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Introduction

The continuous increase of greenhouse gases emissions 
including carbon dioxide (CO2) is mainly due to fossil 
fuel combustion and changes in land use practices includ-
ing those caused by deforestation (IPCC 2007). Emission 
of CO2 significantly impacts global warming and climate 
change as evident in its increased concentration from 280 
ppmv in 1850 to 411 ppmv in 2019 (Page 2019). Many sci-
entists have recommended alleviating the impact of climate 
change through CO2 sequestration in soil organic carbon 
(SOC) (Siikamӓki et al. 2012a; Taillardat et al. 2018). More-
over, to follow the Paris Climate Agreement’s climate rec-
ommendations, it is recommended to increase SOC stocks 
and protect carbon rich soils (e.g., coastal wetlands) from 
negative impacts including land conversions of natural hab-
itats to agricultural lands (Rumpel et al. 2018; Keshta et al. 
2022).

Apart from geologic and oceanic stocks, soil is a funda-
mental global carbon stock (approximately 1400–1600 Pg; 
1Pg = 1015 g), that can store up to 4.5 times more carbon than 
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Abstract
Coastal ecosystems are characterized by high content of soil carbon storage; however, they experience severe land conver-
sions in the past decades. The current study aims to examine how different land use/land cover (LU/LC) impact carbon 
stock in coastal ecosystem along Jazan coast, Saudi Arabia. In this study, impacts of LU/LC on carbon stocks in the coastal 
zone of Jazan, Saudi Arabia in 2009, 2013, and 2021 were assessed. Also, the LU/LC dynamics were evaluated using data 
provided by the land use dynamic model. The carbon stocks were modelled based on LU/LC using the InVEST program. 
Our study results showed that the decrease in mangroves from 2013 to 2021 reflects the high atmospheric emissions of 
carbon dioxide (CO2). Also, the increase in built-up areas might negatively impact total carbon stock. The estimated car-
bon stocks for the coastal zone of Jazan biome were 7279027.42 Mg C in 2009 (1Mg = 106 g). It decreased to 2827817.84 
Mg C in 2013, with a total loss of − 4450675.40 Mg C, and an average of annual loss of − 1,112,669 Mg C in the study 
period with net value of − 461240790.53 US$. On the other hand, the total estimated carbon stock was increased from 
2013 to 2021 with a 3772968.31 Mg C in 2021 (a total gain 944840.87 Mg C). Based on the current findings, we rec-
ommend that land-use-policy makers and environmental government agencies should implement conservation policies to 
reduce land use change at Jazan coastal ecosystems.
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the earth’s total biomass and 3.3 times more carbon than the 
atmosphere (Post et al. 1982; Eswaran et al. 1993). The car-
bon that is concealed in coastal ecosystems is called “blue 
carbon” (Siikamäki et al. 2012b). Coastal wetland soils can 
store about 450 Pg carbon and form nearly one-third of the 
global carbon stocks (~ 1550 Pg) (Bai et al. 2016). Also, 
coastal wetlands can accumulate carbon as 30–50 time more 
than forest per unit area (Mcleod et al. 2011; Ouyang and 
Lee 2013), which emphasizes their importance to the global 
carbon cycle (Howard et al. 2017). Coastal wetlands are 
among the most productive and biologically diverse ecosys-
tems in the world (Barbier et al. 2011). Moreover, coastal 
ecosystems have many ecosystem services and functions 
including carbon storage, flood protection, water treatment, 
climate regulation, and other services that help local com-
munities to overcome poverty (Costanza et al. 1997).

At regional and global scales, land use change detection 
using satellite imageries is a fundamental tool for assess-
ing the impacts on soil C stocks. Remote sensing has many 
applications including assessing land use changes for 
coastal ecosystems. Mulders 2001, concluded that satellite 
imageries obtained for the same area at different time inter-
vals is one of the most used methods to estimate the tempo-
ral changes in land use. For an efficient and best-productive 
land use management, Sharma et al. 2019 reached to a con-
clusion that the assessment of land use changes through sat-
ellite imageries interpretation would lead into increasing C 
stocks and minimizing C emissions. Remote sensing is a 
powerful tool for assessing global C inventories since the 
obtained satellite imageries through different sensors (e.g. 
optical devices and radar, etc.) cover large areas of land and 

give higher quality C estimations at lower cost (Richards 
2013).

