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Abstract
Nutrient pollution causing harmful algal blooms and eutrophication is a major threat to aquatic systems. Throughout North 
America, agricultural activities are the largest source of excess nutrients entering these systems. Agricultural intensification 
has also been a driver in the historical removal of depressional wetlands, contributing to increased hydrological connectiv-
ity across watersheds, and moving more nutrient runoff into terminal waterbodies such as the Laurentian Great Lakes and 
Gulf of Mexico. The Prairie Pothole Region of North America (PPR) supports grassland, cropland, wetland, and riverine 
systems that connect to the Missouri, Mississippi, and Red River Basins. There is a need to synthesize scientific understand-
ing to guide more targeted conservation efforts and better understand knowledge gaps. We reviewed 200 empirical studies 
and synthesized results from across a minimum of 9 and maximum of 43 wetland basins (depending on the variable data 
available). We found an average wetland removal rate of nitrate and phosphate of 53% and 68%, respectively. Literature also 
showed sedimentation rates to be twice as high in wetland basins situated within croplands compared to grasslands. Our 
synthesis enhances understanding of nutrient processing in wetlands of the PPR and highlights the need for more empirical 
field-based studies throughout the region.
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Introduction

Prairie Pothole Region of North America 
and Wetland Benefits

As the last ice age came to an end, glaciers receded, and 
the melting of the Laurentide Ice Sheet in North America 
left behind a hummocky landscape containing depressional 
basins (Dahl 2014; Doherty et al. 2018). Millions of these 
depressional basins stored accumulated surface water and 
eventually developed into the largest wetland complex in 
North America (Keddy 2010). This expansive wetland 
region, now known as the Prairie Pothole Region (PPR), 
spans three Canadian provinces (Alberta, Saskatchewan, 
Manitoba) and five U.S. states (Montana, North Dakota, 
South Dakota, Minnesota, Iowa), to encompass more than 
770,000 km2 of the Northern Great Plains (Smith et al. 1964; 

Doherty et al. 2018). Teeming with biodiversity and hydro-
logic complexity, the landscape of the PPR is one of the 
most unique wetland-grassland ecosystems in the world and 
supports a significant amount of the continent’s rangeland 
and cultivated cropland agriculture (Kantrud et al. 1989, 
Leibowitz 2003, Baldassarre and Bolden 2006). Despite 
the PPR’s significance, much is still unknown about how 
wetland nutrient storage and processing may vary spatially 
and temporally over the region, illustrating the current need 
for field-scale empirical data related to this topic.

Prairie pothole wetlands have been the focus of many 
scientific studies because of the wide array of ecosystem 
services that they provide. Services provided by these wet-
lands include biodiversity support (Euliss and Mushet 1999; 
Babbitt 2005), flood control (Gleason et al. 2008), carbon 
sequestration (Euliss et al. 2006), groundwater recharge 
(Winter and Rosenberry 1998), and excess nutrient control 
(Jordan et al. 2011). Many studies have focused on the wet-
lands of the PPR because they are a critical breeding region 
for migratory birds, especially waterfowl, and the surround-
ing grasslands provide cover and nesting habitat for suc-
cessful reproduction (Klett et al. 1988; Stephens et al. 2005; 
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Winter et al. 2005). Nutrient storage and processing are also 
important services that wetlands can provide (Jordan et al. 
2011) and understanding their value in this region of intense 
agriculture is crucial.

Loss of Wetlands and Changes in Nutrient Dynamics

Even with the multi-faceted ecological benefits of wetlands, 
often the perception of depressional wetlands in the PPR 
has been one of hindrance for the country’s agricultural 
advancement. Over 90% of the PPR is privately owned 
and has undergone major alterations to become productive 
cropland for North America (Fig. 1). Wetlands may have 
made up more than 20% of the PPR landscape prior to set-
tlement, however, 50–90% (depending on the State) have 
subsequently been lost to drainage and filling for cropland 
conversion (Dahl 1990; Euliss et al. 2006; Crumpton et al. 
2012). These dramatic alterations have resulted in decreased 
surface water storage that can lead to increases in flood fre-
quencies and nutrient runoff (Brun et al. 1981; Miller and 
Nudds 1996; Gleason et al. 2011).

