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Abstract
Flooded savannas are valuable and extensive ecosystems in South America, but not widely studied. In this study, we quantify 
the spatial distribution of soil organic carbon (SOC) content and stocks in the Casanare flooded savannas. We sampled 80 
sites at two soil-depth intervals (0-10 and 10-30 cm), where SOC values ranged from 0.41% in the surface and 0.23% in the 
sub-surface of drier soils to over 14.50% and 7.51%, in soils that experienced seasonal flooding. Spatial predictions of SOC 
were done through two digital soil mapping (DSM) approaches: Expert-Knowledge (EK) and Random-Forest (RF). Although 
both approaches performed well, EK was slightly superior at predicting SOC. Covariates derived from vegetation cover, 
topography, and soil properties were identified as key drivers in controlling its distribution. Total SOC stocks were 55.07 Mt 
with a mean density of 83.1±24.3 t·ha-1 in the first 30 cm of soil, with 12.3% of this located in areas that experience long 
periods of flooding (semi-seasonal savannas) , which represented only 7.9% of the study area (664,752 ha). Although the 
study area represents only 15% of the total area of the Casanare department, the intensive pressure of human development 
could result in the reduction of its SOC stocks and the release of important amounts of greenhouse gases into the atmosphere. 
At regional level, the impact of a large-scale land use conversions of the flooded Llanos del Orinoco ecosystem area (15 
Mha) could transform this area in a future source of important global emissions if correct decisions are not taken regarding 
the land management of the region.
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Resumen
Las sábanas inundadas son ecosistemas extensos y valiosos en América del Sur, pero no han sido ampliamente estudiados. 
En este estudio, cuantificamos la distribución espacial del contenido y las reservas de carbono orgánico del suelo (COS) 
en las sábanas inundadas de Casanare. Se muestrearon 80 sitios a dos diferentes profundidades del suelo (0-10 y 10-30 
cm), donde los valores de COS variaron de 0,41% en la superficie y 0,23% en la subsuperficie de los suelos más secos, a 
14,50% y 7,51% en suelos que experimentan inundaciones estacionales. Las predicciones espaciales de COS se estimaron a 
través de dos enfoques de mapeo digital de suelos (MDS): Expert-Knowledge (EK) y Random-Forest (RF). Aunque ambos 
enfoques presentan un buen desempeño, EK fue ligeramente superior en la predicción del COS. Las covariables derivadas a 
partir de la cobertura vegetal, la topografía y las propiedades del suelo se identificaron como variables clave en explicar su 
distribución. Las reservas totales de COS fueron de 55,07 Mt, con una densidad media de 83,1±24,3 t·ha-1 en los primeros 
30 cm del suelo, de los cuales el 12,3% se localizan en zonas que experimentan largos periodos de inundación (sabanas 
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semiestacionales), lo que representa solo 7,9% del área de estudio (664.752 ha). Aunque el área de estudio representa solo 
el 15% del área total del departamento de Casanare, la intensa presión producto del desarrollo humano podría resultar en la 
reducción de sus reservas de COS y la liberación de importantes cantidades de gases de efecto invernadero a la atmósfera. 
A nivel regional, el impacto de una conversión del uso del suelo a gran escala en los ecosistemas inundables de los Llanos 
del Orinoco (15 Mha) podría transformar esta área en una fuente futura de importantes emisiones globales si no se toman 
decisiones correctas en cuanto al manejo del suelo de la región.

Palabras clave  Mapeo digital de suelos · Random forest · Expert Knowledge · Secuestro de carbono · Humedales · Factores 
de formación

Introduction

Tropical wetlands provide important ecosystem services, 
including global regulating roles in biogeochemical cycles 
and biosphere-atmosphere interactions. They store large 
amounts of carbon, are a sink for atmospheric CO2, and 
make up around 60-80% of the natural atmospheric meth-
ane (CH4) source (Chmura et al. 2003; Köchy et al. 2015; 
Rice et al. 2016; Saunois et al. 2020; Whiting and Chanton 
2001; Zhu et al. 2017). In addition to being part of natural 
hydrology systems and to ensuring water quality and regu-
lating its flow (IPBES 2019), they are also key reservoirs 
of biodiversity, they support fisheries, they are important 
sources of food, filter and retain sediments, and are cultur-
ally and aesthetically important to many communities and 
cultures (Mitsch et al. 2015; Shiel et al. 2016). One study 
estimated that 25% of the global value of ecosystem services 
is provided by wetlands (Costanza et al. 2014).

Wetlands soils, under regular anaerobic conditions, 
reduce the decomposition of organic plant materials, result-
ing in the accumulation of organic matter. This enables 
wetlands to effectively store substantial amounts of soil 
organic carbon (SOC) (Nahlik and Fennessy 2016). Despite 
wetlands only occupying about 5-8% of the earth's surface, 
(Mitsch and Gosselink 2007), point out that they store more 
SOC than all types of vegetation on earth. Wetlands are 
believed to store between 20-30% of the world's soil organic 
carbon (SOC), and in some cases, the SOC concentration 
can exceed 40% (Vepraskas and Craft 2016). This character-
istic makes wetlands a key ecosystem for regulating water, 
climate, and biodiversity.

In this order, the development of accurate maps of wet-
lands and soil organic carbon (SOC) is crucial, as it enables 
an adequate inventory and monitoring of these carbon-rich 
ecosystems, leading to better quantifications of SOC stocks 
and greenhouse gas (GHG) emissions (Page et al. 2011). As 
stated by Minasny et al. (2020), a better and rapid estima-
tion of peatlands distribution allows stakeholders to make 
informed decisions regarding the management, conserva-
tion, and restoration of these ecosystems. Nonetheless, the 
extent and state of tropical wetlands and the quantification of 
soil organic carbon stocks are still uncertain (Xu et al. 2018). 

Köchy et al. (2015) estimated that they cover around 9% of 
the tropical land area and contain around 40 Pg of soil organic 
carbon (SOC), mostly in floodplains and marshes. In addition 
to uncertainty about the extent of tropical wetlands, the carbon 
density or carbon stock per unit area is also uncertain. Assess-
ments of SOC storage vary widely due to both definition and 
methodological differences, from about 120 Gt to 535 Pg of 
SOC (Mitra et al. 2005). This is an important constraint in 
earth systems modelling, where lack of data on the carbon 
balance and gas fluxes in tropical wetlands limits accurate pre-
dictions about future climate and the importance of wetlands 
in climate change (Melton et al. 2013; Sjögersten et al. 2014).

South America has the largest extent of tropical wetlands, 
most of them found in floodplains where they are subject to 
seasonal fluctuations in water levels (Gumbricht et al. 2017; 
Junk et al. 2013). The continent has large extents of season-
ally flooded savannas, including the Pantanal, Bananal Island, 
and the Lavrado in Brazil; the Iberá in Argentina, the western 
Guianan flooded savannas in, Guiana, Venezuela, and Suri-
name; the Llanos de Moxos in Bolivia; and the Llanos del 
Orinoco (Barbosa et al. 2012; Hamilton et al. 2002), which is 
the subject of this study. The Llanos del Orinoco cover about 
38.31 Mha (Barreto and Armenteras 2020) in the Orinoco 
River Basin of Colombia and Venezuela. The Llanos del Ori-
noco landscape is a mosaic of ecosystems that include forests, 
extensive areas of Moriche (Mauritia flexuosa) palms, upland 
savannas, and flooded savannas. The flooded area in this region 
shows significant interannual variation. Hamilton et al. (2004) 
found that the long-term mean inundation area was about 3.47 
Mha, with a median area of 2.53 Mha, which makes it the sec-
ond largest flooded savanna wetland in South America after the 
Brazilian Pantanal. For this study we focused on the flooded 
savannas of the Casanare in Colombia, which drains into the 
Meta River, one of the major tributaries of the Orinoco River 
that originates in the Andes. Few data exist for this region, 
but the area is undergoing rapid change with the introduction 
of exotic pasture grasses and extensive areas of monoculture 
cropping. Additionally, fire has been used in this landscape 
for centuries, although its duration and intensity in the flooded 
savannas typically is low due to the presence of rocky out-
crops, sand dunes, and low biomass on sandy patches, which 
are spread throughout the landscape (Lasso et al. 2010).
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SOC accumulation in flooded savannas appears to be 
related to length of flooding; short-term measurements in 
the flooded Colombian Llanos del Orinoco suggest stable 
to slightly accumulating SOC stocks (Vega et al. 2014). The 
objectives of the present study were to map the spatial dis-
tribution of SOC content and stocks throughout two digital 
soil mapping (DSM) approaches and determine the factors 
that influence their variability. To do this, we focused on the 
eastern Casanare Department in Colombia, where the largest 
extents of flooded savannas in the Orinoco Basin are located 
(Gumbricht et al. 2017; Hamilton et al. 2004).