Our current study is a part of a series of articles that aim 
to assess SOC stocks in various Saudi Arabian coastal wet-
lands (Eid et al. 2016, 2019, 2020; Arshad et al. 2018; San-
derman et al. 2018; Shaltout et al. 2020). Accordingly, the 
goal of the current study was to assess land use/land cover 
impacts on blue carbon storage of coastal ecosystems along 
Jazan coast, Saudi Arabia. Studying the impacts of land use 
changes on coastal blue carbon stocks would provide base-
line information and guidelines for implementing coastal 
wetland restoration along Saudi Arabia’s Red Sea coast 
to help policy makers and government agencies to maxi-
mize benefits and ecosystem services provided by coastal 
ecosystems.

Materials and Methods

Study Area

Jazan city is located in the southwest of Saudi Arabia on 
the border with Yemen and west of the Red Sea (Fig. 1). It 
is located along the 42° and 43.8° E longitude and between 
16.5° and 17° N longitude. It has an area of 13,500 km2 with 
a population of about 1.5 million. According to 2030 coun-
try’s vision, the coastal zone of Jazan has important projects 
to support urbanization and industrial activities (Al-Hatim et 
al. 2015). The terrain of Jazan city varies, while the coastal 
area extends from north to south. Salt marshes are one of the 
most common coastal wetland habitats, while Tihama area 

Fig. 1 Location map showing: 
(A) the study area; and (B) major 
cities of Saudi Arabia
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is the most fertile area of   Jazan. Jazan also has more than 
100 islands on the Red Sea. The city can be divided into 
three parts: inland areas, forests, and plains. The interior 
area is a series of mountains and forests with rich pastures, 
plains rich in crops such as coffee beans, grain crops (e.g., 
barley), and fruits (e.g., grapes). It also contains some types 
on mangrove in the coastal zone.

Data Collection and LU/LC Dataset

To analyze the LU/LC changes, data were extracted from 
three cloud-free Thematic Mapper (TM), Enhanced The-
matic Mapper (ETM), and Operational Land Imager (OLI) 
satellite images that obtained in 2009, 2013, and 2021. 
Landsat images with resolution and low cloud were down-
loaded using United States Geological Survey (USGS) 
(http://glovis.usgs.gov.). All images were referenced using 
UTM system, zone 36 N and then were radiometry cor-
rected using FLASH atmosphere correction using ENVI 
3.5 for further analysis. Calibrations were required to elimi-
nate errors occurred during acquisition procedure (Abd El-
Hamid et al. 2019).

Vegetation Index

Vegetation indices were computed using NDVI (Normal-
ized Difference Vegetation Index). NDVI use band 3 (Red) 
and 4 (Near Infrared) for Landsat 7, and band 4 (Red) with 
band 5 (Near Infrared) for Landsat 8. NDVI approaching 
calculation of greenness degree (sea grass, mangroves and 
agriculture). Vegetation degree of an image correlates with 
vegetation crown density. NDVI index ranges from − 1 
to + 1. Higher NDVI index indicates more crown density. 
NDVI is formulated as below:

