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Novel concept to guide systolic heart failure medication by repeated
biomarker testing—results from TIME-CHF in context of predictive,
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Abstract
Background It is uncertain whether repeated measurements of a multi-target biomarker panel may help to personalize medical
heart failure (HF) therapy to improve outcome in chronic HF.
Methods This analysis included 499 patients from the Trial of Intensified versus standard Medical therapy in Elderly patients
with Congestive Heart Failure (TIME-CHF), aged ≥ 60 years, LVEF ≤ 45%, and NYHA ≥ II, who had repeated clinical visits
within 19 months follow-up. The interaction between repeated measurements of biomarkers and treatment effects of loop
diuretics, spironolactone, β-blockers, and renin-angiotensin system (RAS) inhibitors on risk of HF hospitalization or death
was investigated in a hypothesis-generating analysis. Generalized estimating equation (GEE) models were used to account for
the correlation between recurrences of events in a patient.
Results One hundred patients (20%) had just one event (HF hospitalization or death) and 87 (17.4%) had at least two events.
Loop diuretic up-titration had a beneficial effect for patients with high interleukin-6 (IL6) or high high-sensitivity C-reactive
protein (hsCRP) (interaction, P = 0.013 and P = 0.001), whereas the opposite was the case with low hsCRP (interaction, P =
0.013). Higher dosage of loop diuretics was associated with poor outcome in patients with high blood urea nitrogen (BUN) or
prealbumin (interaction, P = 0.006 and P = 0.001), but not in those with low levels of these biomarkers. Spironolactone up-
titration was associated with lower risk of HF hospitalization or death in patients with high cystatin C (CysC) (interaction, P =
0.021). β-Blockers up-titration might have a beneficial effect in patients with low soluble fms-like tyrosine kinase-1 (sFlt)
(interaction, P = 0.021). No treatment biomarker interactions were found for RAS inhibition.
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Conclusion The data of this post hoc analysis suggest that decision-making using repeated biomarker measurements may be very
promising in bringing treatment of heart failure to a new level in the context of predictive, preventive, and personalized medicine.
Clearly, prospective testing is needed before this novel concept can be adopted.
Clinical trial registration isrctn.org, identifier: ISRCTN43596477

Keywords Heart failure . Biomarker . Heart failure medication . Predictive preventive personalized medicine . Generalized
estimating equations

Introduction

Medical therapy for chronic heart failure (HF) with reduced
ejection fraction (HFrEF) has evolved greatly over the past
decades [1]. Several medication classes including renin-
angiotensin system (RAS) inhibitors encompassing
angiotensin-converting enzyme (ACE) inhibitors and
angiotensin-receptor blockers (ARBs), β-blockers, and min-
eralocorticoid receptor antagonists (MRAs) have been shown
to improve prognosis in HFrEF and are therefore recommend-
ed in high doses by current guidelines [2, 3]. In addition,
(loop) diuretics are recommended for decongestion to relieve
symptoms [2, 3]. However, in clinical practice, it is often
difficult to implement all medication classes and specially to
reach guideline-recommended dosages, especially in elderly
and comorbid patients [4].

N-Terminal pro B-type brain natriuretic peptide (NT-
proBNP) is a widely used and accepted as diagnostic and prog-
nostic biomarker in HF [5]. The level of NT-proBNP is chang-
ing as response to therapy [6, 7]. Therefore, it was suggested as a
tool to tailor and intensify medical HF therapy. Several trials and
meta-analyses suggest that performing repeated measurements
of (NT-pro)BNP may help to establish guideline-recommended
medical therapy in HFrEF patients to improve outcome [8, 9].
However, the large GUIDE-IT trial [10] that aimed to prove this
concept in a sufficiently large patient population was stopped
early due to futility (https://dcri.org/dcri-announces-halt-guide-
trial/). Moreover, guiding HF therapy by a single marker is
limited because one biomarker cannot cover the extensive
pathophysiological pathways involved in HF. In fact, the
approach to guide therapy using (NT-pro)BNP is based on the
idea that patients at highest risk of poor outcome are in need of
intensified therapy, but there is no specific tailoring of individual
drugs. However, HF is a very complex disease requiring an
integrated approach [11] and different medication classes in
HF interfere with different pathways. Therefore, a combination
of biomarkers that reflect these pathways may be better suited to
indicate which medication class is most important to up- or
possibly down-titrate in a specific patient. That may lead to-
wards predictive, preventive, and personalized medicine in HF,
based on an integrated approach as suggested recently [12].
Such an attempt has, however, never been made. As a first step
towards the development of a biomarker-guided treatment

algorithm for personalized medical HFrEF therapy, we, there-
fore, investigated the interaction between multiple repeatedly
measured biomarkers and the response to the four most impor-
tant classes of HF medication regarding the risk of HF hospital-
ization or death. Thus, the main objective of the study, as a
purely hypothesis-generating study, was to explore which bio-
markers in repeated testing would be most predictive of the
response to HF drugs during follow-up.