Material and Methods

Study Area

The study area (Fig. 1), known as the “Sabanas Inunda-
bles de Casanare” (Casanare flooded savannas) is part of 
an extensive floodplain ecosystem located in the “Llanos” 
ecoregion in the Orinoco River Basin (Olson et al. 2001). 
With a total area of 664,752 ha, the study area is located 
between the latitudes 6.30°N and 5.52°N and longitudes 
71.07°W and 69.84°W. It has an elevation ranging from 78 
to 146 m.a.s.l. and an average slope of 1.55 degrees. The 
annual average temperature in the region is approximately 
26°C, with an average maximum temperature of 33°C during 
the dry season and an average minimum of 21°C during the 

wet season. Rainfall distribution follows a unimodal regime 
with total annual average precipitation of 2,684 mm, char-
acterized by a rainy season from April to November, during 
which most of the area is flooded, and a short dry season 
from December to March when the water drains and many of 
the flooded wetlands dry out (Buriticá Mejia 2016; Castillo-
Figueroa et al. 2019; Lasso et al. 2010).

The land cover is mainly composed of native 
savanna, native forest, and permanent water bodies. 
Native savanna is sub-classified in this study as sea-
sonal savanna, hyperseasonal savanna, and semisea-
sonal savanna, based on its vegetation and soil-water 
conditions (Cabrera-Amaya et al. 2020; Mora-Fernández 
and Peñuela-Recio 2013; Peñuela et al. 2014; Romero 
Duque et al. 2018; Sarmiento 1983). Seasonal savanna is 
a tree savanna, characterized by discontinuous grasses, 
dicotyledons and herbaceous vegetation, with the pres-
ence of scattered trees and shrubs. It develops under 
a bi-seasonal regime marked by a dry season (4 to 6 
months) and a wet season, in which it remains f lood 
free. In the dry season, the vegetation acquires a wilted 
appearance, and large numbers of plants die off, increas-
ing fire frequency. This ecosystem is located mainly on 
plain-convex banks, continental dunes and sandy depos-
its, where coarse-textured soils, compaction, and low 
water availability create difficult conditions for vegeta-
tion growth. Hyperseasonal savanna is the most widely 
spread ecosystem in the region. It is mostly a treeless 

Fig. 1   Study location in the Casanare Flooded Savannas, Colombia. a) location within the tropical savannas ecoregion “Llanos” (Olson et al. 
2001) b) position within the Casanare department (dark red line) and c) local land cover map of the study area
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savanna, where perennial grasses and annual dicotyle-
dons predominate and sporadic woody plants, shrubs, 
and palms are found. This ecosystem is temporarily 
flooded during the rainy season, where water table level 
can reach up to 20 cm above the surface, but it dries out 
quickly after the rain ends. It experiences four seasons: 
drought, onset of soil saturation, flooding, and decline 
in soil saturation. Soil texture is mostly represented by 
sandy-loam and clay-silty loam. Semiseasonal savanna 
is a treeless savanna, with very rare presence of woody 
plants or palms. Vegetation (grasses, sedges, march and 
aquatic plants) varies in function of flooding duration 
and water table level, which could reach up to 1 m above 
the surface. This ecosystem is found in topographic 
depressions with poorly drained conditions, and clay 
soils. Semiseasonal savannas experience long periods 
of flooding (between 8 and 11 months) and never pre-
sent water deficit, even during the dry season, serving 
as an important food and water source in the region. 
Similarly, the native forest includes Moriche palm and 
gallery forests. Moriche palm corresponds to plant com-
munities that are dominated by Mauritia flexuosa palms 
and numerous herbaceous and shrubby species. They 
are present in flooded areas or in soils with medium-
fine textures that do not present water deficits during 
the dry season. Gallery forest, in turn, is dominated by 
a great variety of woody trees, palms, and shrubs and 
are developed close to permanent water bodies, such as 
riverbank levees, alluvial, and overflow plains of rivers, 
channels, and ravines.

For mapping purposes, a local land cover map derived 
from remote sensing images (Fig. 1) was created through 
a supervised image classification algorithm (further infor-
mation in “Environmental Covariates” section). After 
classification, five categories were defined: seasonal 
savanna, hyperseasonal savanna, semiseasonal savanna, 
forest, and water. Gallery forest and Moriche palm were 
combined within a unique forest category since their 
spectral signatures were not clearly differentiated.

Soils of Casanare flooded savannas are predominantly 
Inceptisols and Entisols formed from alluvial, fluvio-
torrential, and fluvio-glacial sediments deposited from 
the upper Pleistocene to the lower Holocene, upon which 
Aeolian materials subsequently accumulated (IGAC 
2014). Relief is mainly composed of large extensions of 
aeolian and alluvial terraces, dissected by depressions and 
channels covered by fine materials (floodplains), which 
remain flooded for a great part of the year, and some ele-
vated sandy areas called “Medanos” or continental dunes, 
which have been formed longitudinally by the northeast-
erly trade winds (IGAC 2014). The combination of the 
regional geomorphology and the high annual precipitation 
creates the hydrological connectivity between rivers and 

wetlands, resulting in the maintenance of water through-
out the region for most of the year (Sarmiento 1984).

Data Collection and Soil Characterization

A total of 80 sites were sampled in February 2019 at two 
soil depth intervals (0-10 cm and 10-30 cm), resulting in 160 
soil samples (disturbed and non-disturbed). The sites were 
sampled following two strategies: 43 sites located in four 
transects along the peat depth distribution predicted by the 
Global Wetlands Map (Gumbricht et al. 2017) and 37 sites 
distributed across the study area based on the conditioned 
Latin hypercube sampling (cLHS) strategy (Fig. 2). The 
cLHS method is a stratified random procedure for sampling 
variables from a multidimensional distribution of covari-
ates, which defines sampling locations that capture the great-
est variability among covariates (Minasny and McBratney 
2006). Maps of covariates used in the cLHS to define the 
sampling site locations included: the Orinoquía land cover 
map at 30 m resolution ; geology and lithology at a scale of 
1:100.000 (IGAC 2014); peat depth and wetland predictions 
with a spatial resolution of 123 m (Gumbricht et al. 2017); 
landforms (Jasiewicz and Stepinski 2013) with a spatial 
resolution of 12 m (derived from the DEM); and the cost 
distance, which represents the cost of reaching each point 
in the landscape from the road network based on topography 
(slope at 12 m resolution) and distance from roads (Aitken 
1977; Roudier et al. 2012). The Orinoquía land cover map of 
Colombia was developed from Landsat 5-8 images at a reso-
lution of 30 m, the landforms were mapped using the DEM 
ALOS/PALSAR scaled up at a resolution of 12 m based on 
the geomorphons approach (Jasiewicz and Stepinski 2013), 
and cost distance was mapped according to Douglas, (1994). 
Due to the adverse field conditions, some sampling sites 
needed to be readjusted to locations with similar conditions, 
keeping original sampling characteristics (Fig. 2).