 
NDVI =

Near − Red

Near + Red

Vegetation Cover of Jazan’s Coast

Vegetation is the biomass and C storage strength that regu-
lates the climatic change in any area. Presence of vegetation 
along the study area reflects the C and biomass stock. NDVI 
is a good indicator of vegetation. NDVI index was classified 
into six main groups, in our study, as follows (Fig. 2): no 
vegetation, lowest dense, lower dense, dense, higher dense, 
highest dense (Zaitunah et al. 2018). In 2009, our results 
indicated that the class of highest dense was increased from 
2009 to 2013 and decreased from 2013 to 2021. Also, some 
patches of highest dense class were converted to a higher 

dense class. The higher dense area represents some forest, 
planting, and agriculture. Lower and lowest dense were 
common along coastal and settlement areas (dense popula-
tions with human activities). High human accessibilities are 
also found there, so that land use and land cover are impact-
ing by human activities. The road attracts human for chang-
ing land use and land cover. Human will convert forest to 
agricultural lands, which in turn triggers land use changes. 
Closer to the roads, forest fragmentation and deforestation 
increase as a result of the close relationship between build-
ing houses and existence of roads. Along Jazan’s coast, 
vegetation landscape is continuously changing as a result 
of ongoing human activities. Similar to other research find-
ings, our results indicated that the main cause of the C stor-
age loss is related to wetland habitat loss and conversion of 
natural ecosystems, which are well known by their poten-
tial to store C (Lau 2013), due to land built-up (Jiang et al. 
2017).

Landsat Classification

The Landsat images were classified into six main classes by 
using a combination of unsupervised and supervised clas-
sification techniques. This is according to skillful informa-
tion of the LU/LC in the study area and field data of the 
predominant land cover using Google Earth. The land use 
and land cover were classified using supervised classifica-
tion based on the land cover classification system and field 
observation as ground truth. Every class was identified and 
drawn using ArcGIS 10.5. (Abd El-Hamid 2020). The field 
data represent the ground truth. The study area was classi-
fied into six classes; open water, vegetation or mangroves, 
built up, sabkha, and barren. Open water pixels include deep 
and shallow water, vegetation pixels represent those areas 
that usually used for growing various plants. Urban pixels 
represent those areas that include houses, factories, com-
mercial, residential areas, and other places. Finally, bare 
lands include coastal zone and all desert areas.

LU/LC Prediction Using the CA–Markov Model

For accurate prediction of the LU/LC, Cellular Automata 
(CA) and the Markov model adopted from IDRISI software 
were used in the present study (Zhao and Peng 2012). The 
model used to simulate land use changes and presents the 
spatial and numerical distribution of transition. Markov 
model estimates the probability of change from one state 
to another, taking the LU/LC changes at various times into 
consideration. In this model, the dynamic change of any 
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that CA–Markov model has been used recently in dynamic 
spatial phenomenon’s simulation and future land use change 
prediction.

Validation of simulated LU/LC

The validation of the model is an important part of any 
prediction-based studies. Kappa index is frequently used 
for examination the accuracy of the model in many studies. 
Landis and Koch (1977) stated that if Kappa index is less 
than or equal to 0.4, it reveals that land use changes greatly 
with poor consistency between the two images. On the other 
hand, when Kappa index ranges between 0.40 and 0.75, this 
indicates obvious changes between the two images with 
higher consistency. The Kappa index varies from 0 to 1. 
Values from 0.61 to 0.80 mean substantial, whereas values 
from 0.81 to 1 mean almost perfect. In this study, Kappa 
index was 0.81, which indicates that the obtained results are 
more reliable and with high consistency between the actual 
observed and predictive results. In this study VALIDATE 
model was used in IDRISI Selva to compare the predicted 

study area depends on earlier or current land cover state and 
calculated using following equations:

 S(t+1) =
(
pij*S(t)

)

 
Pij =




p11 p12 p1n

p21 p22 p2n

pn1 pn2 pnn





 0 ≤ p11 ≤ 1and
∑n

i=1
pij = 1, i, j = 1,2, . . . . . . ., n)

Where, S(t) is the state of the system at time t, S(t+1) is the 
value and state of the system at a time (t + 1); Pij is the tran-
sition probability matrix. The reliability of land use change 
modeling can be improved by joining two or more simula-
tion methods to include the benefits of both. It is well known 

Fig. 2 NDVI classifications during 2009, 2013, and 2021 of Jazan’s coast
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Carbon quantification