Methods

Study and design

Since an important prerequisite to address the objective was
the availability of detailed data on patient characteristics at
different time points, medication over time, and repeatedly
measured multiple biomarkers, we used the database of the
Trial of Intensified versus standardMedical therapy in Elderly
patients with Congestive Heart Failure (TIME-CHF) for this
analysis. The study design, results, and methods of the TIME-
CHF have been previously published in detail [13, 14]. In
brief, the study included 499 patients aged 60 years or older
with symptomatic HF (NYHA ≥ II), left ventricular ejection
fraction (LVEF) ≤ 45%, a history of HF hospitalization within
the preceding year, and a NT-proBNP level higher than twice
the upper limit of normal, from 15 centers in Switzerland and
Germany. Some exclusion criteria applied (e.g., valvular heart
disease needing surgery, recent acute coronary syndrome per-
cutaneous coronary intervention or coronary artery bypass
graft surgery, serum creatinine ≥ 220 μmol/l, for the details
see [13]), but on average, the patients did not differ much from
those included in large registries. Patients were randomized to
either standard (symptom-guided) or intensified (NT-BNP-
guided) medical therapy.

Patients visits took place at the baseline (zero month), were
followed up for 1, 3, 6, 12, and 18 months. For each patient,
time to recurrence of clinical events was recorded, up to
5½ years. The primary endpoint for the present analysis was
the combined endpoint of HF hospitalization or death during
the 18-month trial period plus 1 month of additional follow-
up, i.e., 19 months in total.
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History was taken, patients were clinically investigated,
and blood samples were drawn at every visit. Samples were
stored at − 80 °C until analysis. At the end of the trial, 20
biomarkers were measured from these stored samples from
all available visits. Selection of biomarkers was based on the
representation of different pathways that are known to reflect
important pathophysiological pathways as previously reported
[15]. Daily medication doses for all drugs including the four
drug classes investigated in this analysis, i.e., β-blockers,
RAS inhibitors, spironolactone, and loop diuretics, were avail-
able as described [16].

Data description

The study contains three types of covariates as presented in
Table 1.

Patient characteristics

Age, gender, coronary artery disease (CAD), Charlson comor-
bidity score, LVEF, and history of kidney disease were record-
ed only at the baseline visit. Systolic blood pressure (BPsyst)
and rales on auscultation were recorded at every visit. These
eight characteristics were used as covariates in the multivari-
able model in the present analysis.

Biomarkers

Based on the pathophysiological pathways considered to play
an important role in heart failure and previously findings on
the prognostic significance [15], the following 20 biomarkers
were measured at every visit: soluble fms-like tyrosine kinase-
1 (sFlt), growth differentiation factor 15 (GDF-15), cystatin-c
(CysC), ferritin, interleukin-6 (IL6), placental-like growth fac-
tor (PLGF), sex hormone-binding globulin (SHBG), soluble
transferrin receptor (sTFR), high-sensitivity troponin T
(hsTnT), type 1 procollagen N-terminal pro B-type peptide
(tP1NP), uric acid (uric), blood urea nitrogen (BUN), soluble
ST2 (sST2), N-terminal brain natriuretic peptide (NT-
proBNP), creatinine, high-sensitivity C-reactive protein
(hsCRP), prealbumin (PREA), osteopontin (OPN), mimican,
and insulin-like growth factor-binding protein 7 (IGFBP7).
The assays used to measure these markers are summarized
in the Supplementary Table 1.

HF medications

The four most important classes of HF medications were con-
sidered for this analysis, i.e., β-blockers, RAS inhibitors,
spironolactone, and loop diuretics. Doses of β-blockers and
RAS inhibitors were expressed as percentage of target dose
as previously reported [17] (e.g., 5 mg of ramipril per day is
50% of the target dose of 10 mg/day). For combination of ACE

inhibition and ARB, the relative doses were added and
expressed as a combined RAS-inhibitor dose. Spironolactone
is given in milligrams as it was the only MRA used in TIME-
CHF. Loop diuretics are expressed as equivalent dose of furo-
semide (i.e., 40 mg of furosemide = 10 mg of torasemide =
1 mg of bumetanide). Use and dose of medication were record-
ed daily in each patient.

Outcome measurements

For the present analysis, any HF hospitalization or death oc-
curring at each month during the 19 months follow-up was
considered as outcome events (primary endpoint).

Statistical methods

Patient characteristics, biomarkers at baseline, and average
medication dosages are presented as mean and standard devi-
ation (SD) for continuous normally distributed variables, me-
dian and interquartile range for non-normally distributed con-
tinuous variables, or as numbers and percentages for categor-
ical variables (Table 1). Variables were compared between
those patients without an event and those who experienced
an event (i.e., HF hospitalization or death) within 19 months
follow-up. Differences in these variables per number of events
(none vs. at least one) were assessed using a t test for contin-
uous normally distributed variables, a Mann-Whitney U test
for non-normally distributed continuous variables, and a χ2

test for categorical variables. All tests were two-sided at a 5%
level of significance. Calculations were performed with the
use of the SPSS statistical package version 22.0.

In order to explore which biomarkers would be most pre-
dictive of the response to HF drugs during follow-up period,
we tested whether there was a significant interaction between
biomarkers and further treatment effects of the four medica-
tion classes in our cohort of HF patients, applying the weight-
ed logistic generalized estimating equations (logistic-GEE)
model [18–21]. Logistic-GEE models were performed using
R (version 3.3.2, package ‘geepack’).

To this end, we defined a binary outcome variable with a
value of one if a given patient was hospitalized for HF or died
during a certain time interval of follow-up; otherwise, the
value was zero. Note that the outcome values for a given
patient can change from one time interval to another and that
these outcome values are likely to be correlated. For this anal-
ysis, we discretized using time intervals of 1 month and gave
more weight to the outcome death (two times of HF hospital-
ization) when applying the weighted logistic-GEEmodel [21].
Giving weight of three to the outcome death model resulted to
the same findings as weight of two. For patients who either
died or withdrew from the study before 19 months, the num-
ber of outcome values equals the number of follow-up
months. In order to apply the weighted logistic-GEE model,
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we also included the covariate values at the same time resolu-
tion as the outcomes. Therefore, we up-sampled or down-
sampled the covariate values to monthly values as follows.