The soil samples were air-dried, sieved, and analyzed at 
the International Center for Tropical Agriculture (CIAT) lab-
oratory for determining bulk density (BD) and soil texture 
(clay, sand, silt). BD and soil texture were performed by the 
volumetric ring (Blake 1965) and hydrometer (Bouyoucos 
1936) methods, respectively. SOC, stable 13C isotope (δ13C), 
total nitrogen (Nt), and stable 15N isotope (δ15N) analyses 
were performed using the dry combustion method and mass 
spectrometry at the UC Davis Laboratory. Carbon to nitro-
gen ratios (C:N ratios) were calculated from SOC and Nt.

Other characteristics such as land cover (seasonal 
savanna, hyperseasonal savanna, semiseasonal savanna, 
gallery forest and Moriche palm); geomorphic classifica-
tion (rise: slightly elevated areas (1-3% slope), talf: very 
low slope gradients (0-1%), dip: depressions, and continen-
tal dunes: aeolian mounds of sand (> 3% slope)) defined 
according to Haskins et al. (1999) and Soil Science Division 
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Staff (2017); and generalized soil texture (sandy – coarser 
textures: sand, loamy sand, sandy loam; loamy – medium 
textures: loam, silt loam, silt, sandy clay loam, clay loam, 
silty clay loam; and clayey – finer textures: sandy clay, silty 
clay, clay) simplified from the soil texture taxonomy classi-
fication (Soil Science Division Staff 2017) at each sampling 
site were reported.

Statistical Analysis

Descriptive statistics of chemical and physical soil proper-
ties (0-10 cm and 10-30 cm) were done using SAS Studio. 
An ANOVA on log-transformed data, followed by the Stu-
dent-Newman-Keuls test was carried out for normally dis-
tributed data, while the Kruskal-Wallis non-parametric test 
followed by a pair-wise separation using the Dwass, Steel, 
Critchlow-Flinger method was applied for data that could 
not be normalized.

SOC content at each depth was analyzed according to 
different environmental conditions: land cover, geomorphic 
feature, and generalized soil texture. Statistical analyses 
considered were data normality, homogeneity of variances, 
and design balance analysis tested using Shapiro-Wilk 
(“stats” R package), Levene (“car” R package), and the bal-
ance test (“nlme” R-package) functions. A Kruskal-Wallis 
non-parametric test followed by the Dunn post-hoc test was 
performed to identify significant differences among SOC 

comparisons. In both cases, significant tests were carried out 
using the “PMCMRplus” R-package including a Bonferroni 
p-adjustment method.

Environmental Covariates

To map the distribution of SOC content at 0-10 cm and 10-30 
cm using digital soil mapping (DSM) (McBratney et al. 2003) 
a set of 32 environmental covariates was considered (see 
Table S1 in the supplementary material). Terrain attributes 
were derived from the DEM – ALOS/PALSAR scaled up at 
12 m spatial resolution (Shimada et al. 2014). Geomorphology 
maps at a scale of 1:100.000 were obtained from the geoportal 
of the Instituto Geográfico Agustin Codazzi (IGAC). Because 
of lack of soil texture differences at the two depths, soil texture 
was generated by using the DSM approach random forest at 
depth of 0-30 cm. Vegetation indices (VI) were calculated in 
Google Earth Engine from SENTINEL-2 spectral images for 
3 distinct periods (dry: December (2018) – February (2019), 
wet: May (2018) – October (2018), transition dry-wet: Novem-
ber (2018) – December (2018)). Climate data (temperature and 
precipitation from 2010 to 2018) was obtained from CHELSA 
and MODIS spectral images. The local land cover (Fig. 1) map 
was created through a supervised classification method com-
bining field data and SWIR-1 (B11), near-infrared (B8), and 
blue (B2) bands from Sentinel-2 images.

Fig. 2   Spatial distribution of the 
original cLHS sampling sites 
(purple points), field sampled 
sites (blue points) and peat 
depth (m) distribution predicted 
by Gumbricht, et al. (2017)
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Digital Soil Mapping

DSM combines different environmental covariates accord-
ing to the soil-forming factors defined by Jenny (1941) 
with field soil point data in a mathematical model to 
produce high-resolution soil maps (raster/pixel-based) 
that are continuum and variable in the space (McBratney 
et al. 2003; Moore et al. 1993; Zhu et al. 2001). Two DSM 
approaches, Expert Knowledge (EK) and Random Forest 
(RF), were used to predict and map SOC content distribu-
tion at 0-10 cm and 10-30 cm of soil depth. Both models 
were calibrated using a random set of 70% of the field 
data (training dataset; same points for each model) and the 
other 30% of the field data (validation dataset) were used 
for model assessment.

The EK model was based on the Soil Inference Engine 
(SIE) system described by Shi et al. (2004). This model 
combines expert knowledge of soil scientists with fuzzy 
logic by creating instance rules based on the spatial correla-
tion between soil properties and environmental covariates 
(Ashtekar and Owens 2013; Heitkamp et al. 2020; Zhu 1997; 
Zhu et al. 2001). To perform the model, four units were 
defined according to the most dominant local land covers 
(Fig. 1) and their respective instance rules were set to create 
a Membership Function (MF) map (Zhu 1999, 1997) using 
the training dataset. The MFs were created using the FRBS 
and sets R-packages in which two-piece normal and sig-
moid functions were identified as more frequent descriptors 
of the soil-landscape relationship within every unit. After 
individual environmental covariate’s fuzzification was done, 
a weighted average was computed between the MF within 
every instance in order to get the overall optimality value 
for the unit.

The covariates used for mapping SOC with EK were 
chosen according to the SOC-landscape relationship 
observed during the sampling campaign, prior knowledge 
from the literature, information collected during the field 
trip, and the distribution of soil samples data across the 
environmental covariates. Scatter plots were created for 
each covariate using SOC content values as dependent 
variable to understand and create SOC-landscape relation-
ships. Categorical covariates which did not provide clear 
differentiation by grouping many sites into each category 
were discarded.

The MF maps were used to map the continuous SOC 
content from the weighted average of the typical property 
values sampled in the field for each soil unit according to the 
following equation (Zhu 1997):

(1)Vij =

∑n

k=1
Sij

kvk

∑n

k=1
Sij

k

Where: Vij is the estimated potential value at location i, j ; Sijk 
are the fuzzy membership values at each location (similarity 
values); vk is a typical value of soil type k.

Random Forest (RF) is a machine learning method used 
to predict continuous and categorical variables from a large 
collection of non-correlated decision trees (Breiman 2001). 
The construction of each tree depends on the classification 
of the environmental covariates from the training dataset. To 
select the most appropriate covariates to enter the model, a 
Variance Inflation Factor (VIF) diagnosis was carried out 
and covariates with high multi-collinearity were identified 
(Alin 2010). VIF values close to zero represent null or scarce 
collinearity, while values above 5 indicate high collinearity 
between variables (Allam et al. 2020; Vu et al. 2015). In this 
study, the VIF assessment was done independently for each 
depth, removing variables with VIF greater than 5 in order 
to reduce overfitting and improve models’ performances 
(Valbuena et al. 2017).