To estimate the amount of carbon (C) storage and sequestra-
tion, a new module has been used based on C cycle in the 
selected study area (He et al. 2016; Tallis et al. 2013). In the 
current study, there were four C pools that includes aboveg-
round C density, belowground C density, soil organic C, and 
dead organic matter (Tallis et al. 2013). The calculation of 
the C storage Cm,i,j in a given grid cell (i, j) with land-use 
type “m” can be achieved by the following equation (Aalde 
et al. 2006):

 Cm,i,j = A × (Cam,i,j + Cbm,i,j + Csm,i,j + Cdm,i,j)

In this formula, A is the real area of each grid cell (ha). 
Also,Cam,i,j ,Cbm,i,j ,Csm,i,j , and Cdm,i,j are the aboveground 
C density, belowground C density, soil organic C den-
sity, and dead organic matter C density (i, j), respectively. 
Finally, C storage and sequestration “S” can be computed by 
next equations for the present study area (Aalde et al. 2006):

 
C =

n∑

m=1

Cm,i,j

 S = CT 2 − CT 1

CT 2 and CT 1 demonstrate static C storage in years T2 and 
T1 (T2 > T1). Using InVEST software; LU/LC and biophys-
ical data are used as inputs to calculate the total amount of 
C stocks (Sharp et al. 2020).

Carbon sequestration valuation

Carbon storage was estimated using the Carbon Sequestra-
tion Storage Model (CSSM) using the InVEST program, 
established by the Natural Capital Project of the University 
of Stanford, which consists of a compilation of theoreti-
cal models that allow the assessment of several ecosystem 
services (Sharp et al. 2018). Coastal C stocks are depen-
dent on many factors including aboveground biomass 
(aerial vegetation), dead biomass (dead branches and litter 
fall), underground biomass (roots), and soil organic mat-
ter (SOM). The CSSM model considers C quantity stored 
in those pools, based on LU/LC maps. The information to 
estimate the C stocks were based on the LU/LC and C res-
ervoir maps using the CSSM. The CSSM was applied for 
the study area and for the LU/LC classes considered in the 
study (Sabkha, mangroves, vegetation and water bodies) for 
2009, 2013, and 2021. Changes in C stocks were assessed 
based on mean values reported in the literature (Villela et al. 
2012). The C stocks were estimated for each LU/LC class, 

2031 LU/LC with actual 2021 LU/LC to assess the accuracy 
of the model.

LU/LC dynamic

ESV (Ecosystem Service Value) is mainly affected by natu-
ral and man-made factors. ESV has been altered by many 
factors as construction and other development activities. 
The land-use intensity not only reflects natural aspects of 
different land-use types themselves, but also shows the inte-
grative impacts of human factors and natural ecological fac-
tors. In the present study, the land-use comprehensive index 
(L) was introduced to reflect the human activities. It was 
calculated as following:

 
L = 100 ×

n∑

i=1

AiCI

 
∆Lb−a = Lb − La = 100 ×

[
n∑

i=1

(A × Cib) −
n∑

i=1

(A × Cia)

]

 

R =
∆Lb−a

n∑
i=1

(A × Cia)
= 100 ×

n∑
i=1

(A × Cib) −
n∑

i=1
(A × Cia)

n∑
i=1

(A × Cia)

From three equations, L denotes the comprehensive index 
of land use degree, L: 100–400, the closer the L is to 400, 
the higher the degree of development and utilization; Ai 
represents the classification index of the land use type; Ci 
represents the percentage of land use type area; Δ Lb−a char-
acterizes the change in the comprehensive index of land use 
change; La and Lb represent the comprehensive land use 
degree index of a and b time phases; Ci.a. and Cib represent 
the area percentage of the i-type land type in the two stages 
a and b; and R characterizes the change rate in land use. 
To ensure the dynamic of LU/LC in the present study, R 
has been categorized into three classes as following: (1) if 
R value more than zero, then the study undergoes devel-
opment phase; (2) if R value less than zero, then the study 
undergoes decay phase; and (3) finally if R value equal to 
zero, then the study undergoes stabilization or adjustment 
phase.