The medication covariates were down-sampled to monthly
values by taking the average drug dosage during the previous
month. As the first observation of drug dosage, in the absence of
a previous month, the dosage at baseline was used. The

biomarkers, systolic blood pressure, and rales have been mea-
sured at the scheduled follow-up visits (baseline, 1st, 3rd, 6th,
12th, and 18th months); obviously for these six measurements,
the covariates take the exact value. Then to get the monthly
values between these six visits, we used the last observation
carried forward method (LOCF) and put the value of the previ-
ous visit. For other fixed baseline characteristics (e.g., presence

Table 1 Baseline characteristics
and biomarkers and the average
drug dosages at the first month in
patients without versus with event
(HF hospitalizations or death)
within 19 months

Variables All patients
(n = 499)

No event
(n = 312)

One or more events
(n = 187)

P value*

Baseline characteristics

Age (years), mean (sd) 76.1 (7.5) 75.1 (7.5) 77.9 (7.2) 0.000

Male gender (%) 327 (65.5) 200 (64.1) 127 (67.9) 0.386

CAD (%) 287 (57.5) 153 (49) 134 (71.7) 0.000

Charlson score, median [IQR] 3 [2–4] 3 [2–4] 3 [2–5] 0.000

LVEF, mean (sd) 29.8 (7.8) 29.7 (7.7) 29.9 (8.0) 0.844

Kidney_disease (%) 277 (55.5) 150 (48.1) 127 (67.9) 0.000

BPsyst, mean (sd) 118.5 (18) 119.6 (18) 116.7 (18.1) 0.098

Rales (%) 209 (42.1) 100 (35.5) 99 (52.9) 0.000

NYHA > II (%) 371 (74.3) 219 (70.2) 152 (81.3) 0.006

Biomarkers, median [IQR]

sFlt 98.8 [81–128] 93.9 [77.3–124.2] 105.6 [88.4–132.8] 0.000

GDF15 3940 [2697–5891] 3530 [2416–5125] 4786 [3433–7183] 0.000

CysC 1.7 [1.4–2.1] 1.6 [1.3–1.9] 1.9 [1.6–2.4] 0.000

Ferritin 152 [80–258] 159 [85–261] 151 [66–248] 0.314

IL6 7.3 [3.9–14.1] 6.6 [3.5–11.9] 9.3 [4.6–16.8] 0.001

PLGF 22.6 [18.3–26.5] 22.3 [18.0–26.1] 22.8 [18.8–27.1] 0.222

SHBG 30.1 [22.3–40.6] 30.1 [22.7–42.3] 30.1 [21.4–38.9] 0.232

sTFR 4.1 [3.2–5.4] 3.9 [3.0–5.2] 4.3 [3.3–5.9] 0.016

hsTnT 33.6 [19.1–62.7] 28.6 [17.9–53.3] 45.8 [24.4–85.4] 0.000

tP1NP 36.7 [23.7–55.5] 34.9 [23.7–51.5] 38.2 [23.7–62] 0.170

Uric 7.7 [6.1–9.2] 7.3 [5.9–8.8] 8 [6.7–9.5] 0.003

BUN 10.4 [7.6–13.5] 9.4 [7.3–12] 12.5 [8.6–16.1] 0.000

sST2 35.9 [26–54] 32.5 [24–45.5] 43.5 [31–64.2] 0.000

NT-proBNP 4194 [2270–7414] 3675 [1831–6301] 5465 [3049–9743] 0.000

Creatinine 109 [88–141] 102 [84–127] 132 [99–157] 0.000

hsCRP 6.7 [2.5–15.8] 5.5 [1.9–14.8] 8.9 [3.6–20.4] 0.008

PREA 0.19 [0.15–0.23] 2.00 [0.15–0.24] 0.17 [0.14–0.22] 0.015

OPN 26.0 [17.0–40.9] 22.6 [16.1–33.6] 33.5 [21.2–55.2] 0.000

Mimican 116 [85.9–164] 107 [84.1–145] 143 [93.4–198] 0.000

IGFBP7 242 [201–291] 226 [197–274] 265 [221–315] 0.000

Medications, median [IQR]

RAS inhibitors 59.7 [44.3–100] 59.6 [44.3–100] 50 [40.3–100] 0.048

β-Blockers 25 [11.7–50] 25 [12.1–50] 25 [10.5–46.1] 0.119

Loop diuretics 60.6 [40–92.4] 43.2 [33.1–80] 80 [40–129] 0.000

Spironolactone 1.6 [0–25] 0 [0–25] 12.5 [0–25] 0.003

*P value of testing whether the variables are the same in the mean (for continuous normally distributed variables)
or median (for continuous non-normally distributed variables) or percentage (for categorical variables) between
those patients not hospitalized and those hospitalized or died (two-sided t test or Mann-Whitney U test for
continuous variables and χ2 test for categorical variables)

IQR interquartile range
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of coronary artery disease), we used the baseline value at every
time interval. The data layout and method layout are illustrated
in Supplementary Table 2 and Supplementary Fig. 1,
respectively.