The RF was performed with the randomForest R-package 
(Liaw and Wiener 2003), using the training dataset and ntree: 
1,000. In order to identify which covariates mainly influ-
ence the prediction of the SOC, we computed the variable 
importance assessment mean decrease in accuracy (%Inc-
MSE), which is the percentage increase in mean squared 
errors (Zhou et al. 2019). The most important variables were 
defined as those that resulted in a significant reduction of 
predictive power when removed from the model (Behrens 
et al. 2014). The most relevant covariates for predicting SOC 
content based on the RF approach in the Casanare flooded 
savannas were established from the top-five most important 
covariates used at 0-10 cm and 10-30 cm soil depth models.

DSM Assessment

Model performance for EK and RF approaches was assessed 
based on three  statistical  indices  applied to the valida-
tion dataset: Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and the coefficient of determina-
tion (R2). Lower values of RMSE and MAE indicated better 
model performance, while higher values of R2 indicated that 
the model explained a higher proportion of the variation.

SOC Stocks Spatial Distribution

SOC stocks (t ha-1) at 0-30 cm soil depth were calculated 
for each sampling point by multiplying the SOC content and 
bulk density using equation (2) and subsequently compared 
under different geomorphic features and land cover condi-
tions through a mean comparison test (“Statistical Analysis” 
section).
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Where: SOC is the soil organic carbon content (%) ; 
BD is the soil b ulk density 

(

Mg∕m3
)

; Depth is the depth of 
the soil layer (m) ; G is the volume (%) occupied with coarse 
fragments (gravel or stones) and 10 is the conversion factor 
to t/ha. Note that sampled soils in the area did not contain 
coarse fragments.

The spatial distribution of SOC stocks was modeled using 
the best-performing DSM approach for SOC content at 0-10 
cm and 10-30 cm and the respective BD maps developed 
previously for the study area with a random forest model. 
Basic statistics of predicted SOC stocks per land cover were 
calculated .

(2)SOC Stock (ton∕ha) = SOC ⋅ BD ⋅ Depth ⋅ (1 − G∕100) ⋅ 10 Results

Soil Properties Characterization

Descriptive statistics of the measured physicochemical soil 
properties are presented in Table 1. The highest mean values 
of SOC and Nt contents were found in the semiseasonal 
savannas and the lowest values were found in the seasonal 
savanna. Isotopic signatures of δ13C indicate the relative 
proportion of carbon originating from trees and shrubs with 
a C3 photosynthetic pathway or grasses with a C4 photosyn-
thetic pathway. As expected, depleted values in the forest 
stands showed carbon from predominantly C3 sources, while 
both seasonal savanna and hyperseasonal savanna showed 
predominantly C4 sources. Depletion was intermediate in 
the moriche palm and semiseasonal savanna showing mixed 
sources of SOC in these systems. The measurement of δ15N 
provides an integrated index of the N cycle and all sites 

Table 1   Descriptive statistics of chemical and physical soil proper-
ties for the different land cover in the flooded savanna landscape of 
Casanare. Values are presented for two soil layers 0-10 cm and 10-30 

cm depths. Values are mean ± SD and values for each parameter 
followed by the same letter are not significantly different from each 
other (P < 0.05)

SOC Soil organic carbon; Nt Total nitrogen; δ13C Stable 13C isotope; δ15N Stable 15N isotope; C:N ratio Carbon to nitrogen ratio; BD Bulk 
density

SOC (%) δ13C (‰) Nt (%) δ15N (‰) C:N
0 – 10 cm

  Semiseasonal savanna (n = 13) 8.71 ± 0.94a -18.36 ± 1.05b 0.86 ± 0.11a 2.42 ± 0.27bc 10.79 ± 0.55ab

  Forest (n = 10) 2.09 ± 0.49c -26.18 ± 0.97c 0.17 ± 0.04c 3.68 ± 0.41ab 11.93 ± 0.77ab

  Moriche palm (n = 5) 4.51 ± 0.93b -21.01 ± 0.60bc 0.45 ± 0.10b 2.05 ± 0.17c 10.27 ± 0.24b

  Hyperseasonal savanna (n = 27) 3.73 ± 0.38b -15.62 ± 0.31a 0.31 ± 0.04b 3.37 ± 0.27b 12.70 ± 0.29a

  Seasonal savanna (n = 25) 1.51 ± 0.20c -15.00 ± 0.33a 0.12 ± 0.01c 4.74 ± 0.26a 12.39 ± 0.36a

10 – 30 cm
  Semiseasonal savanna 3.03 ± 0.52a -17.47 ± 1.04b 0.29 ± 0.06a 4.42 ± 0.39b 11.08 ± 0.63
  Forest 1.50 ± 0.56bc -23.35 ± 1.37c 0.14 ± 0.06bc 5.16 ± 0.48ab 11.21 ± 0.83
  Moriche palm 1.92 ± 0.29b -20.32 ± 0.61bc 0.19 ± 0.03ab 3.33 ± 0.43b 10.69 ± 0.51
  Hyperseasonal savanna 1.84 ± 0.20ab -14.67 ± 0.36ab 0.15 ± 0.02b 5.10 ± 0.30b 12.66 ± 0.31
  Seasonal savanna 0.81 ± 0.10c -13.66 ± 0.30a 0.06 ± 0.01c 6.98 ± 0.38a 12.50 ± 0.45

BD (g cm-3) Sand (%) Silt (%) Clay (%) SOC Stock
(t ha-1)

0 – 10 cm
  Semiseasonal savanna 0.74 ± 0.06c 30.8 ± 2.9 38.5 ± 3.1 30.7 ± 2.3 59.06 ± 3.62a

  Forest 1.10 ± 0.09b 34.4 ± 5.2 42.1 ± 4.6 23.5 ± 2.3 19.42 ± 2.74c

  Moriche palm 1.06 ± 0.12b 24.4 ± 1.8 43.9 ± 4.0 31.6 ± 4.7 44.08 ± 7.21b

  Hyperseasonal savanna 1.16 ± 0.05b 28.2 ± 2.2 43.2 ± 1.9 28.6 ± 2.0 39.08 ± 2.78b

  Seasonal savanna 1.42 ± 0.02a 42.8 ± 5.1 34.9 ± 4.0 22.3 ± 1.9 20.59 ± 2.47c

10 – 30 cm
  Semiseasonal savanna 1.02 ± 0.04c 23.3 ± 3.0 40.1 ± 2.8 36.5 ± 3.9 58.54 ± 8.02a

  Forest 1.25 ± 0.08b 33.2 ± 6.1 41.8 ± 4.2 24.9 ± 3.7 29.86 ± 6.70b

  Moriche palm 1.19 ± 0.11b 28.6 ± 4.7 42.5 ± 3.7 28.9 ± 3.9 43.81 ± 5.38a

  Hyperseasonal savanna 1.27 ± 0.03b 27.1 ± 2.4 45.0 ± 2.2 27.8 ± 1.7 44.13 ± 3.73a

  Seasonal savanna 1.46 ± 0.02a 40.6 ± 5.6 35.3 ± 4.2 24.1 ± 2.7 23.23 ± 2.83b
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showed δ15N enrichment indicating an open or “leaky” N 
cycle (Craine et al. 2015). Enrichment was lower in the 
Moriche palm and semiseasonal savannas compared to the 
other land covers, suggesting that these ecosystems were 
less leaky. Carbon to nitrogen ratios were similar across land 
covers.

Soil bulk density ranged from 0.74 to 1.42 g cm-3 (0-10 
cm) and from 1.02 to 1.46 g cm-3 (10-30 cm). Higher values 
of BD were measured in the seasonal savanna, which are 
characterized by a high sand content, while lower BD values 
were found in the semiseasonal savannas as a result of higher 
soil organic matter and clay contents. SOC stocks were sig-
nificantly higher in clay soils and semiseasonal savannas 
compared to seasonal savanna and forest.