1 3

Page 5 of 15   103 



Wetlands

Results and Discussion

Changes in LU/LC during 2009, 2013, 2021, and 
prediction in 2031

Six classes were extracted; open water, vegetation or man-
groves, built up, sabkha, and barren as shown in Fig. 3. The 
distribution of total area covered by the different LU/LC 
classes and their percentage of cover in the years of 2009, 
2013, 2021, and 2031 are presented in Table 1. Mangroves 
areas continued their decreasing trend from 2009, 2013, 
2021, and modeled 2031, where it decreased from 53.29 km2 
(0.97%), 28.40 km2 (0.52%), 25.79 km2 (0.47%) and 20.35 
km2 (0.39%), respectively. On the other hand, vegetation in 
the study area reduced from 143.04 km2 (2.60%) in 2009 
to 93.07 km2 (1.69%) in 2013, followed by a rise in 2021 
to 143.75 km2 (2.61%) and then to 150.26 km2 (2.90%) in 
modeled 2031. Also, barren reduced from 1864.40 km2 
(33.86%) in 2009 to 1678.85 km2 (30.55%) in 2013, fol-
lowed by a rise in 2021 to 1792.03 km2 (32.55%) and then 
reduced to 1090.71 km2 (21.05%) in modeled 2031. On the 
other hand, built-up areas experienced an increase from 
36.38 km2 in 2009 to 249.45 km2 in 2013, followed by a rise 

and for the four C sets considered in these analyses: aboveg-
round biomass (vegetation), dead biomass (dead branches 
and litter fall), underground biomass (roots), and SOM. 
The economic value (expressed as United Stated Dollar $) 
of C stocks was based on estimated values for each year. 
The estimates indicate values between $14 and $41, with 
a mean of $24 per Mg CO2. Carbon social cost provides 
an estimate linked to socio-environmental costs of climate 
changes, therefore, more consistent with the reality. Carbon 
credits denote only the payment of agents, and they did not 
include the socio-environmental costs of climate changes to 
the society. This function in the next equation, requires three 
inputs, including (I) “V,” the monetary value of each unit of 
carbon, (II) “r,” a monetary discount rate, and (III) “c,” the 
change in the value of carbon sequestration over time (Tallis 
et al. 2013):

 
Value_seqx = V

sequestx
yr_fut − yr_cur

yrfut−yrcur−1∑

t=0

(1 +
r

100
)
−t

(1 +
c

100
)−t

The first input “V” is estimated based on the social cost of 
carbon (SCC) that is released Mg of carbon in the atmo-
sphere in case of excess of the threshold.

Fig. 3 Land covers maps produced by Landsat image classification: (A) 2009, (B) 2013, (C) 2021; and (D) 2031
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increase in built-up area was related to Kingdom of Saudi 
Arabia’s Vision 2030. The annual rate of LU/LC change 
was shown in Fig. 5. For more details, gain and loss was 
detected showing the loss amount of barren and the increase 
amount of vegetation during the period from 2009 to 2013, 
on the other hand, from 2013 to 2021 mangrove lose large 
amount of its area. The main factors related to the increasing 
development land uses at the expense of deteriorating the 
mangroves and vegetation covers can be attributed to urban 
expansion (Abbas et al. 2021). Generally, the recent devel-
opment can mainly change the natural environment during 
the last periods (Seto and Kaufmann 2003).