In order to test the interaction between a given biomarker
and medication in the presence of other patient characteristics,
we use the following weighted logistic-GEE model:

logit Pitð Þ ¼ b0 þ b1Ageit þ b2Genderit þ b3CADit þ b4CharlsonScoreit

þ b5LVEFit þ b6Kidneydiseaseit þ b7Ralesit þ b8BPsystit

þ b9Biomarkerit þ b10Medicationit þ βBiomarkerit

�Medicationit; i ¼ 1;…; 499; t ¼ 0;…; 18;

where Pit is the probability of hospitalization or death in the
month following month t (t = 0, means baseline) for patient i
and Covariateit is the value of the covariate at month t for
patient i. Biomarker × medication indicates the interaction
term and β is the interaction coefficient.

In order to investigate whether medications have a different
effect on the risk of HF hospitalization or death for certain
levels of the biomarkers, the interaction coefficient βwas tested
for all possible paired combinations of medication classes and
biomarkers. In this study, we used 1-month time interval for
discretizing the follow-up period when using logistic-GEE
model (Supplementary Table 2). Therefore, the model analyzed
the average effects of the covariates over all time intervals on
the outcome of interest. Thus, the estimated coefficients can be
interpreted as the average effects of the covariates on the risk of
HF hospitalization or death in 1 month.

We used RAMCD-CV [22] (ranking accuracy for models
based on clustered data using one-patient-out cross-valida-
tion) to estimate the predictive performance of the above
logistic-GEE model. This is due to possibly correlated mea-
surements of the same patient that the standard evaluation
criteria (such as the area under the ROC curve (AUC)), which
assume independence of measurements, cannot be used here.
RAMCD-CV can be used for assessing how the results of the
above logistic-GEE model generalize to a future data set.
RAMCD-CV ranges from 0.0 to 1.0, such that the value of
1.0 means that a randomly selected positive outcome (HF
hospitalization or death) always gets a higher score, by the
applied logistic-GEE model, than a randomly selected nega-
tive outcome (no HF hospitalization or death). In this case, the
logistic-GEE model is perfect in differentiating the positive
and negative outcomes. In the opposite scenario, the value
of RAMCD-CVequals 0.0, and when the logistic-GEE model
is an intercept-only model, it is equal to 0.5. We note that
when the patients’ measurements are uncorrelated,
RAMCD-CV is equal to the AUC [22].

In this paper, only those logistic-GEE models with a good
predictive performance—set at a RAMCD-CVof > 0.7—were

predefined as being statistically solid and meaningful (see
Supplementary Fig. 1).

Results

Of the 499 patients, 312 (62.5%) did not experience any HF
hospitalization and were alive after 19 months, 100 (20%) had
one, and 87 (17.4%) had at least two HF-related events (HF
hospitalization or death) within the 19-month follow-up peri-
od. The frequency of HF hospitalizations (including death)
during the 19-month follow-up is presented in Fig. 1.

Concentrations of biomarkers, baseline characteristics, and
average drug dosages during the first month are shown in
Table 1. In comparison to patients without event, those with
event(s) were older and more likely to have coronary artery
disease, kidney disease, rales, more comorbidities, and higher
NYHA class. Moreover, they had higher sFlt, GDF15, CysC,
IL6, sTFR, hsTnT, uric acid, BUN, sST2, NT-proBNP, creat-
inine, and hsCRP at baseline and higher average dosages of
loop diuretic and spironolactone during the first month,
whereas RAS-inhibitor dose was lower.

The P values of testing interaction (biomarker × medica-
tion) in 84 weighted logistic-GEE models (covering all possi-
ble paired combinations of 4 medications and 20 biomarkers
and PLGF/sFlt) and their corresponding RAMCD-CVs are
presented in Table 2. We note that in our analysis for each
medication, we have 21 interaction tests. Therefore, due to
the multiple testing, at a 5% level of significance, the
Bonferroni correction suggests to reject the null hypothesis
(H0: β = 0) for each test with the P value less than 0.05/21 =
0.0024. However, since in this study the results are regarded
as hypothesis generating, we consider the interaction tests
with P value less than 0.05 as being significant. Moreover, P
value adjustments may raise several practical objections [23].
For example, you may increase the chance of making a type II
error [24, 25].

The results indicate that interactions of (i) sFlt and tP1NP
with treatment effect of β-blockers, (ii) IL6, BUN, hsCRP,
and PREAwith loop diuretics and (iii) CysC and PLGF with
spironolactone were significant. That means that these bio-
markers might indicate which medication class is most impor-
tant to up-titrate or possibly down-titrate for improvement of
outcome. No significant interactions between biomarkers and
RAS inhibitors were found.

Figure 2 depicts the models with P value of biomarker—
medication interaction lower than 0.05, for which RAMCD-
CV > 0.7. It shows the effect of different levels of HF medi-
cations on probability of HF hospitalization or death in a
month for patients with different levels of biomarkers. It sug-
gests a beneficial effect of higher doses of loop diuretics in
patients with high IL6 and/or high hsCRP. Higher loop diuret-
ic doses seem to have adverse effects in patients with low
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hsCRP and/or high BUN and PREA. In contrast, high doses of
loop diuretics do not seem to harm in patients with low BUN
and PREA values. Spironolactone was associated with better
outcome (low risk of HF or death) for patients with high
CysC. It also demonstrates that up-titration of β-blockers for
patients with high sFlt might not decrease the risk of HF or
death, but that such patients might be better off with low β-
blockers doses. Table 3 summarizes the main findings and
provides potential therapeutic implications based on the
results.