SOC Distribution Across the Different Environmental 
Conditions

Measured SOC content at soil depths of 0-10 cm and 10-30 
cm and its distribution across the environmental conditions 
of geomorphic features, soil textures, and land cover are pre-
sented in Fig. 3. In general, SOC content was around 1.64% 
higher on average at soil depth 0-10 cm than at 10-30 cm in 
all environmental conditions.

Among the different geomorphic features, dips had 
significantly higher SOC content than talfs, rises, and 
continental dunes. Rise features did not show differences 

with talfs and continental dunes, while these last two dif-
fered significantly at both soil depths. The highest SOC 
content of the study area (14.5%) was found at soil depth 
0-10 cm in the dip feature, while the highest value in talf, 
rise, and dune for the same depth were 6.3%, 5.5%, 1.3%, 
respectively. The largest mean reduction of SOC content 
between soil depths occurred in the dip feature, where 
mean SOC content decreased from 7.2% at 0-10 cm to 
2.82% at 10-30 cm, followed by talf (2.48% » 1.28%), rise 
(2.01% » 1.02%) and continental dune (0.61% » 0.38%).

Differences in SOC content were also observed among 
the different land covers. For soil depth 0-10 cm, SOC con-
tent was higher in semiseasonal savannas, with values rang-
ing from 4.2% to 14.5%, and lower in seasonal savanna, with 
values ranging from 0.4% to 3.6%. For soil depth 10-30 cm 
the same pattern was observed, but the differences in SOC 
content among land covers were lower than those observed 
in the surface layer.

Soil texture also played an important role in SOC accu-
mulation for this region. Although loamy soils presented 
SOC content at the surface up to 14.5%, the average was 
3.8% and this was much lower than the minimum SOC 
content (4.2%) found in clayey soils. Coarse textured soils 
had the lowest SOC content, with values inferior to 3.6% 
(0-10 cm). At 10-30 cm soil depth, higher values of SOC 
were found on clayey and loamy soils and lower content 
in coarse soils.

Fig. 3   Boxplot diagrams showing soil organic carbon (SOC) content 
(%) distribution at soil depth 0-10 cm and 10-30 cm under different 
environmental conditions in the Casanare flooded savannas, Colom-
bia. Grey dots represent single values of sampled soils, the black 
horizontal line in the middle of the box represents the median value, 
lower and upper boundaries indicate the 25th and 75th percentiles, 

blue crosses represent outliers, vertical black lines (whiskers) denote 
the maximum and minimum values (excluding outliers). Uppercase 
and lowercase letters denote statistically significant differences at P < 
0.05 using the Dunn post-hoc test at 0-10 cm and 10-30 cm, respec-
tively
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Assessment of DSM Approaches

The performance assessment using the validation dataset 
showed small differences of RMSE, MAE, and R2 between 
the EK and RF approaches at both soil depths, with smaller 
prediction errors (RMSE and MAE) at the 10-30 cm depth 
(Table 2). The RF presented lower values of RMSE and 
higher values of MAE and R2 compared to the EK at 0-10 
cm, while at 10-30 cm EK presented lower values of RMSE 
and MAE and higher R2 values. Figure 4 shows the scatter 
plots of the relationship between the dataset used for SOC 
(%) model validation using RF and EK approaches and the 
measured data.

Digital Soil Mapping of SOC Content

Prior to implementing the EK and RF models, environ-
mental covariates for each approach were selected. Covari-
ates selected for implementing the EK at 0-10 cm and 
10-30 cm were land cover, moisture stress index for the 
dry period – MSI (dry), green-red vegetation index for 
the dry and transition: wet-dry period – GRVI (dry and 
trans), relative slope position – RSP, clay, silt, sand, and 
the SAGA wetness Index, which is a 'Topographic Wet-
ness Index' (TWI), based on a modified catchment area 

calculation. For the RF model, an independent set of 
covariates was selected for each depth after the elimina-
tion of highly collinear covariates through the VIF assess-
ment (see Table S1 in supplementary material). Figure 5 
shows the top-five most relevant covariates for predicting 
SOC ranked by the %IncMSE for the RF model at each 
depth. The variable importance ranking identified local 
land cover, normalized difference vegetation index for the 
wet period – NDVI (wet), sand, and SAGA wetness index 
as common covariates for predicting SOC at both depths. 
Local land cover was found to be the most important 
covariate at 0-10 cm, contrary to the 10-30 cm depth in 
which it was placed at the bottom of the ranking. Normal-
ized difference moisture index for the transition: wet-dry 
period – NDMI (trans), in turn, was the most important 
variable at 10-30 cm. NDVI (wet) and sand remained at 
the same position of the ranking at both depths, while the 
SAGA wetness index was more important for the 10-30 cm 
depth. Several covariates, such as local land cover, SAGA 
wetness index and sand, were utilized in both EK and RF 
approaches. Additionally, covariates regarding the vegeta-
tion properties were the most frequently used in both DSM 
approaches.

Maps of SOC content with a spatial resolution of 12 m 
developed using both the EK and RF methods at soil 
depths of 0-10 cm and 10-30 cm are shown in Fig. 6. In 
general, RF overestimated the minimum and underesti-
mated the maximum SOC contents while EK underesti-
mated both minimum and maximum (Table 3). Comparing 
between minimum values of the predicted SOC content 
maps (EK and RF) and the measured data, we observed 
smaller differences for EK than RF at both depths, while 
RF had smaller differences for predicting the maximum 
values. At 0-10 cm, both approaches presented similar 
meanw SOC content of 4.20% (RF) and 4.22% (EK), rep-
resenting a higher meanw prediction in comparison to the 
measured meanw value (3.63%). At soil depth 10-30 cm, 

Table 2   Model performance of soil organic carbon (SOC) content (%)

EK Expert knowledge; RF Random forest; RMSE Root mean squared 
error; MAE Mean absolute error; R2 Correlation coefficient

Soil depth Method RMSE MAE R2

0–10 cm RF 1.76 1.48 0.49
EK 1.81 1.45 0.42

10–30 cm RF 0.74 0.59 0.32
EK 0.70 0.53 0.36

Fig. 4   Scatter plots showing the 
relationship between the dataset 
used for SOC (%) model valida-
tion using RF (blue dots) and 
EK (red dots) approaches and 
data measured in the Casanare 
flooded savannas, Colombia for 
0-10 cm and 10-30. Dots repre-
sent the values for each variable 
while the lines represent the 
best fit for the correlation 
between them
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RF overestimated the meanw value compared to the meas-
ured value (difference of 0.28%), while EK slightly under-
estimated the meanw values (difference of 0.06%).

In general, the two approaches presented a similar pattern 
regarding the spatial distribution of SOC content (Fig. 6). The 
highest values of predicted SOC content were found at locations 

that experienced longer periods of seasonal flooding (darker 
areas) and the lowest values were predicted in the continental 
dunes with sandy soils and no seasonal flooding. However, there 
are differences in the predicted SOC values in some areas such 
as the large gallery forests located in the floodplains of the Ari-
poro and Meta Rivers where RF estimated higher values of SOC 

Fig. 5   Importance of environ-
mental covariates used in the 
RF models for the study area 
according to the mean %Inc-
MSE (percentage increase in 
mean square error). High values 
represent a high importance of 
the covariates in predicting soil 
organic carbon (SOC) content 
(%). BSI: Bare Soil Index, 
NDVI: Normalized Difference 
Vegetation Index, NDMI: Nor-
malized Difference Moisture 
Index, wet: wet period -> May 
(2018) - October (2018), trans: 
transition dry-wet: November 
(2018) - December (2018)

Fig. 6   Spatial distribution of SOC (%) using two different DSM approaches (EK and RF) in the Casanare flooded savannas, Colombia at depth 
intervals: 0-10 cm and 10-30 cm
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for both soil depths (0-10 cm and 10-30 cm). Predicted values of 
SOC in the hyperseasonal savannas tend to be lower for the RF 
than for the EK model at 0-10 cm; while at 10-30 cm, predicted 
SOC values across the hyperseasonal savannas are similar.