The intense shift in land cover type within the PPR has 
given way to the extensive use of surface and subsurface 
drainage systems to remove wetlands and excess soil moisture 
from terrestrial systems and are rerouted into downstream 
aquatic systems. This change in hydrological dynamics 
causes a loss in the wetland’s capacity to cycle and remove 
nutrients, such as nitrogen through denitrification and phos-
phorous through soil adsorption (Sharpley and Withers 1994; 
Hey et al. 2005). In addition to drainage practices, fertilizers 
containing nitrogen and phosphorous are often applied in 

large amounts to agricultural fields for increased crop yield 
(Randall et al. 1997; Sawyer et al. 2006).

Nutrients can be transported from agricultural land to 
water by air, surface runoff and subsurface flow. These 
nutrients can be dissolved in water or bound to sediments. 
Nitrogen is a highly mobile element moving throughout 
the atmospheric, biologic, geologic, and hydrologic pools 
(Seelig and DeKeyser 2006). Excessive amounts of nitrogen 
and phosphorous are correlated with eutrophication of riv-
ers, lakes, and coastal waters (Howarth and Marino 2006, 
Pinckney et al. 2001, Dodds et al. 2009). Contamination of 
surface and groundwaters with nitrate and other nitrogen 
forms are also shown to cause harm to aquatic biota and 
humans (Townsend and Howarth 2010).

Nitrogen and phosphorous yield from fields can vary 
depending on type of crop, tillage, amount of fertilizer, tim-
ing, adsorption, and weather. The amount of nitrogen trans-
ported is highly dependent on sediment losses and is esti-
mated to be between 1–50 kg/ha/yr from agricultural lands 
(Baker and Laflen, 1983; Johnson and Baker 1984; Smith 
et al. 1993; Downing et al. 1999). The potential for nitro-
gen transport is heightened when incorporating a subsur-
face drainage system, with estimates increasing to 2–130 kg/
ha/yr of nitrogen being transported in agricultural runoff 
(Gast et al. 1978, Baker 1980, Baker and Johnson 1981, 
Kladivko et al. 1991, Weed and Kanwar 1996, Randall et al. 
1997, Blann et al. 2009).Subsurface drainage is shown to 
decrease phosphorous losses via surface runoff; however, 
it also reduces the amount of time phosphorous comes in 
contact with soil minerals (Sharpley et al. 1994). Decreas-
ing contact time leads to an inability for adsorption to soil 

Fig. 1   Map of United States 
Prairie Pothole Region depict-
ing cultivated and non-culti-
vated lands adapted from USDA 
Cropland Data Layer (2020)
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and organic matter, ultimately accelerating the transport of 
phosphorous in runoff (Ruark et al. 2012). Agricultural land 
is the primary source of excessive phosphorous accumula-
tion in soils, due to long-term phosphorous losses from fields 
(Sharpley et al. 2001). Excess phosphorous in soil is then 
able to transport via surface and subsurface runoff or ero-
sion. Without proper edge of field conservation practices, 
such as wetlands, agricultural runoff from fields has a direct 
path to rivers and streams, ultimately ending up in coastal 
waters and translocating accumulated nutrients along the 
way (Crumpton and Baker 1993, Howarth et al. 2002).

A Need for Solutions

The main source of hypoxia, or “dead zone”, in the Gulf of 
Mexico is directly related to the loss of nitrogen and phos-
phorous from the agricultural areas of the Midwestern U.S., 
within the Mississippi River Basin (Goolsby et al. 1999, 
USEPA 2008, Robertson and Saad, 2013). To reverse these 
multi-decadal effects of eutrophication, an estimated 60% 
reduction in watershed nitrogen loading may be necessary 
to adequately reduce eutrophication in the Gulf of Mexico 
(Mississippi River/Gulf of Mexico Watershed Nutrient Task 
Force 2017 Report to Congress). Like the Gulf of Mexico, 
Lake Winnipeg (10th largest freshwater lake in the world) 
is the terminal waterbody that the Red River of the North 
drains into and has been subject to increased nutrient load-
ing that has been linked with agricultural runoff (Koehler 
et al. 2021). This has caused algal blooms on Lake Win-
nipeg that have reached as high as 96% of the lake’s surface 
area (Binding et al. 2018). Understanding and bridging the 
knowledge gap in nutrient dynamics of the wetlands in the 
PPR may lead to more effective nutrient reduction strategies 
in these areas.