Discussion

This study investigated the hypothesis whether biomarkers
may be able to predict the response to therapy in HF.
Several significant biomarker treatment-effect interactions
were found. We consider these results as promising signals
which may predict a specific response to therapy in individual
patients. It must be noted that this study is purely hypothesis
generating regarding a novel approach to personalize medi-
cine in HF with the use of biomarkers. Clearly, the results of
this study need to be tested in prospective intervention studies
before individualized therapy may be applied to HF patients.
But our data provide the first attempt to not just predict out-
come, but rather to select specific HF therapy based on indi-
vidual biomarker patterns with the aim to improve outcome.

The need for such an individualized therapy approach in
HF has been raised on many occasions, supported by several

facts. Thus in real-life practice, there is still a very high mor-
tality and morbidity despite drug development in the past de-
cades [26]. Moreover, it is often difficult or sometimes even
impossible to establish guideline-recommended drug therapy
in HF [3, 4]. In such cases, it would be crucial to know which
drug may be most important to be given in high doses to
improve prognosis and which may be less important. At pres-
ent, it is impossible to make this decision for an individual
patient, and HF drugs have been investigated on top of previ-
ous established therapies only, i.e., β-blockers on top of ACE
inhibitors and MRAs on top of both previous drugs. Despite a
beneficial effect of these drugs as shown in large trials, not
every drug will always have the same benefit in a specific
patient or patient subgroup. Given the large heterogeneity of
HF patients in terms of etiology and comorbidities, a Bone-
size-fits-all^ approach is likely not optimal [26]. The dose of
loop diuretics is even more so a clinical challenge and is large-
ly intuitive. Guidelines recommend diuretics for symptom re-
lief of congestion and recommend to lower diuretics whenever
possible [3], but in many instances, they are inappropriately
withheld or maintained because of fear of renal dysfunction or
fear of decompensation, respectively.

Considerations regarding statistics

This investigation is highly strengthened by the fact that both
the covariates (i.e., biomarkers at the beginning of a given
time interval, medication, and clinical covariates) and the out-
come (i.e., HF hospitalization or death at the end of a given

Fig. 1 The frequency of HF
hospitalizations (including death)
during 19-month follow-up
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Table 2 Results of the interaction (biomarker × medication) coefficient
β tests using weighted logistic-GEE models (adjusted for age, gender,
coronary artery disease as main cause of HF, Charlson Score, left ventricle

ejection fraction, kidney disease, rales, systolic blood pressure, medica-
tion, and biomarker in logarithmic form) and their corresponding
RAMCD-CVs

Biomarkers β-Blockers LOOP diuretics Spironolactone RAS blockers

sFlt β (CI*) 2.45 (0.37, 4.52) − 0.8 (2.394,0.793) 2.27 (− 1.83, 6.36) 0.63 (− 1.21, 2.47)
P value** 0.02 0.33 0.28 0.50

RAMCD-CV*** 0.74 0.76 0.73 0.74

GDF15 β (CI) 0.33 (− 0.82, 1.49) 0.57 (− 0.902, 2.039) − 1.10 (− 3.41, 1.22) − 0.82 (− 1.86, 0.23)
P value 0.57 0.45 0.35 0.13

RAMCD-CV 0.75 0.76 0.75 0.75

CysC β (CI) 0.21 (− 1.72, 2.14) 0.48 (− 1.16, 2.13) − 2.73 (− 5.06, − 0.40) 0.66 (− 0.88, 2.19)
P value 0.83 0.57 0.02 0.40

RAMCD-CV 0.70 0.72 0.70 0.71

Ferritin β (CI) − 0.58 (− 2.27, 1.11) 0.09 (− 1.52, 1.70) − 1.49 (− 4.37, 1.40) − 0.70 (− 2.60, 1.21)
P value 0.50 0.91 0.31 0.47

RAMCD-CV 0.66 0.70 0.66 0.67

IL6 β (CI) 0.76 (− 0.61, 2.12) − 2.74 (− 4.90, − 0.58) − 1.22 (− 4.30, 1.86) − 0.53 (− 1.85, 0.80)
P value 0.27 0.01 0.43 0.43

RAMCD-CV 0.73 0.75 0.73 0.73

PLGF β (CI) 3.67 (− 1.90, 9.23) − 1.63 (− 6.60, 3.34) − 7.90 (− 15.64, − 0.15) 2.01 (− 2.08, 6.09)
P value 0.20 0.52 0.04 0.33

RAMCD-CV 0.67 0.71 0.66 0.67

SHBG β (CI) − 0.79 (− 3.64, 2.06) 0.27 (− 2.88, 3.42) − 2.09 (− 7.75, 3.58) − 2.70 (− 6.08, 0.68)
P value 0.58 0.86 0.47 0.12

RAMCD-CV 0.65 0.69 0.65 0.67

sTFR β (CI) 1.35 (− 0.20, 2.90) − 1.14 (− 2.85, 0.57) 0.19 (− 2.75, 3.12) − 0.11 (− 1.60, 1.38)
P value 0.09 0.19 0.90 0.88

RAMCD-CV 0.71 0.73 0.70 0.71

hsTnT β (CI) − 0.77 (− 2.64, 1.09) 1.11 (− 2.29, 4.51) 1.42 (− 2.20, 5.04) − 0.07 (− 2.14, 2.00)
P value 0.42 0.52 0.44 0.95

RAMCD-CV 0.70 0.73 0.70 0.71

tP1NP β (CI) 1.84 (0.04, 3.65) − 0.66 (− 2.70, 1.38) − 1.28 (− 5.38, 2.82) − 0.98 (− 2.79, 0.83)
P value 0.04 0.52 0.54 0.28