SOC Stock Distribution

SOC stocks over the entire 30 cm profile determined using field 
data and scaling by geomorphic feature and land cover type are 
summarized in Fig. 7. Comparisons between measured SOC 
stocks across the different geomorphic features and land covers 
showed significant differences (P < 0.05) between dip (111 ± 
30 t ha-1) and the other features, while no significant differences 
were identified between talf (63 ± 24 t ha-1), rise (49 ± 28 t 
ha-1), and continental dune (20 ± 8 t ha-1). On an ecosystem 
basis, semiseasonal savannas (118 ± 34 t ha-1) differed sig-
nificantly from forests (48 ± 26 t ha-1) and seasonal savannas 
(44 ± 25 t ha-1) and did not show significant differences with 
Moriche palm (88 ± 28 t ha-1) or hyperseasonal savanna (83 ± 
29 t ha-1). Overall, higher mean measured values were attributed 

to semiseasonal savanna land cover and dip geomorphic fea-
tures, where lower values of BD and higher values of SOC con-
tents were identified (Table 1). Lower SOC stock values were 
attributed to seasonal savanna land cover and continental dunes, 
which were characterized by lower SOC contents and high BD.

Due to the slightly better capacity of EK to describe and 
map the spatial distribution of SOC content for the study area, 
the map of SOC stocks at 0-30 cm soil depth was developed 
using this approach and selected covariates described in “Dig-
ital Soil Mapping” section. The corresponding model perfor-
mance parameters were RMSE: 26 -, MAE: 23, and R2: 0.69.

(Circles indicate the larger areas of higher SOC stock 
accumulation)

Predicted SOC stocks ranged from 6 to 210 t ha-1, with 
average stocks of 83.13 ± 24.32 t C ha-1 (Fig. 8). Simi-
lar to SOC content, high (150-180 t ha-1) and very high 
(> 180 t ha-1) SOC stocks were found in areas charac-
terized by their proximity to water bodies, their location 
in floodplains with clay-loam soils, and the presence of 
long-term flooded conditions (circles indicate the larger 
areas of higher SOC stock accumulation). Medium-high 
values (120-150 t ha-1) were found adjacent to areas with 
higher SOC stocks. The hyperseasonal savanna land cover, 
which occupies the larger proportion of the study area, 
is characterized as a mix mainly between medium-high 
and medium SOC stocks (90-120 t ha-1) in dip features 
and the medium and medium-low (60-90 t ha-1) stocks 
in well-drained talf features. Low values (30-60 t ha-1) of 
SOC stocks were largely predicted in riversides along the 
Ariporo River and the Meta River as well as along other 
rivers, where coarser soil textures predominate. Very low 
values (< 30 t ha-1), in turn, were characteristic of areas 
where continental dunes (northeasterly elongated geomor-
phic features) and sandy patches predominate.

Fig. 7   Boxplot diagrams 
showing SOC stocks (t ha-1) dis-
tribution at soil depth 0-30 cm 
under different environmental 
conditions. Grey dots represent 
single values of sampled soils, 
the black horizontal line in the 
middle of the box represents the 
median value, lower and upper 
boundaries indicate the 25th and 
75th percentiles, blue crosses 
represent outliers, vertical black 
lines (whiskers) denote the 
maximum and minimum values 
(excluding outliers). Lowercase 
letters denote statistically sig-
nificant differences at P < 0.05 
using the Dunn post-hoc test

Table 3   Descriptive statistics of SOC (%) predicted using EK and 
RF approaches and measured data collected in the Casanare flooded 
savannas, Colombia for 0-10 cm and 10-30 cm

Meanw: weighted arithmetic mean and sdw: weighted arithmetic 
standard deviation based on the proportion of data per land cover

Depth Method Min Max Meanw sdw

SOC (%) (0-10 cm) Field Data 0.41 14.52 3.63 1.90
Map (RF) 0.85 11.92 4.20 0.85
Map (EK) 0.30 11.30 4.22 0.51

SOC (%) (10-30 cm) Field Data 0.23 7.51 1.65 1.08
Map (RF) 0.48 5.09 1.93 0.45
Map (EK) 0.10 4.81 1.59 0.19
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Using the land cover map (Fig. 1) as a mask, descriptive sta-
tistics of the predicted SOC stock map per land cover were cal-
culated (Table 4). We found that the highest mean predicted SOC 
stocks values were in the semiseasonal savannas, followed by the 
hyperseasonal savanna, seasonal savanna, and forest, which com-
bines riparian forest and Moriche palm. Total soil organic carbon 
stock predicted for the first 30 cm of soil depth in the entire study 
area (Fig. 8) was equivalent to 55.07 Mt of C. Hyperseasonal 
savannas contributed 65% (42.73 Mt) of the total stocks, while 
forest contributed with 22% (3.55 Mt), semiseasonal savanna 
with 7% (6.79 Mt), and seasonal savanna with 6% (2.00 Mt).

Discussion

SOC Characterization

Carbon accumulation in tropical wetlands is typically the 
result of small differences between input and outputs, and 

is often associated with topography that concentrates water 
and creates anaerobic conditions that slow decomposition 
(Gumbricht et al. 2017; Paul 2016; Sjögersten et al. 2014). 
Carbon accumulation is also regulated by the types and 
quality of vegetation, particularly the proportion of plant-
derived C and N that is incorporated into soil organic matter, 
and by soil matrix interactions that control its stabilization 
(Cotrufo et al. 2013; Paul 2016). Clay and silt fractions play 
important roles in stabilizing soil organic matter through 
both physical and chemical protection. We found strong 
associations between geomorphology, plant communities, 
and soil texture that affected the SOC concentrations in the 
flooded Llanos del Orinoco and in the surrounding ecosys-
tems. There are few data from South American floodplain 
wetlands for comparison and available data do not represent 
systematic sampling, but we found that mean SOC contents 
are higher in the Casanare flooded savannas compared to the 
levels reported for flooded savannas in the Brazilian Panta-
nal (Vega et al. 2014), the Brazilian Cerrado (Wantzen et al. 

Fig. 8   Map of SOC stocks (t 
ha-1) predicted from EK model 
at 0-30 cm soil depth in the 
Casanare flooded savannas, 
Colombia.

Table 4   Basic statistics of 
predicted SOC stocks (t ha-1) 
per land cover within the study 
area

Land cover Range SOC stock
(t ha-1)

Mean ± SD SOC stock
(t ha-1)

Total SOC 
stock (Mt)

Landscape 
area occupied 
(%)

Water - - - 0.5
Seasonal savanna 6.27 – 119.83 47.13 ± 14.16 2.00 6.39
Semiseasonal savanna 25.68 – 210.52 129.59 ± 11.43 6.79 7.89
Forest 22.88 – 108.38 42.64 ± 8.19 3.55 12.51
Hyperseasonal savanna 36.61 – 138.02 88.39 ± 10.33 42.73 72.71
Total 55.07 100
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2012) or the Bolivian Llanos do Moxos (Boixadera 2003), 
and they were similar to flooded savannas in Roraima, Brazil 
(Barbosa et al. 2012).