CA-Markov Model Validation

Generally, it is important to evaluate the results classi-
fied images from classification with real map of the study 
area. In the current study, the predicted image (2031) was 
extracted after high accuracy of CA-Markov model. Accu-
racy of results shows that decreasing and increasing in 
spatiotemporal rate of each class trustworthy. Therefore, 

in 2021to 299.93 km2 and then to 350.01 km2 in modeled 
2031. Sabkha areas continued their decreasing trend from 
2009, 2013, 2021 and increased in modeled 2031. Finally, 
open water in our study area increased from 2886.79 km2 
(52.43%) in 2009 to 2985.81 km2 (54.33%) in 2013, fol-
lowed by a decrease in 2021 to 2855.23 km2 (51.86%) and 
then increased to 2880.69 km2 (63.31%) in modeled 2031 
as shown in Fig. 4. Mangroves might have decreased as a 
result of anthropogenic effects and climatic change. The 

Table 1 Area (km2) and percentage (%) of LU/LC along the study area periods
LU/LC 2009 2013 2021 2031

Area (km2) % Area (km2) % Area (km2) % Area (km2) %
Mangroves 53.29 0.97 28.40 0.52 25.79 0.47 20.35 0.39
Vegetation 143.04 2.60 93.07 1.69 143.75 2.61 150.26 2.90
Barren 1864.40 33.86 1678.85 30.55 1792.03 32.55 1090.71 21.05
Built-up 36.38 0.66 249.45 4.54 299.93 5.45 350.01 6.75
Sabkha 521.38 9.47 460.39 8.38 388.51 7.06 1800.24 5.60
Open water 2886.79 52.43 2985.81 54.33 2855.23 51.86 2880.69 63.31

Fig. 5 Annual rate change of LU/LC (km2) from one year to another

 

Fig. 4 Area (km2) of LU/LC during 2009, 2013, 2021 and 2031 of Jazan coast
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agreement between predicted and actual LU/LC map simi-
lar to others (Mishra et al. 2014).

Land Use Dynamic and Transition Probabilities

Results of land use dynamic reflect the recent development 
along the coastal zone of Jazan city. In the current study, 
the comprehensive index was increased from 2009, 2013, 
and 2021(141.5, 150.6, and 159.5, respectively, Table 2. 
All data were in the range of 100–400, representing that 
land use has been in a reasonable development stage. The 
comprehensive land use index continued to increase show-
ing high development from the initial year to the final year. 
The degree of transformation in land use is more than zero. 
R values were 0.0644, 0.0594 and, 0.1132 for 2009, 2013, 
and 2021, respectively. In general, urbanization is mainly 
responsible for transformations of agricultural land. The 
changes in the LU/LC were observed between two periods, 
from 2009 to 2013 and 2013–2021. About 1528.00, 23.71, 
18.98, 2845.00, 174.52, and 54.55 km2 of barren, built-up, 
mangroves, open water, sabkha and, vegetation, respec-
tively, were noted as shown in Table 3. Due to this con-
version, mangroves and vegetation lands experienced high 
expansion, accompanied by significant changes in barren 
lands. Large area of sabkha and barren were converted into 
urban area. Table 4 displays the summary of the probability 
matrix for major LU/LC conversions for all classes in Jazan 
that took place between 2013 and 2021 of the first scenario. 
For instance, the probability of change for mangroves to 
mangroves is very low but the conversion from open water 
to open water and from built-up to built-up are very high, 
99% and 84%, respectively. Gain and loss of LU/LC were 
showed in Fig. 6. All cubic trends of LU/LC were observed 
in Figs. 7 and 8. All cubic trends from one class to another 

CA-Markov is a trustable model to predict the future LU/
LC. CA-Markov is a forecasting model based on histori-
cal data collection. Therefore, it analyzes the combination 
of past tendencies and then it provides future scenarios. 
However, CA-Markov does not involve any environment 
and socioeconomic aspects. Moreover, this model consid-
ers/analyzes the changes in the selected area and if there 
are some influential cells it cannot measure them (Von Neu-
mann 1951). In the current study, two validation models 
were implemented for 2009 to 2013 and for 2013 to 2021. 
The Kappa statistics such as Kstandard (0.75), Kno (0.84), and 
Klocation (0.89) were for the period from 2013 to 2021, while 
the overall agreement of 0.82 indicates the reasonable per-
formance (78%) of the model. The accuracy assessment of 
the classified image is acceptable and reasonable for appli-
cations. According to the Kappa index of agreement values 
that exceed the minimum acceptable standard, and they 
were greater than 80%, our results indicate that there was 