With an estimated 10 million acres of restorable wet-
lands in the US PPR alone, there is an extreme potential 
for wetland restoration projects given the historic wetland 
presence, importance to wildlife, and the need for water 
and nutrient runoff mitigation (Dahl 2014). For exam-
ple, within the Mississippi River Basin, watershed-scale 
statistical modeling estimates that a 22% increase in wet-
land area could decrease nitrogen loading to the Gulf of 
Mexico up to 54% (Cheng et al. 2020). Advancements in 
technology such as remote sensing, access to large cli-
mate and other observational datasets, and the ability to 
process big data more easily has greatly improved wet-
land modeling efforts in recent years. These sophisticated 
approaches allow for more dynamic modeling necessary 
at the landscape scale. However, in terms of model accu-
racy in complex regions, such as the PPR, there is still 
room for improvement (Evenson et al. 2021).

Synthesizing the current in situ wetland nutrient storage 
and transformation rates from field-based studies is critical 
for understanding the return on investment of wetland res-
toration and creation in agricultural systems. The aim of our 
synthesis is to enhance understanding of factors contributing 
to variability of wetland nutrient processing rates in wet-
lands of the PPR and to identify knowledge gaps that may 
be addressed with more empirical field-based studies within 
the region. These findings may also improve process-based 
modeling by providing “soft data” of the agricultural con-
servation potential of depressional wetlands within the PPR.

Methods

The purpose of this review is to evaluate our current knowl-
edge on the nutrient processing potential of depressional 
wetlands within agricultural systems of the United States 
PPR. Our analysis focuses on the ability of wetlands in an 
agricultural landscape to capture nutrient and sediment 
runoff from croplands prior to transport to aquatic systems. 
This review is an effort to synthesize a range of field study 
removal rates by wetlands in the PPR. We focus on empirical 
studies providing data on edge of field losses of nitrogen, 
phosphorous and sediment into wetlands and the removal 
efficiency of the wetland.

Using the search engines Google Scholar and Web of 
Science, we reviewed approximately 200 journal articles. 
Search terms were initially limited to “agricultural runoff 
of nitrogen, phosphorous, and sediment” and “nitrogen, 
phosphorous, and sediment removal by wetlands”. These 
articles were further narrowed down to only include stud-
ies of non-floodplain wetlands that are within agricultural 
systems of the PPR. This left seven studies with data on 
nitrogen transport, three studies with data on phosphorous 
transport, and three studies with data on sediment accu-
mulation in wetlands. Nitrogen and phosphorous studies 
were limited to only two states, Iowa and Minnesota, and 
sediment study sites were located in North Dakota, South 
Dakota, and Minnesota.

From the studies, when possible, we extracted the fol-
lowing data values: wetland location, year of study, wetland 
area, watershed area, annual precipitation, nitrogen/phos-
phorous inflow, nitrogen/phosphorous outflow, nitrogen/
phosphorous retained, sediment vertical and mass accumu-
lation, and catchment type.

The analyses were performed using R Statistical Software 
(v4.1.2; R Core Team 2021). Looking at wetland nutrient 
removal efficiencies, histograms were created to visualize 
the spread of nitrate removal (n = 36) and phosphate removal 
(n = 9). A linear regression was performed to assess the rela-
tionship between nitrate inflow to wetlands and nitrate reten-
tion by wetlands (n = 30). Similarly, a linear regression was 
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performed regarding the relationship between phosphate 
inflow and retention by the wetland (n = 9). Looking further 
into wetland nutrient trends, linear regressions were per-
formed to assess a relationship between wetland area and 
percent mass of nitrate removed (n = 40), as well as wetland 
to watershed area ratio and percent mass of nitrate removed 
(n = 43).

Results

Nitrogen and Phosphorous

Edge-of-field nutrient loss to prairie pothole wetlands ranged 
from 15–100% nitrogen retention rates (Fig. 2) and 12–100% 
phosphorus retention rates (Fig. 3). Wetlands captured an 
average of 52% nitrogen and 67% phosphorous from agri-
cultural runoff before water was transported downstream.

Looking at the relationship between the amount of nutri-
ent inflow versus amount of nutrient removed by prairie 
pothole wetlands can be used to better characterize how 
removal efficiencies may change depending on loading rates. 
The wetlands from these various studies show a nearly linear 
relationship, with a strong upward trend, of nitrate inflow 
(3.7–3,807 kg/ha/yr) and the wetland’s ability to remove 
the nutrient from the system (Fig. 4). Phosphate inflow 
(0.05–3.2 kg/ha/yr) and the wetland’s ability to remove the 
nutrient from the system did not show a strong linear rela-
tionship (Fig. 5).