We found high SOC contents in locations characterized 
by clayey soils with high grass productivity (semiseasonal 
savannas), and depressions (dip features). SOC accumula-
tion in these areas have been favored by frequent and exces-
sive precipitation, high concentrations of sediments, and 
long periods of water accumulation (Barthelmes and Joos-
ten 2018; Sarmiento 1984; Mora-Fernández et al. 2015). 
Sediment transportation processes occurred during the Ter-
tiary and Quaternary deposited coarser materials, as a result 
of the erosion of the Andes mountains, along most of the 
river edges (Goseen 1964), forming banks that do not store 
much SOC. We found low SOC contents in riparian areas, 
in continental dunes, and in sandy deposits that are charac-
terized by low water availability, coarser soil textures, and 
low-density vegetation (seasonal savanna). In riparian areas 
located specifically in silty-sandy banks, within the first 
30 cm prevail dry conditions during a long part of the year, 
which affects the accumulation of SOC. Aeolian erosion by 
the Trade winds has acted as an essential factor in shaping 
the regional topography, particularly in the formation of con-
tinental dunes and sandy deposits (FAO 1965). Intermedi-
ate SOC contents were associated with Moriche palm and 
hyperseasonal savanna vegetation and loamy textured soils.

DSM Models Assessment

We compared two different DSM approaches (EK and RF) 
for predicting SOC content at 0-10 cm and 10-30 cm. The 
models performed comparably to map SOC variability in the 
study area and gave a similar spatial prediction pattern. The 
models both predicted high SOC contents in dip features, 
where soil textures are finer, flooded conditions last longer, 
and vegetation has higher biomass production rates, and 
low SOC values on the continental dunes with coarser soils, 
low-density vegetation, and no seasonal flooding. However, 
with validation against field data, we found that the spatial 
predictions obtained with the EK represented field condi-
tions better. A key major difference between the modelling 
approaches was associated with the riparian areas along Ari-
poro and Meta rivers. The RF model predicted much higher 
values for these areas than the EK model, which showed 
predictions that were more consistent with field observa-
tions. Additionally, EK showed lower prediction errors than 
RF. Both models were sensitive to the presence of outliers. 
RF underestimated the highest values and overestimated the 
lowest, while EK underestimated the highest and lowest val-
ues and gave overall predictions around the mean values.

Lower performance in RF was attributed intrinsically 
to the methodology. The algorithm estimates the values 
for each pixel, based on an average of the results of all the 

independent trees created in the model (Callens et al. 2020), 
and generates an approximation to the field values based 
on averages of most similar areas, which limits its ability 
to describe local extreme values (Szabó et al. 2019). This 
situation probably caused the misprediction along the rivers, 
which may have been influenced by other areas with simi-
lar environmental conditions. RF has been used effectively 
in several studies for estimating SOC at landscape scale 
(Grimm et al. 2008; Wang et al. 2020; Zeraatpisheh et al. 
2019; Zhou et al. 2019). Its prediction power has been shown 
to outperform other DSM approaches, specifically in larger 
study areas with a diversity of landscape features (Lamich-
hane et al. 2019), capturing most of the variance of the soil 
characteristics (Sindayihebura et al. 2017). Other advantages 
of RF include the modelling of high dimensional data, which 
would be difficult to afford with EK; the estimation of inter-
nal errors and the variable importance assessment; as well 
as a lower effort for data preparation and modelling time 
(Breiman 2001; Camera et al. 2017; Grimm et al. 2008). 
However, Ashtekar and Owens (2013) mentioned that a dis-
advantage of this method could be that it only works with 
soil-landscape relationships at specific locations and does 
not take into consideration extensive differentiation across 
the landscape. Additionally, Hengl et al. (2015) stated that 
RF is effective only within the range of values used in the 
training data, which provides irregular predictions for obser-
vations outside of the range (Terra 2017).

EK, in turn, is based mainly on qualitative and quantita-
tive criteria provided by the knowledge of an expert, that 
takes into account soil-landscape relationships for a specific 
region based on experience, analysis from sampling data, 
and knowledge of interactions between covariates that influ-
ence the property distribution (Ashtekar and Owens 2013; 
Menezes et al. 2013; Ngunjiri et al. 2019). The use of EK 
led to a better control and implementation of inference rules 
that explain soil-landscape relationships, even with limited 
field data (Menezes et al. 2018). EK approaches have been 
satisfactorily applied by other authors (Akumu et al. 2015; 
Ashtekar et al. 2014; da Silva et al. 2016; Minai et al. 2021; 
Tsakiridis et al. 2019; Zhu et al. 2010). As evidence of its 
good performance, this approach has been widely used for 
the development of soil surveys by the US Department of 
Agriculture (USDA) (Zhu et al. 2001). On the other hand, 
EK is time consuming in terms of data selection, analysis, 
and processing. It requires knowledge about the mapping 
area and soil-landscape relationships, which may be limited 
for larger areas.

Drivers of SOC Spatial Variability

Similar to other tropical landscapes studies: (Diwediga 
et al. 2017; Hamzehpour et al. 2019; Yang et al. 2007), in 
the Casanare flooded savannas, the vegetation coverage, 
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topography, and soil texture were found to be the most influ-
ential factors of the SOC distribution. The combination of 
these 3 features leads to different environmental conditions 
that consequently influence the spatial distribution of SOC, 
as evidenced in this study.

Vegetation coverage not only controls the inputs of organic 
material but also protects soils from erosion and conserves soil 
moisture (Lamichhane et al. 2019; Weil and Brady 2017). Sev-
eral studies have represented the vegetation coverage in spatial 
models across the landscape employing categorical land cover 
maps or continuous vegetation indices derived from remote 
sensing (Gray et al. 2015; Minai et al. 2021; Mondal et al. 
2017; Wan et al. 2019; Wang et al. 2020). Land cover maps 
and vegetation indices help to classify vegetation in terms of 
types, biomass production, residues, and soil textures based on 
changes in leaf colors and leaf density (Motohka et al. 2010). 
Specific combinations of these characteristics delimit areas 
from higher carbon fixation such as the semiseasonal savanna 
to lower carbon fixation such as the seasonal savanna. Veg-
etation indices also show where to expect more plant water 
stress and less soil moisture content (Elhag and Bahrawi 2017), 
being relevant not only for soil moisture variability but also 
for SOC spatial modeling (Welikhe et al. 2017). Topography 
plays an imperative role in SOC storage across the landscape 
(Patton et al. 2019; Wiesmeier et al. 2019). It widely describes 
water flow paths, water accumulation, soil erosion, and sedi-
mentation, and consequently influences the soil moisture, 
microbial activity, and SOC accumulation (Sørensen et al. 
2006; Yun et al. 2019). Topographic covariates that indicate 
potential moist/dry areas such as topographical wetness index 
improves SOC predictions (Adhikari et al. 2014; Lamichhane 
et al. 2019; Minasny et al. 2013; Siewert 2017; Taghizadeh-
Mehrjardi et al. 2017; Wiesmeier et al. 2013).

Additionally, as identified in several studies (Funes et al. 
2019; Hounkpatin et al. 2018; Yang et al. 2007; Zinn et al. 
2005), the results also showed that texture was also key in 
explaining the distribution of SOC. Coarser soil textures were 
correlated negatively with SOC, while finer textures showed 
a positive relationship. Clay soils have a greater capacity to 
preserve or protect organic matter from microbial attack as 
well as to stabilize the organic matter through mineral–organic 
matter binding. By promoting soil aggregations, silt and clay 
contents improve SOC protection (Six et al. 2002; Xie et al. 
2021), enhance soil moisture (Augustin and Cihacek 2016; 
Yang et al. 2016), water holding capacity, and plant available 
water. These conditions reduce or avoid SOC losses by soil 
erosion, enhance plant biomass production, and, consequently, 
conserve or accumulate SOC. On the other hand, sandy soils 
do not physically or chemically protect SOC, they favor nutri-
ent losses by leaching affecting plant density, both of which 
resulting in low SOC levels (Hamzehpour et al. 2019).

