized gamma distribution. Therefore, the estimate O(k) for
the time to place k instances in the Poisson–Voronoi model
looks very reasonable.

4.2 Availability constraint

For applications wishing to minimize latency, the aforemen-
tioned algorithm alone may be applied. However, minimiz-
ing network distance typically increases the probability of
correlated failure. For example, two virtual machines placed
on the same physical machine have extremely low latency
but obvious correlated failure cases. The same virtual ma-
chines placed on different physical servers in the same rack
still typically depend on a common network switch and
power path. While power and network redundancy can be
implemented within servers and racks at increased expense,
even separation of virtual machines across racks within a
data facility leaves exposure to correlated failure due to un-
expected events. Examples include room cooling malfunc-
tion, failure of automatic power transfer switches, unantic-
ipated ground faults, and network route misconfiguration.
Different application architectures require different trade-
offs between latency and availability. High-performance
computing applications bias entirely toward latency and will
generally desire placement within the same rack. Mission-
critical business applications or backup solutions may re-
quire geographic separation. VCM offers a good structure to

support availability requirements. For “availability” place-
ment we assume that all edge weights wl are equal to one,
because we want to spread instances regardless of the lat-
est network congestion. This means that the “distance” be-
tween server racks is simply the number of edges on the
shortest path on VCM graph. Similar to the previous algo-
rithm, we consider the customer’s location U and the cor-
responding triangle on VCM containing U . We then pick
one of the server racks associated with that triangle, but in-
stead of exhausting its capacity, we place only one instance
on it. We then do a breadth-first search to spread instances
(Fig. 10). We start with the first server and then allocate the
next server by jumping over two (or more) Delaunay edges
to ensure that there is some distance between the parts of
an application. If we would like to guarantee that parts of
an application are going to be placed precisely p cells away
from each other, we could also compute the “pth nearest
point” Voronoi Diagram—another extension of the Voronoi
Diagram described in [24].

5 Geography, capacity, and other business constraints

In its simplest form, a placement algorithm makes a binary
decision based on whether a particular target for placement
has the desired capacity. There are many reasons why cloud
providers would want to modify this approach. Some targets
might be in lower cost locations, managing power efficiency
is one example [18]. Supply could be constrained in a par-
ticular location, causing the cloud provider to want to bias
placements toward adjacent locations. The cloud provider
may wish to reserve capacity in a particular geography for
customers either willing to pay more or willing to make
a long term commitment to use that capacity. Also, a bin-
packing algorithm could be applied to a collection of physi-
cal capacity to ensure that un-utilized “bubbles” do not form
within the cloud. Finally, the cloud provider may wish to
gradually drain capacity from a rack of servers, for example,
to return at end of a lease or refresh with new technology.

VCM and application placement algorithms could be ex-
tended to satisfy those additional business requirements. Be-
low are two examples of such algorithmic extensions.

Example 1 (Satisfying Geographic Placement Constraint)
As we mentioned before, guarantees against correlated fail-
ure might require certain distance separation. While we
could use rough spreading for availability, as described in
Fig. 10, broader spreading algorithms may be required to
ensure independence of failure modes. Also, legal and other
restrictions might require constraining placement to a spec-
ified geographic area. For example, some countries require
personal data of their citizens to be retained within their ge-
ographic border. While the simple spread algorithm above
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Fig. 10 Availability placement
algorithm

effectively scatters instances to at least N Delaunay edges
apart, stricter guarantees about either distance separation or
location within a political boundary could require a more
exact geographic constraint. Because the VCM encodes ge-
ographic location in a computationally accessible manner,
an efficient addition to the placement algorithm is enabled.
Instead of a general “separation” parameter, the API out-
lined above could include a “distance-separation” or “ju-
risdiction” parameter. The enhanced separation parameter
would specify a minimum distance between V Ms activated.
Instead of skipping edges for spread, as detailed previously
in Fig. 10, we continue the breadth-first search to identify the
next placement candidate vertex. We calculate the distance
between each prior placement vertex and the candidate. If
the distance satisfies the separation constraint, we place the
VM, otherwise we continue the breadth-first search.

Strict guarantees on geographic placement can also be
satisfied using the VCM. The Cloud Provider could define
Jurisdictions across the VCM and use this information to
exclude candidate placement vertices which do not meet the
Jurisdiction constraint.

Example 2 (Satisfying Capacity Constraints) Cloud provid-
ers need the ability to weight placement decisions to steer
capacity utilization based on the factors described above.