The relationship between wetland area and percent of 
nitrate mass removal was also weak, not revealing any 
obvious trends (Fig. 6). However, when incorporating the 
watershed area by using a wetland to watershed ratio, the 

Fig. 2   Percent of nitrate retained by wetland. Each bin represents 20 
percent increments

Fig. 3   Percent of phosphate retained by wetland. Each bin represents 
20 percent increments

Fig. 4   Linear regression model showing the relationship between the 
amount of nitrate inflow and amount of nutrient removed by wetland. 
Gray shaded area represents 95% confidence interval. (R2 = 0.94); 
(p = < 0.001)
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relationship of wetland to watershed ratio and nitrate mass 
removal rates reveals a significant linear relationship with 
an upward trend (Fig. 7).

Sediment

Empirically derived sedimentation rates in the reviewed studies 
in prairie pothole wetlands range from 0.21–0.6 cm/yr of verti-
cal accumulation and an average mass accumulation of 0.268 g/
cm2/yr adjacent to agricultural land. Adjacent to grassland, ver-
tical accumulation ranges from 0.06–5 cm/yr with an average 
mass accumulation of 0.068 g/cm2/yr (Table 1). Note in Table 1 
that Martin and Hartman (1987) did not find a significant differ-
ence in vertical sediment accretion rates between the two land 
types. They did however find a significant difference in the dry 
densities of the sediments, with cultivated sediment being sig-
nificantly higher due to high silt and clay contents. Additionally, 
total nitrogen concentrations were significantly higher in soils 
and sediments of the grassland watersheds and phosphorous was 
transported at almost twice the rate to wetlands surrounded by 
cultivated land. Readers should also note that this review only 
contains data on sediment from three studies located in the states 
of Montana, South Dakota, and North Dakota. More studies are 
needed to confirm the comparison between cropland and grass-
land catchment effects on sediment accumulation in wetlands.

Fig. 5   Linear regression model showing the relationship between 
the amount of phosphate inflow and amount of nutrient removed 
by wetland. Gray shaded area represents 95% confidence interval. 
(R2 = 0.03); (p = 0.30)

Fig. 6   Linear regression model showing the relationship between 
wetland area and percent mass of nitrate removal. Gray shaded area 
represents 95% confidence interval. (R2 = -0.0205); p = 0.65)

Fig. 7   Linear regression model showing the relationship between 
the wetland to watershed ratio and percent mass of nitrate removal. 
Gray shaded area represents 95% confidence interval. (R2 = 0.50); 
(p = < 0.001)
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Discussion

Studies with a larger pool for compiling wetland data than 
this review, such as Land et al. (2016) study on wetlands of 
North America and Europe, found significantly linear rela-
tionships between nitrogen and phosphorous loading rates 
and a wetland’s removal efficiency. Crumpton and Baker 
(1993) also found that constructed wetland mesocosms were 
able to reduce nitrate levels by more than 80% when testing 
a range of nitrogen concentrations (3–15 mg/L) and given 
a residence time of one week. The results implied the pos-
sibility for constructed wetlands to remove nutrient exports 
at the field scale in the Midwest, leading to further inves-
tigations of agricultural treatment wetlands. Kovacic et al. 
(2000) constructed three treatment wetlands in Illinois to 
intercept tile drainage from corn and soybean fields in the 
Midwest. Over a three-year period, the wetlands were able 
to remove 37% of nitrate before draining into an adjacent 
river. While these studies are not located in the PPR, they 
reveal similar results to this review, with a significant corre-
lation between nitrate loads and removal efficiencies (Fig. 4), 
which may also explain the wide range in wetland retention 
rates (15–100%) (Fig. 2). However, many of the available 
studies on wetlands in agricultural settings of North America 
take place in Illinois, Minnesota, and Iowa. Given that all of 
the nutrient studies in this review were only available in the 
portion of the PPR that is located in Iowa and Minnesota, 
we are unable to say whether our results are a reliable repre-
sentation of the region as a whole. More studies in Montana, 
North Dakota, and South Dakota need to be conducted in 
order to have a spatially relevant representation of the PPR.