Table 2 Land use dynamic of LU/LC in the study area periods
LU/LC 2009 2013 2021
Barren 67.73143733 61.09383392 65.10263316
Built-up 3.304501874 22.69440932 27.24072867
Open water 52.43633435 54.32701925 51.86362145
Vegetation 10.39331014 6.773669289 10.44473122
Mangroves 2.904350602 1.550329662 1.40580378
Sabkha 4.735301106 4.188494025 3.528566086

2009–2013 2013–2021 2009–2021
L 141.5052354 150.6277555 159.5860844

2001–2011 2011–2021 254.0695356
Δ L 9.122520071 8.958328895 18.08084897
R 0.064467721 0.059473295 0.113298406
 L: land-use comprehensive index; Δ L: characterizes the change in 
the comprehensive index of land use change; R: characterizes the 
change rate in land use

Table 3 Transition matrix of LU/LC (km2) from 2009 to 2013
LULC Barren Built-up Mangroves Open water Sabkha Vegetation 2013
Barren 1528 2.409 0.40378 0.008 200.37 60.44343 1791
Built-up 161.9 23.71 3.13749 2.785 106.54 1.794579 299
Mangroves 0.020 0.001 18.9840 0.158 1.2327 5.394716 25.7
Open water - - 1.1988911 2845 8.7363 - 2855
Sabkha 115 10.21 29.2989 38.53 174.52 20.826278 388
Vegetation 58.98 0.043 0.27045 0.0018 29.818 54.55160 143
2009 1864 36.38 53.2937 2886.7 521.23 143.0106 5504

Table 4 Transition probability (%) of LU/LC from 2009 to 2021
LULC Mangroves Vegetation Barren Built-up Sabkha Open water
Mangroves 0.0456 0.3688 0.2128 0.2220 0.0566 0.0942
Vegetation 0.0724 0.0146 0.8138 0.0986 0.0002 0.0004
Barren 0.2030 0.0436 0.2488 0.4042 0.0139 0.0859
Built up 0.0308 0.0000 0.0004 0.8476 0.0876 0.0334
Sabkha 0.0277 0.0000 0.0118 0.0526 0.1704 0.7375
Open water 0.0000 0.0000 0.0000 0.0000 0.0002 0.9998
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in vegetation area far from water. Also, the C stock spatial 
distribution for aboveground and belowground is presented 
in Fig. 10. The expansion of cultivated land and urban areas 
had a slight influence on C storage, as this change in LU/LC 
has mainly affected wet lawns and the edges of unused land 
(Kacem et al. 2022). Mekuria (2013) in his study reported 
that dense forest had higher total C stock followed by open 
forest, grassland, cultivated land, and bare land. Our results 
showed that mangroves and sea grasses have large contri-
bution for the total value of the ecosystem as they provide 
higher amount of C storage and sequestration. Our study 
reveals that there is no C in open water area, where the posi-
tive change in C is very low that appears in vegetation and 
mangroves areas. Thus, our results recommend conserving 
the vegetated areas for sustaining C stock.

According Abd El-Hamid and Hafiz 2022, human dis-
turbances are causing an ongoing decline in total carbon 
sequestered, which will eventually harm ecosystem services 
and have an impact on human health.

simulate the current situation of the development plan in 
Jazan city. Also, the transition to mangroves does not appear 
along the study periods, where the transition to the built-up 
area appeared in regular manner around the study area.