As seen in this section, the identification and understanding 
of factors that control SOC, as gained from this study, is crucial 

to generate better SOC-related models, especially for grassland 
ecosystems with similar conditions around the world; improve 
those already developed, generate effective policies for SOC 
sequestration that contribute to mitigate climate change; as 
well as to improve soil health, biodiversity conservation and 
ecosystem services (Gray et al. 2015). Similar landscapes 
in South America lack carbon studies and their importance 
in terms of carbon accumulations is often understated. The 
application of these study’s methodolgies in other areas would 
help improve our understanding of their importance and target 
protection actions in priority areas.

SOC Stocks Distribution

The Casanare flooded savannas landscape holds important 
SOC stocks (55.07 Mt of C), which may be affected by land 
use changes and unsustainable management practices. While 
the pan-tropical wetlands map of Gumbricht et al. (2017) 
predicted the presence of peat deposits in this landscape, 
we found only mineral soils with high SOC contents. Nev-
ertheless, the study area represents only around 4.43% of 
the flooded Llanos del Orinoco landscape, which accounts 
approximately 15 Mha (Hamilton et al. 2002). The numbers 
from our study would suggest that the total carbon stock 
across this vast ecosystem is on the order of 109 tons of C, 
with about 20 to 30% stored in flooded savanna ecosystems.

The expansion of agriculture and introduction of new 
land use practices could result in significant wetland loss, 
contributing to the already high levels of loss in South 
America and increasing CO2 emissions into the atmos-
phere (Guo and Gifford 2002; Laganière et al. 2010; Pow-
ers 2005; Zhou et al. 2019). Considered as the last agri-
cultural frontier in Colombia, recent developments in the 
Colombian Llanos have seen the expansion of industrial 
crops (African oil palm, sugar cane, rice, and maize) as 
well as increases in grazing area, which have replaced gal-
lery forests, wetlands, and native vegetation (Usma and 
Trujillo 2011). This alters both the hydrological regime 
and the composition and structure of plant communities 
across the landscape (Lasso et al. 2010). In particular, 
the wetlands in this landscape have been transformed into 
minimally productive rice fields, due to the expansion of 
agriculture in the region. Recurrent burning, a controver-
sial land preparation technique to enhance pasture produc-
tivity, has devastated native palm ecosystems and forests, 
which have been colonized by grasses. In addition, pol-
lution by fertilizers and the demand for water from crops 
threaten the natural state of flooded ecosystems, Moriches, 
and other aquatic communities in the savannas, putting 
their continued existence at risk (Lasso et al. 2014).

Land use change in the tropics and subtropics is glob-
ally the second largest CO2 source to the atmosphere, after 
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combustion of fossil fuels (Barrezueta-Unda et al. 2019; Lal 
2015; Van der Werf et al. 2009). The use of wetland soils for 
agriculture, native vegetation conversion, deforestation, and 
intensification of fires have largely contributed to the GHG 
emissions (Margono et al. 2014). In Peru, Moriche palm eco-
systems are under increasing human pressure (Hergoualc’h 
et al. 2017; Horn et al. 2012) and we see evidence of this in 
our study area.

According to Mora-Fernández et al. (2015), the depart-
ment of Casanare is one of the most transformed and less 
protected in the country (Romero Duque et al. 2018; Usma 
and Trujillo 2011). Land use changes, mainly caused by the 
accelerated expansion of agricultural activities, the increase 
of wildfires and the mechanical modification of the water 
regimes, have been the most harmful and stressful human 
activities for the ecosystems of the floodplain savannas 
(Mora-Fernández and Peñuela-Recio 2013). These changes 
cause the loss of its natural vegetation, the variation of the 
water dynamics, and the alteration of carbon cycle (Ostle 
et al. 2009). Although the study area represents only 15% 
of the total area of the department, the intensive pressure 
of human development could result in the reduction of its 
SOC stocks and the release of important amounts of GHG 
into the atmosphere (Ostle et al. 2009; Schreier et al. 1994; 
Sharma and Sharma 2022). At regional level, the impact of 
a large-scale land use conversions of the flooded Llanos del 
Orinoco ecosystem area (15 Mha) could transform this area 
in a future source of important global emissions if correct 
decisions are not taken regarding the land management of 
the region.

Acting on the commitments of the Paris Agreement, 
several countries have updated their GHG emissions miti-
gation strategies, aiming to reduce GHG emissions and 
keeping a rise in global average temperature below 2 °C 
(Carvajal-Agudelo and Andrade 2020). Given the impor-
tance of wetlands for local climate resilience and the sig-
nificant carbon impacts, the protection and restoration of 
wetlands should be an integral part of national actions 
to address the climate change problem and support low 
emissions, climate resilient development. South America is 
considered as the wettest continent in the world, counting 
with 22% of its area covered by wetlands (Junk et al. 2013). 
Nevertheless, conservation of these important ecosystems 
is lagging in comparison to other regions due to the slow 
development of definitions, delineations, and classifica-
tions of their wetlands (Prahalad and Kriwoken 2010). The 
national inventories are not updated, and the ecological 
importance of these ecosystems is widely undocumented. 
Thus, the development of accurate SOC and wetland maps 
plays an essential role, since an adequate inventory and 
monitoring of these carbon-rich ecosystems will lead to 
better ecological characterization, quantification of SOC 
stocks and assessment of GHG emissions (Page et  al. 

2011), which will contribute to avoiding unwanted impacts 
on society and maintaining the environmental integrity 
of South American landscapes. Much attention has been 
paid recently to swamp forests, but other wetlands in South 
America are in similar situations. Therefore, it is important 
to increase the understanding of SOC sequestration and 
interactions, provide the appropriate assistance to farm-
ers about land management practices and the subsequent 
creation and application of conservation strategies such as 
silvopastoral or agroforest systems (Amézquita 1999; Jadán 
et al. 2015), which have demonstrated a positive balance 
of SOC storage (Silva-parra 2018), and the definition of 
global GHC emissions mitigation strategies.

Conclusions

In this study, the status of SOC content and stocks at 0-30 cm 
soil depth in the Casanare flooded savannas was assessed. 
Results demonstrated the presence of carbon levels lower 
than expected, but high relative to other South American 
flooded savannas. The spatial variability and driving fac-
tors of SOC content were evaluated through the implemen-
tation of two DSM approaches: Expert Knowledge (EK) 
and Random Forest (RF). Although both DSM approaches 
performed very well, EK was considered slightly superior 
to predict SOC across the study area. Vegetation coverage, 
topography and soil texture were the most relevant factors in 
explaining the spatial variability of SOC content, attributing 
higher SOC contents to dip features, finer soil textures, and 
high-density vegetation.

Our study showed very high carbon stocks in the study 
area and a high potential of GHG emissions associated 
with intensive agricultural development in the region, in 
addition to loss of large areas of wetlands. SOC stock 
quantification indicated the importance of maintaining 
or even improving the carbon sequestration in the area 
to avoid carbon losses and, consequently, increasing CO2 
emissions to the atmosphere. Inappropriate land and soil 
management of these ecosystems could hamper the efforts 
of Colombia and the global community on carbon seques-
tration and reduction of CO2 emissions. Additionally, 
these findings reinforce the view that wetlands, as the 
Casanare flooded savannas and similar areas elsewhere 
in South America, are relevant carbon storage ecosys-
tems that must be considered of worldwide interest and 
protection.
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