Utilizing data on wetland and watershed area where 
available, we were able to look further into the relation-
ship of wetland nitrate removal efficiency and the wetland 
area alone (Fig. 6), and the wetland to watershed area ratio 
(Fig. 7). The wetland area alone did not show a significant 
relationship with nitrate mass removal efficiency, while the 
wetland percent of nitrate removal mass was at least partially 
explained by the wetland to watershed ratio. Given a larger 
sample size with a wider range of wetland to watershed 
ratios, more distinct trends in the relationship with nitrogen 
retention could be explored.

Wetland presence within agricultural areas of the PPR 
can provide sufficient time and space for nitrogen manage-
ment through denitrification within the wetland basins (Hey 
et al. 2012). A recent study by Gordon et al. (2021) found 
that even a small edge-of-field wetland (0.11 ha), located 
in Minnesota, was able to remove 67% of nitrate inputs 
from a 10.1 ha row-crop field. Within this same study, they 
found that harvesting vegetation from the wetland was a suc-
cessful practice to remove phosphorous. This is consistent 
with other studies on vegetation harvesting for phospho-
rous removal from aquatic systems (Grosshans et al. 2014; 
Skłodowski et al. 2014; Bartodziej et al. 2017).

A relationship of phosphate inflow and phosphate 
retention was not significant when analyzing the wetlands 
included in this review (Fig. 5). These results could simply 
be because the sample size was too small (n = 9) to reveal 
any significant trends. Investigating relationships between 
phosphorous inflow and retention rates to include more 
information on vegetation type, structure, and harvesting 
could be valuable in understanding this relationship further. 
Prairie pothole wetlands are known to support dynamic veg-
etation communities that are capable of removing excess 
nutrients (Dierberg et al. 2002). A portion of our review data 
on phosphate was from Gordon et al. (2021) and they state 
that plant harvesting was the main mechanism for phosphate 
removal, but we were not able to glean vegetation informa-
tion from the other studies used to look into this further.

Dependent on influences of phosphorous surplus inputs 
in soil, such as fertilizer application and tillage practices, 
there can be large variations in spatiotemporal losses of 
phosphorous from agricultural fields of the PPR (Deten-
beck et al. 2002). Variations in precipitation have also been 
shown to play a large role in phosphorous losses between 
different fields and even within the same field (Johnson 
and Baker 1984, Mendes, 2020). We found that studies 
within the PPR have found annual surface runoff phos-
phorous concentration ranges between 0.23–1 mg/L (0.017 
– 1.34 kg/ha) (Davis et al. 1981, Baker and Johnson 1981, 
Johnson and Baker 1984, Badiou et al. 2018). Natural, 
restored, and constructed wetlands in the PPR can store 
excess runoff in wet years and capture phosphorous-rich 
sediments, while drained wetlands pose a risk of increased 

Table 1   Studies of sedimentation rates of wetlands in the PPR

Sedimentation Rate

Grassland Cropland Study Wetlands Source

vertical accumulation mass accumulation vertical accumulation mass accumulation

0.08 cm/yr 0.068 g/cm2/yr 0.26 cm/yr 0.268 g/cm2/yr 7 grassland, 12 cropland Gleason 2001
0.4 – 0.5 cm/yr NA 0.4 – 0.6 cm/yr NA 5 grassland, 7 cropland Martin & Hartman 1987
0.06 cm/yr NA 0.21 cm/yr NA 4 grassland, 4 cropland Preston et al. 2013
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runoff due to their lack of storage capacity (Zedler 2003; 
Badiou et al. 2018; Green et al. 2019).

There are a variety of variables we were not able to 
explore that could have had an effect on wetland phosphate 
retention rates, such as vegetation structure or wetland 
saturation level, that may explain the wide range of wet-
land phosphate retention rates (12–100%) (Fig. 3). Within 
the Canadian portion of the PPR, Badiou et al. (2018) 
compared phosphorous retention rates between intact and 
drained prairie wetlands. They found major differences 
in the chemical characteristics of sediment and soils that 
effected phosphorous sorption capacity between the two 
types of wetlands. These characteristics appeared to be 
driven by saturation and submergence level of the par-
ticular wetland location in question. Intact wetlands were 
shown to have higher phosphorous sorption and phospho-
rous buffering capacity. Their results indicate that prairie 
pothole wetlands can play a critical role in nonpoint source 
pollution mitigation, especially in an area where excess 
nutrients from agriculture is abundant.