We are using the term “capacity” to subsume the available
quantity of a range of resources that applications may re-
quire from a VM. Network I/O, CPU, Disk I/O, disk space,
and memory are the most important of these though there
are also special resources, such as the existence of a GPU
or other special processing unit. Cloud Providers, today, are
trending toward providing these in fixed ratios per VM. Al-
lowing applications variability in their use of resources cre-
ates the potential for one application to impact the perfor-
mance of another by increasing its consumption to a point of
competition. Variability also makes bin-packing on physical
servers far more difficult. For the purposes of our placement
algorithm, however, we only suggest that the cloud provider
encapsulate all of the applications’ various resource needs
in a single function, encapsulate the available capacity on a
physical server in a similar single function, and then com-
pare the two for placement.

A more complex version of the basic placement algo-
rithm uses both the geometric capabilities of the VCM and
replicated capacity information to favor placement candi-
dates which are underutilized, even though they may have
less optimal latency and bandwidth for the placement. There
are many efficient algorithms for spreading state information
across a large-scale distributed system. One example is a
gossip approach [8] which allows scalable, reliable commu-
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nication of capacity utilization across the cloud. Each server,
gossiping its current capacity as well as re-gossiping infor-
mation on other servers it has heard about, becomes aware of
the general state of capacity in all directions from the similar
gossip of all other servers.

Upon being chosen as the target for assignment of a vir-
tual machine, the server’s utilization—its capacity used di-
vided by capacity available—is compared with the aver-
age AU of all gossiped utilization. If greater, the server
is skipped as though it had been full and the breadth-first
search continues.

1. Put all neighbors of Ri in a list (same as before).
2. Examine all server racks in the list and select the server

rack Rj closest to Ri using the definition of the “dis-
tance” provided above (same as before).

3. Compare the utilized capacity of Rj with AU . If below
AU , allocate capacity of Rj to our application

4. Add all neighbors of Rj to the list.
5. Remove Rj from the list.
6. Repeat steps 2–5 until we find requested capacity to

launch k instances to run the application.

Rather than being calculated dynamically the utilization
target could be set by the Cloud Provider explicitly. Setting
a target is useful for guiding capacity or draining racks prior
to maintenance or upgrade. The target could also incorpo-
rate historical analysis of existing occupants, probabilistic
demand, and could lead to sophisticated decision-making on
placement of the sort considered in [17].

6 Virtual machine migration

There are several reasons to periodically re-examine and re-
arrange applications:

1. Similar to disk fragmentation, over time the Computer
Cloud becomes fragmented.

2. With changes in network latency, application might ben-
efit from a new placement, which takes into account the
latest network latency (stored as weights wl in VCM).

3. Cloud Providers might discover that several applications
are expressing virtual affinity implicitly through network
utilization and would benefit from being placed closer.

It is advisable to perform periodic Cloud defragmentation.
Defragmentation is performed by re-arranging parts of ap-
plication, which are talking through a congested area using
placement algorithm described above. Given the distributed
nature of Voronoi Diagram, defragmentation could be per-
formed locally in response to network congestion and also
scheduled periodically as a preemptive maintenance of the
Cloud.

There has been significant research in using live migra-
tion of virtual machines to optimize resource utilization.

VM migration as described in [7] uses low-latency, high-
bandwidth local networks to achieve interruption times as
low as 60 ms. The notion of “capsules” in [28] provides
some hope for moving VMs over longer distances. A check-
pointing approach is used in [14] to specifically tackle the
problem of migration over longer distances. The problem of
scheduling migrations is tackled in [30]. In addition to meth-
ods for migration, analysis on the lifetime of virtual work-
loads suggests that opportunity for optimization does exist.
In a study of PlanetLab resources [25] 25% of “slices” were
shown to live more than 1 week, offering significant oppor-
tunity for observation and migration. Research and practice
on migration of VMs shows that proximity plays an impor-
tant part in the decision for placing migrations. Applications
“dirty” more or less memory at different rates, driving the
amount of bandwidth and time required to sync a new VM,
influencing the constraint on distance to the new location.
Tolerance for the duration of interruption also influences
the optimal choice of a distance constraint. Current research
does not suggest how VM proximity should be managed.
The VCM’s ability to consider distance in every placement
makes it especially suited to solving the migration problem,
both to minimize downtime for the application and to enable
a wider geographic choice of placement.

Using a working example of vacating a rack of servers Ri

to allow replacement or retirement, a list of VMs hosted on
Ri which require relocation is established. This list contains
the capacity requirement of the VM Cv and the location of
its user Uv . For each member of the list, the aforementioned
Latency Constraint placement algorithm is performed:

1. Find the triangle T in the Delaunay triangulation con-
taining Uv .

2. Identify the three vertices of T , select the closest vertex
to Uv .

3. If the server rack at this vertex Rj has capacity Cv , exe-
cute migration of the VM to Rj , process next member of
the list.