RAMCD-CV 0.67 0.71 0.66 0.67

Uric β (CI) − 2.92 (− 7.18, 1.35) 1.25 (− 2.23, 4.73) − 1.98 (− 7.26, 3.31) 3.00 (− 2.29, 8.29)
P value 0.18 0.48 0.46 0.27

RAMCD-CV 0.67 0.70 0.66 0.68

BUN β (CI) − 0.17 (− 2.08, 1.73) 2.35 (0.67, 4.03) − 1.31 (− 3.60, 0.98) 0.54 (− 1.26, 2.34)
P value 0.86 0.00 0.26 0.55

RAMCD-CV 0.67 0.70 0.67 0.69

sST2 β (CI) 0.70 (− 1.47, 2.87) 1.41 (− 1.12, 3.95) − 0.97 (− 4.91, 2.96) 0.83 (− 1.15, 2.80)
P value 0.53 0.27 0.63 0.41

RAMCD-CV 0.76 0.77 0.76 0.77

NT-proBNP β (CI) 0.27 (− 1.92, 2.45) − 0.36 (− 2.84, 2.11) 0.30 (− 3.94, 4.53) 2.25 (− 0.14, 4.63)
P value 0.81 0.77 0.89 0.06

RAMCD-CV 0.75 0.76 0.74 0.76

Creatinine β (CI) − 0.25 (− 2.37, 1.87) 1.56 (− 0.12, 3.25) − 2.60 (− 5.88, 0.69) 0.56 (− 1.42, 2.53)
P value 0.82 0.07 0.12 0.58

RAMCD-CV 0.69 0.71 0.68 0.70

hsCRP β (CI) 0.98 (− 0.73, 2.68) − 3.09 (− 4.95, − 1.23) − 2.20 (− 5.71, 1.31) 0.70 (− 0.94, 2.34)
P value 0.26 0.00 0.21 0.40

EPMA Journal (2018) 9:161–173 167



time interval) have been measured at multiple points in time.
These multiple time points help to make the interactions we
were investigating clinically relevant, by only looking into the
treatment effect that occurred after the measurement of the
biomarker in more than just one single time point. However,
the difficulty with investigating repeated measurements lies
within the fact that the outcomes for a single patient are cor-
related, because a patient with a hospitalization is prone to
suffer from a re-hospitalization or die. Moreover, repeated
measurements of biomarkers, medication, and other covari-
ates are correlated as well. Therefore, the correlation between
outcomes and variation of covariates in time needs to be taken
into account for proper analysis.

One approach available for analyzing such data is using
survival analysis methods, like time-dependent Cox regres-
sion models or recurrent analysis methods such as the
Prentice, Williams, and Peterson model [27]. However, these
methods take into account the values of time-dependent co-
variates only at the time of events (e.g., time of death or HF
hospitalization), and the covariate values between events are
disregarded, which was not acceptable to address the objective
of this analysis. More proper alternative methods are longitu-
dinal analysis methods [28] that not only take into account
correlation in hospitalizations but also can involve more in-
formation about the variation of biomarkers and medications
and their interactions over time [22].

Among longitudinal methods, the GEE models [18–20]
have become a very popular regression model in medical

studies [29–33]. The most attractive property of GEE models
is that the resulting estimation of regression coefficients of
those models is easy to interpret, especially for binary out-
comes. Moreover, applying GEE models, scholars may hy-
pothesize different structures of correlation between out-
comes, but the resulting estimation of regression coefficients
of GEE models is consistent and asymptotically normal, even
when the correlation structure is imprecisely specified [18,
20]. Another advantage of GEE models for binary outcome
(logistic-GEE models) is that with the use of RAMCD-CV,
not only we can assess the adequacy of the model but also we
can assess how the obtained results will generalize to a future
data set [22].

Therefore in this study, we applied the weighted logistic-
GEE model that applies a logistic regression model not only
for the first, but also for repeated hospitalizations or death to
test the interaction of biomarkers with the treatment effects of
medications over time.

Underlying pathways of biomarker drug interactions

First, we found a significant interaction between sFlt and β-
blockers suggesting that patients with a high sFlt concentra-
tion may have a worse outcome with higher doses of β-
blockers as compared to those on lower doses. Patients with
low sFlt levels have a more favorable outcome overall, largely
irrespective of β-blocker dose in our population. This raises
the hypothesis that up-titration of β-blockers should be

Table 2 (continued)

Biomarkers β-Blockers LOOP diuretics Spironolactone RAS blockers

RAMCD-CV 0.72 0.75 0.71 0.72

PREA β (CI) − 1.02 (− 2.88, 0.85) 3.21 (1.20, 5.23) − 0.22 (− 3.66, 3.22) 0.17 (− 2.06, 2.41)
P value 0.29 0.00 0.90 0.88

RAMCD-CV 0.69 0.74 0.69 0.70

OPN β (CI) 1.21 (− 1.07, 3.50) − 0.07 (− 2.60, 2.46) − 4.66 (− 10.10, 0.78) − 0.30 (− 2.51, 1.91)
P value 0.30 0.96 0.09 0.79

RAMCD-CV 0.70 0.72 0.70 0.71

Mimican β (CI) 0.06 (− 2.25, 2.37) 1.52 (− 1.00, 4.04) − 3.60 (− 7.48, 0.29) 0.57 (− 1.73, 2.87)
P value 0.96 0.24 0.07 0.63