Studies in the PPR estimate soil loss from agricultural 
areas ranging from 867–5,387 kg/ha/yr, while loss from 
natural grasslands are observed at only 50 kg/ha/yr (Baker 
and Johnson 1981, Johnson and Baker 1984; Chaplot et al. 
2004). Erosion and sedimentation are natural geologic pro-
cesses; however, they are exacerbated and accelerated by 
the conversion of natural landscapes (Alewell et al. 2019). 
When cultivating land, the topsoil (where nutrients and 
organic matter are concentrated) is disturbed, causing 
increases in runoff, nutrient leaching, and erosion lead-
ing to sedimentation of waterways and depressional basins 
where lakes and prairie pothole wetlands exist (Gleason 
2001, Chaplot et al. 2004, Burris and Skagen 2013, Pres-
ton et al. 2013).

The various studies we analyzed within the PPR show 
higher rates of sediment input to wetlands of the PPR with 
cropland catchments compared to wetlands within grass-
lands attributed to the higher contents of clay in sediment 
from cultivated areas (Table 1) (Adomaitis et al. 1967; 
Martin and Hartman 1987; Gleason 1996, 2001; Gleason 
and Euliss 1998). Skagen et al. (2016) used a common 
modeling approach (Revised Universal Soil Loss Equa-
tion), validated their model using two of the studies uti-
lized in this review (Gleason 2001, Preston et al. 2013), 
and found that accumulation of sediment was greater in 
wetlands with larger catchments and steeper slopes. In 
agreement with empirical studies within the PPR, results 
from Skagen et al. (2016) showed accumulation was deter-
mined not only by the topographic features but rainfall and 
agricultural practices as well—sediment increased with 
the increase of tilled land within the catchment (Gleason 
2001, Burris and Skagen 2013, Preston et al. 2013).

Best Management Practices

When considering a prairie pothole wetland as an agri-
cultural conservation practice, it is important to note their 
vulnerability to geological processes such as sedimenta-
tion when adjacent to cultivated lands. When used as a best 
management practice, runoff water from agricultural lands 
enters a wetland, transporting excess nutrients and sedi-
ment that will then settle out of the water to the bottom of 
the wetland. The maximum storage potential of a wetland 
will be reduced as sediment accumulates at the base of the 
wetland, therefore reducing the water storage capacity over 
time (Steglich et al. 2016). Gleason et al. (2003) suggests 
that wetland sedimentation from agricultural practices also 
leads to a reduction in the ability of aquatic plants and inver-
tebrates to reestablish. With as little as 0.5 cm of sedimenta-
tion, there can be a significant reduction in the emergence 
of wetland seedlings and invertebrates – essential resources 
for wetland dependent vertebrates (Jurik et al. 1994; Gleason 
et al. 2003). A wetland’s overall effectiveness and longevity 
as a sustainable conservation practice will be dependent on 
upland management practices within their catchments (De 
Steven and Mushet 2018).

To get the most out of wetlands as a conservation prac-
tice and improve sustainability, a combination of in-field 
and edge-of-field practices could be considered. Limiting 
the amounts of fertilizers applied to only the amount neces-
sary for crop production can reduce nutrient inputs in run-
off by more than 30% (Jaynes et al. 2004). Not only the 
amount, but the seasonal timing of fertilizer application in 
uplands can greatly affect the amount of fertilizer that is able 
to nitrify and leach into downstream waters (Randall and 
Mulla 2001). Upland conservation tillage practices are also 
successful methods of soil and sediment erosion reduction 
(Johnson et al. 1979; Ginting et al. 1998; Zhao et al. 2001). 
According to the latest Conservation Effects Assessment 
Project report, many farmers in the US have recently adopted 
advanced technology and in-field conservation practices 
to control erosion and trap sediment. As a result, between 
the time periods compared (2003–2006 and 2013–2016), 
edge-of-field sediment losses declined by 74 million tons 
and nitrogen and phosphorous losses via surface pathways 
decreased by 3 and 6% (USDA NRCS 2022). Reduction of 
excess nutrients in the wetland system may also contribute to 
the reduction of invasive species present, particularly those 
with a strong response to nutrient enrichment, such as Typha 
species (Bansal et al. 2019).