4. If not, put all neighbors of Rj in a list.
5. Examine all server racks in the list and select the server

rack Rj closest to Ri using the definition of the “dis-
tance” provided above (as the sum of all weights on the
shortest path).

6. If Rj has available capacity then allocate available ca-
pacity of Rj to our application.

7. Add all neighbors of Rj to the list.
8. Remove Rj from the list.
9. These steps are repeated until all VMs on the list have

been migrated.

Optionally, a pre-sort of the migration list could be per-
formed to ensure the best user outcome. For example, the
simplest sort could be by network utilization, giving first
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priority to VMs with the heaviest dependency on the net-
work. Additionally, the list could be pre-sorted by U , ensur-
ing that an individual user’s VMs were placed and migrated
as a group, maximizing their chance of maintaining the clos-
est possible distance between them.

7 Conclusions and future work

In our study we propose to adapt a well-known structure,
the Voronoi Diagram, to modeling Computer Clouds. We
present a novel Virtual Cloud Model—a combination of
static geographical Delaunay Triangulation, supplemented
with near-real-time network latency information. We de-
scribe one algorithm for placing “low-latency” applications
and another algorithm for placing “high-availability” appli-
cations in the Computer Cloud using VCM. It appears to be
the first application of Voronoi Diagrams to managing the
assignment of applications to physical servers in the Cloud.
The algorithm is scalable and easily localizable and dis-
tributable, which is instrumental in managing tens of mil-
lions of applications running on millions of servers, located
across the world. The proposed system can be used as a part
of a larger system which can take all of the user parame-
ters into account and suggest placement strategies. In our
discussion below on future research we highlight a few of
these areas, specifically Virtual Machine Migration, Band-
width Weighting and Group Placement Constraints.

7.1 Bandwidth weighting

Up to now, we have considered applications for which la-
tency is the most significant network consideration. While
latency generally correlates with bandwidth [25] it is pos-
sible to construct networks and applications optimized for
bandwidth over latency. For these applications we propose
carrying dual edge weights, one for latency and the other
for bandwidth. While multiple VCM edge weights would be
problematic in the case where a given placement would re-
quire consideration of all weights simultaneously, the high-
bandwidth high-delay network requirement could be satis-
fied with such a scheme.

7.2 Group placement constraints

Though default placement considers all members of a group
of virtual machines in a placement request to have equal
connectivity requirements with respect to each other, many
distributed applications have components which may re-
quire specific network affinity to other components. Con-
sider a web application made up of many web servers each
tied to a specific memory cache server, where session affin-
ity desires low latency between specific pairs of web and

cache servers. The simplest form of our placement algo-
rithm, described above, could be modified to allow group
placement through successive calls, favoring closeness of
specific virtual machines to other, previously placed virtual
machines. If the U location parameter is set equal to a pre-
vious Ri which received a placement, the subsequent call
will attempt to place the new virtual machine as close as
possible (respecting any specification of a required avail-
ability separation, of course). However, it is easy to imag-
ine a set of constraints which should be satisfied as a group,
at the time of a single launch request for a set of virtual
machines. For this case, our algorithm could be improved
further by creating a constraint list declaration to be pro-
cessed during the breadth-first search for rack capacity. A set
of physical racks, and/or specific servers would be selected
and reserved, which meet all requirements of the group’s
constraint list, followed by the actual placement through the
reservations. This would allow the group’s placement re-
quest to be processed as an all-or-none transaction, ensuring
all constraints are met.

Additional applications of VCM could be the object of
further research:

1. For example, VCM could be used by Cloud Providers to
identify and cure inefficient routing and network topolo-
gies by examining cases where the weight wl of an edge
is out of proportion with its length.

2. VCM could also be used for making bandwidth reserva-
tions by allocating static routes and reserving resources
for Quality of Service (QoS). Some applications require
predictable, guaranteed performance and VCM might of-
fer an efficient structure to manage and prioritize Cloud
resources to offer a certain guaranteed level of perfor-
mance to some applications.

3. VCM could also be used to share application placement
information across different Clouds. This allows cus-
tomers to control application placement and run their ap-
plications close to each other, but on different Clouds of-
fered by different providers.

4. VCM could also be used to manage Cloud Capacity.
Each placement request creates demand for a particular
placement. In addition to satisfying the request, we could
add phantom points on the VCM graph representing op-
timal placement, thus indicating a need for new capacity
in a region of the VCM. We would need additional in-
formation on total demand, target utilization factors, and
server-rack capacity, to produce a set of candidate points
near which additional capacity is recommended.

5. We could also use VCM to manage donations of excess
capacity to non-for-profit organizations world-wide. By
identifying portions of the cloud with less demand at cer-
tain times we could mark those portions as donation op-
portunities.
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