RAMCD-CV 0.67 0.70 0.67 0.68

IGFBP7 β (CI) 0.52 (− 1.00, 2.03) − 0.09 (− 1.52, 1.34) − 3.13 (− 6.98, 0.73) 0.25 (− 1.20, 1.70)
P value 0.50 0.90 0.11 0.74

RAMCD-CV 0.70 0.73 0.70 0.71

PLGF/sFlt β (CI) − 2.09 (− 4.8, 0.60) − 0.16 (− 3.00, 2.67) − 2.75 (− 7.55, 2.05) − 0.27 (− 2.68, 2.15)
P value 0.12 0.90 0.26 0.82

RAMCD-CV 0.71 0.73 0.71 0.72

RAMCD-CV ranking accuracy for models based on clustered data using one-patient-out cross-validation

*CI: 95% confidence interval

**P value: p value of the interaction effect β in weighted logistic-GEE model

***RAMCD-CV for the whole weighted logistic-GEE model including the covariates and the interaction (biomarker × medication)
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avoided in patients with high sFlt levels. sFlt is the soluble
form of the endothelial- and macrophage-bound VEGF-recep-
tor Flt-1. sFlt is formed after alternative splicing of Flt-1 RNA
[34] and acts as a decoy receptor, thereby inhibiting VEGF
and PLGF. This is assumed to result in anti-angiogenetic and
anti-inflammatory effects [34]. sFlt concentrations are in-
creased in HF [35, 36], myocardial infarction [37], preeclamp-
sia, and coronary disease [34], and higher concentrations of
sFlt are associated with adverse outcome in these disease

entities [35–39]. Higher sFlt is also associated with more se-
vere HF according to NYHA class and NT-proBNP [35, 38].
Nevertheless, the exact role of sFlt in the pathophysiology of
HF and cardiovascular disease is not yet fully unraveled. sFlt-
knockout mice developed more overt HF after aortic ligation,
but on the other hand, administration of adenovirus expressing
sFlt-1 caused diastolic dysfunction and decreased vascular
density in wildtype mice [34]. Thus, both extremes of sFlt
may have negative effects in the pathogenesis of HF, requiring

Fig. 2 Effect of different levels of HF medications and biomarkers on the
risk of HF hospitalization or death. *P: probability of HF hospitalization
or death in a month. Range of biomarkers (in logarithmic form) and

medications are standardized between − 1 and 1, for the range of the
biomarker and medication concentration in our population
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a precise balance in the sFlt /PLGF pathway for adequate
homeostasis. Another explanation could be that—analogous
to natriuretic peptides—sFlt production is on itself a protective
response to cardiac or vascular injury, but sFlt is associated
with worse outcome because it also reflects the presence and
magnitude of the injury itself. With regard to the interaction of
sFlt with β-blockers on outcome in our study, it is interesting
to note that baseline β-blocker use was independently associ-
ated with a lower baseline sFlt concentration previously [38].
Although this was a cross-sectional finding, it might suggest
that β-blockers lower sFlt, but if this cannot be achieved, high
doses of β-blockers might be less favorable. Another expla-
nation could be that an elevated sFlt reflects an advanced stage
of HF where β-blockers are difficult to up-titrate and might
result in (temporary) deterioration. This would mean that other
drugs might be given first to improve HF and reduce sFlt and
β-blocker up-titration might be postponed. In addition, β-
blockers have been found to have anti-angiogenetic effects
in cancer [40]. Although to the best of our knowledge, such
anti-angiogenetic effects ofβ-blockers have not been properly
investigated in HF, it might be speculated that high levels of
sFlt acting anti-angiogenetically may cause the potential anti-
angiogenetic effects of β-blockers becoming evident.
Obviously, this explanation is speculative and it needs to be
investigated in animal studies if there is indeed such an inter-
action in HF.

Second, there was a significant interaction between CysC
and spironolactone. Thus, patients with a low CysC had a less
favorable prognosis on higher doses of spironolactone com-
pared to those on lower doses, whereas patients with a high
CysC had a better outcome with high versus low doses of
spironolactone. We note that the results showed also the same

pattern for BUN and creatinine, although the interactions were
not significant (data is not shown). CysC is associated with
inflammation and is the most sensitive marker of renal func-
tion in terms of glomerular filtration rate [41]. CysC is strong-
ly associated with risk of cardiovascular disease (CVD) and
adverse outcome in HF, but also in the general population.
Despite some biological plausible links between CysC and
CVD and HF, a recent Mendelian randomization study found
no causative role for CysC in the development of CVD nor in
the development of HF. Nevertheless, it remains a very reli-
able biomarker of high risk of events and disease progression
in HF. We are not aware of any previous publication about the
interaction between CysC and MRAs such as spironolactone.
However, we and others previously found a similar treatment
interaction with serum creatinine levels [16, 42]. A possible
explanation could be that an impaired renal function reflected
by elevated CysC or creatinine in the light of chronic HF is
usually a form of cardiorenal syndrome which can be im-
proved when HF is improved. Our results suggest that in this
case, the preferred HF drug could be spironolactone. MRAs
are considered to have anti-fibrotic and anti-inflammatory ef-
fects, which can also support the link between CysC and
spironolactone that we found.