The presence of a wetland in an agricultural field as a 
management practice has the potential to benefit farmers by 
reducing field flooding, improving the water quality in the 
area, and supporting biodiversity (Neely and Baker 1989, 
Crumpton and Baker 1993, Richardson and Craft 2020, Bed-
ford 1999, Keddy 2010). Wetlands can also benefit farmers 
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financially by reducing flood frequency, therefore reducing 
crop failure, and improving livestock health through cleaner 
water (Walker 1966, Jager et al. 2020). The increased water 
quality of downstream waters is a benefit for human water 
consumption and recreational activities such as fishing. Hav-
ing an edge of field wetland can also lead to enjoyment of 
increased biodiversity through activities like bird watching.

Modeling Wetlands and Nutrient Dynamics

Evenson et al. (2021) assessed wetland restoration impacts 
on nitrate dynamics, resulting in a 12% reduction of nitrate 
from the Upper Mississippi River with 8,000 km2 of restored 
wetlands. While their estimates are lower than previous land-
scape scale estimates in the region, their findings still sug-
gest wetlands to be an effective strategy for mitigating nitrate 
but spatially the effectiveness can vary based on different 
processes and landscape dynamics. Based on our literature 
review which shows a lack of spatial range in the available 
empirical studies assessing wetland nutrient dynamics in the 
PPR, this highlights our need for more empirical studies to 
reveal trends in underlying mechanisms of the entire PPR 
landscape and improve model estimates.

Mckenna et al. (2020) has demonstrated a new method 
for simulating depressional wetlands within the Conserva-
tion Effects Assessment Project (CEAP) cropland mod-
eling framework using Agricultural Policy/Environmental 
eXtender (APEX). Their results show reduced runoff from a 
field by 8% with incorporation of an edge-of-field wetland, a 
9% reduction when adding a buffer strip between the field and 
wetland, and an 18% reduction when converting the entire 
upland to grassland. Additionally, reductions in sediment, 
nitrogen, and phosphorous entering the wetland occurred 
with the addition of a buffer strip and more so with the com-
plete upland conversion to grassland (Mckenna et al. 2020).

While these models are already advanced, studies utiliz-
ing them often refer to parameter refinement and calibration 
as a way to improve their simulation results (Saleh and Du 
2004, Arabi et al. 2008, Perez-Valdivia et al. 2017). If mod-
els are provided with region-specific empirically derived 
values for calibration, this will provide more accurate water-
shed-scale estimates of the conservation potential of prairie 
pothole wetlands in agriculture.

It is important to note the lack of spatial diversity of cur-
rent studies on wetland nutrient and sediment processing in 
agricultural settings of the PPR. The majority of studies have 
been conducted in the states of Iowa and Minnesota, leaving 
a large knowledge gap for the northwestern portion of the 
PPR. The region is vast, and the wetlands within it vary in 
physical size of basins, shape, and connectivity, to stream 
networks. They exist along a climate gradient; the northwest 
PPR is colder and drier, while the southeast PPR is warmer 
and wetter (Kantrud et al. 1989, Leibowitz 2003, Millett 

et al. 2009). The high variability of wetland characteristics 
and climate between wetlands in the PPR has the potential to 
be a major source of uncertainty in current modeling efforts 
without more empirical evidence of wetland nutrient dynam-
ics to represent the entire region.

Conclusions

When compared to pristine areas, it is clear that agricultural 
lands increase nutrient and sediment mobility. Including a 
prairie pothole wetland as an agricultural conservation prac-
tice can greatly reduce the downstream effects of edge-of-
field nutrient loads. Rate of reduction in agricultural prairie 
pothole wetlands are variable and can change based on many 
different factors, including nutrient loading rates. The nutri-
ent and sediment export dynamics from agricultural lands in 
the PPR is a complex issue that will likely persist along with 
agricultural intensification.

There are many strategies to reduce downstream nutrient 
pollution and combining approaches could ultimately give 
the best results. Based on the available studies investigated 
for this review, having a wetland as a conservation practice 
within an agricultural system is certainly beneficial com-
pared to no wetland present. Consideration of other conser-
vation practices such as buffer strips, nutrient control at the 
source (field), and utilizing vegetation as a nutrient uptake 
mechanism, especially for phosphorous, can be used in tan-
dem with a wetland to enhance impact reduction.

In order to implement management strategies or predict 
wetland removal efficiencies and return on investment, more 
field-based studies on nutrient dynamics of PPR wetlands 
within agricultural settings are needed to fully understand the 
mechanisms associated with all parts of this expansive region.
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