Carbon Stocks and Sequestration

Our results of C stock for LU/LC classes in the different 
biomes were modeled using the InVEST program. The 
spatial distribution of C stock variation in the coastal zone 
of Jazan is presented in Fig. 9. The estimated C stocks 
for the coastal zone of Jazan biome was 7279027.42 Mg 
in 2009. It decreased to 2827817.84 Mg C in 2013, a total 
loss of − 4450675.40 Mg C, an average of annual loss of 
− 1,112,669 Mg C in the study period with net present 
value of − 461240790.53 US$ as shown in Table 5. On the 
other hand, the total estimated C stock was increased from 
2013 to 2021 with 3772968.31 Mg C in 2021, a total gain 
of 944840.87 Mg C. Also, the highest stock of C appears 

Fig. 6 Gain and loss of LU/LC in Jazan coast
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Study limitations

One of the limitations of our study was the lack of detailed 
and reliable data on C density in various pools of the stud-
ied sites. It is known that the deficiency of accurate data 
about coastal ecosystem might lead into insufficient results 
about C stocks in different habitats. Also, the LU/LC change 
might impact the total estimation of C in the current and 
upcoming periods.

Conclusion

Studying changes in LU/LC provides vital data for policy 
decision-making in regard to the future of coastal eco-
system services. Our results indicated that the mangrove 
habitats were significantly decreased since 2013. More-
over, estimated soil C stocks of Jazan were substantially 

The total cost of C stock decreased from 2009 to 2013 
and increased from 2013 to 2021. Also, the transition cost 
of C using three different discount modeling agrees with 
change in LU/LC as shown Table 6. Our findings are simi-
lar to those of Sil et al. (2017), who reported that the value 
of C sequestration with a different C price flocculated from 
a minimum of US$ 13.5 ha− 1 yr− 1 when converting forest 
to grassland. Padilla et al. (2010) reported that the intense 
anthropogenic activities (conversion of forest to human 
settlement and farmland) would result in a spatial distribu-
tion of C sequestration value that varied from a minimum of 
US$ − 1361.23 ha− 1 yr− 1 to a maximum of US$ 230.43 ha− 1 
yr− 1. Our results indicated that even with the limited data 
available for simulated and current C storage, it could be 
an acceptable demonstration of C storage in the study area. 
Finally, Japelaghi et al. 2022 reported that human activities 
and its consequences which will lead to severe deforestation 
and at last the reduction of ecosystem services especially 
storage and the sequestration of carbon.

Fig. 7 Cubic trend of LU/LC from 2009 to 2013
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decreased since 2013 (2827817.84 Mg C), with a total loss 
of − 4450675.40 Mg C and an average of annual loss of 
− 1,112,669 Mg C during the study time frame (2013–2021) 
concluding a net value loss of − 461,240,790.53 US$. Deg-
radation of the ecosystem along the study area might have 
negative impacts on blue C storage. So, ecosystem conser-
vation should be taken into consideration for reducing C 
stock loss. Our results showed that the insufficiency of SOC 
is likely to increase ecosystem C loss due to change in man-
groves and sea grasses along the coastal zone of Jazan city. 
Therefore, our study investigated the current situation of the 
mangroves and grasses scattered along the coastline, which 
might provide an opportunity for officials to take the neces-
sary measures to preserve biological diversity to reduce C 
emissions in the atmosphere and preserve soil C stocks at 
coastal wetlands.

Fig. 8 Cubic trend of LU/LC 
from 2013 to 2021
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LU/LC 2009 2013 2021 2031
Open water 5861.9 3124.22 2836.9 2238.5
Mixed water 15,734 10,238 15,813 16,529
Floating plants 205,084 184,674 197,123 119,978
Built-up 4002 27,440 32,992 38,501
Barren 57,352 50,643 42,736 198,026
Agriculture 317,547 328,439 314,075 316,876
Carbon storage (Mg C) 7279027.42 2827817.84 3772968.31 -
Total cost/km2 605580.8 604556.9 605576.4 692148.6
Total cost for year 177,539,697,646 177,239,524,084 177,538,407,687 202,919,004,648

Table 5 Total cost ($US/km2) of 
carbon stocks for each LU/LC 
during study periods

 

Fig. 9 Spatial distribution and change carbon in the study area
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Fig. 10 Maps of value and distribution of aboveground biomass (AGB) and belowground biomass (BGB) in the study area periods
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