Finally, we found four biomarkers that interacted signif-
icantly with loop diuretic dose and outcome. First, in pa-
tients with high levels of BUN, higher doses of loop di-
uretics (HDLD) were associated with worse outcome,
while this negative association with HDLD was not ob-
served in patients with low BUN. Similar results were pre-
viously found by Testani et al. [43] evaluating 2456 pa-
tients in the BEST trial. In that study, HDLD was associ-
ated with worse outcome when BUN was ≥ 21 mg/dl, but

Table 3 Summary of hypothesis
and main results of the study and
potential future clinical
implications

This study Potential future clinical impact

Hypothesis

Circulating biomarkers may predict
response to single HF drugs in
individual patients with HFrEF
regarding outcome.

Tailored drug treatment in HFrEF patients, i.e.,
patients receive high doses of drugs only if
they benefit from them, but low doses
(or even no) if not required or potentially harmful.

Results

sFlt levels Low dose β-blocker beneficial if
sFlt-levels were high

High sFlt➔ no up-titration or reduction of β-blocker.
Use other HF drugs first.

IL6/hs-CRP High-dose loop diuretics beneficial
if inflammation markers were high.
Opposite if markers were low.

High inflammation markers➔ increase loop diuretics.

Low inflammation markers ➔ reduce loop diuretics.

BUN High loop diuretics harmful if BUN
was high.

Poor renal function ➔ increases spironolactone and
reduced loop diuretics.

Good renal function➔ avoids high spironolactone
doses and use loop diuretics liberally.

CysC High spironolactone dose beneficial
if CysC levels were high. Opposite
of CysC levels were low.

PREA High doses of loop diuretics beneficial
if PREA levels are low.

Low PREA levels➔ increase loop diuretics.
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this was not the case when BUN was low. In fact, after
controlling for possible confounders, HDLD actually was
associated with improved survival in those with low BUN,
but with reduced survival in those with high BUN [43].
This interaction between BUN and loop diuretics was con-
firmed by Nunez et al. [44], who further elaborated on this
by adding CA125 to the model, leading to a further spec-
ification of subgroups with differential risk associated with
HDLD. Also supportive of our findings, higher levels of
BUN were previously associated with poor diuretic re-
sponse in HF patients with acute decompensation [45].
PREA revealed an interaction with loop diuretics in a sim-
ilar direction—HDLD was associated with worse outcome
when PREAwas high, whereas HDLD was associated with
good outcome when PREAwas low. A recent study linked
signs of intestinal congestion with elevated right atrial
pressures and with cachexia [46]. Additionally, PREA
was lower in patients with hypoalbuminemia [47], and
both low PREA itself [48] and the presence of hypoalbu-
minemia [47] were associated with adverse outcome. This
supports the idea that patients with low concentrations of
PREA could have a benefit of HDLD because low PREA
indirectly reflects a state of chronic venous congestion.
Additionally, both low PREA [48] and cachexia in HF
[46] are linked with increased inflammation, linking this
interaction also to the inflammation markers. In this regard,
two markers of inflammation—HSCRP and IL6—showed
similar patterns of interaction with loop diuretics on out-
come in the present analysis. Thus, when inflammation
markers were low, HDLD was associated with an increased
risk, whereas when inflammation markers were high,
HDLD was associated with lower risk. Pro-inflammatory
activation is linked to congestion [46, 49], but is also con-
sidered a major underlying mechanism of HF progression
and a poor prognostic factor, supporting the interaction we
found for inflammatory markers and loop diuretics.

Limitations

This is a post hoc exploratory analysis of data from a randomized
trial. Therefore, our results must be seen as means to identify
potential relationships and to generate hypotheses. Further re-
search—preferably prospective—is needed to confirm these in-
teractions and their mechanisms. We are not aware of any other
study in HF patients where repeated biomarker measurements
and such detailed information on medication are available for
retrospective validation of our results. In addition, animal studies
are required to test the hypotheses raised by our findings.
Possible limitations of this analysis are selection bias, reverse
causality, and residual confounding factors. Nevertheless, be-
cause patients in the TIME-CHF trial were all attempted to be
up-titrated on HF drugs either based on clinical symptoms and/or
based on NT-proBNP levels, this may limit the selection bias for

starting or up-titrating drugs compared to other cohorts. RAS
inhibitors were given in rather high doses in almost all patients,
and this may also explain why we did not find any interactions
between RAS inhibition and biomarkers. Finally, stratification of
patients into important subgroups would provide additional in-
sight into the interaction between biomarkers and treatment re-
sponse. However, the number of patients is not sufficient to
reliably perform such analyses. Nevertheless, interactions be-
tween treatment response and comorbidities have been found
in the main analysis [14]. Although different comorbidities were
considered in multivariable analyses, not significantly influenc-
ing the results, the statistical model may not fully account for
potential differences in subgroups.

Conclusion

Our analysis suggests that repeated measurements of bio-
markers might be helpful to individually tailor HF treatment
to optimize the balance between beneficial and adverse effects
of HF drugs. This might also be economically beneficial since
patients would have better outcome (less hospitalizations, less
side effects) with less medication, thereby reducing costs.
However, this novel predictive, preventive, and personalized
medicine approach clearly needs confirmation in other stud-
ies. Our data provide ground for prospective testing which
will be needed before this novel and innovative concept can
be adopted.

Expert recommendations

Decision-making using such novel multiple biomarker ap-
proach may be very promising in bringing treatment of heart
failure to a new level in the context of predictive, preventive,
and personalized medicine. Table 3 provides potential clinical
implications to adapt individual medication based on bio-
marker levels. Obviously, prospective testing for multiple
drugs to guide individualized therapy should be different from
standard randomized clinical trials, including sequential, mul-
tiple assessment, randomized trials (https://methodology.psu.
edu/ra/adap-inter).
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