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Abstract
The study documents a process of ice lenses persistence under hummocks during spring snowmelt in a rich fen in Poland. 
Air temperature, as well as the temperature under vascular plant litter, Hamatocaulis vernicosus mat, Tomentypnum nitens 
hummocks and Sphagnum teres hummocks, was measured from December to March using temperature data loggers. The 
Capital Asset Pricing Model was adapted to analyse relationships between air temperature and temperature under litter and 
mosses. Sphagnum teres best insulated the temperature of the upper peat layer from changing air temperatures and maintained 
frozen peat under its hummocks the longest (for about a month after the frost had stopped). Tomentypnum nitens insulated 
similarly effectively in winter, also maintaining the ice lenses under its hummocks, but less effectively in warmer spring, 
which may be due to differences in hummock structure between the two species. The observed phenomenon may soon disap-
pear due to global warming, which may affect the fen functioning.
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Abstrakt
Praca dokumentuje proces utrzymywania się, podczas wiosennych roztopów, soczewek lodu pod kępami mchów na torfow-
isku niskim w Polsce. Od grudnia do marca, za pomocą rejestratorów temperatury, mierzono temperaturę powietrza oraz 
temperaturę pod wojłokiem z roślin naczyniowych, darnią Hamatocaulis vernicosus, kępami Tomentypnum nitens i kępami 
Sphagnum teres. Do analizy zależności pomiędzy temperaturą powietrza a temperaturą pod wojłokiem i mchami zaadap-
towano stosowany w ekonomii model wyceny aktywów kapitałowych. Sphagnum teres najlepiej izolował górną warstwę 
torfu od wahań temperatury powietrza, pod kępami tego gatunku najdłużej utrzymywał się zamarznięty torf (przez około 
miesiąc po ustaniu mrozu). Tomentypnum nitens zapewniał podobnie skuteczną izolację termiczną w okresie zimowym – pod 
kępami tego gatunku również utrzymywały się soczewki lodu – ale mniej skuteczną w okresie cieplejszym (wiosną), co może 
wynikać z różnic w strukturze kęp tych dwóch gatunków mchów. Obserwowane zjawisko utrzymywania się soczewek lodu 
pod kępami mchów może wkrótce zaniknąć w wyniku globalnego ocieplenia, co może wpłynąć na funkcjonowanie torfowisk.

Introduction

The reason for undertaking this study was observations I 
made in groundwater-fed rich fens in north-eastern Poland 
during spring snowmelt. When, after a frosty winter, tem-
peratures were already high enough (March) for peat to thaw, 
small ice lenses remained for a longer time under hummocks 
of sphagna and brown mosses. I conducted temperature 

measurements within the hummocks and hollows to char-
acterize this observed phenomenon. Hummocks are typically 
bedded by permafrost in subarctic peatlands (large palsas 
with permanent ice cores (Seppälä 1986, 1990) or smaller 
pounu hummocks with intermittent ice (Luoto and Seppälä 
2002; van Vliet-Lanoë and Seppälä 2002) or periodic ice 
layer in winter in boreal zone (e.g. Eurola 1968, 1975). The 
formation of periodic ice lenses has not yet been described 
from mires in the temperate zone.

Based on studies of boreal mires, Eurola (1968) indi-
cated that ice persisted there during the thawing season 
longer under the hummocks than in the hollows. Although 
the hummocks started to thaw earlier (because they were 
covered with a thinner snow layer which melted faster), 
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they fully thawed about 2 weeks later than the hollows 
(Eurola 1968). This is partly because the layer of frozen 
peat under the hummocks was thicker (as it was less insu-
lated from the low air temperature in winter by the thinner 
layer of snow) and partly because it was in less contact 
with the melting water, which washing over the ice acceler-
ates its thawing (Eurola 1968). Delayed thawing under the 
hummocks may be also the result of a more insulating moss 
layer of the hummocks than in the hollows due to the lower 
water content (Seppälä 1990; van der Molen and Wijmstra 
1994; Soudzilovskaia et al. 2013) or the greater thickness 
(Soudzilovskaia et al. 2013).

The hummocks forming on a rich fen in the temper-
ate zone are the first phase of the ombrotrophication and 
shrub encroachment process. The question then arises as to 
whether the formation of the ice lenses beneath the hum-
mocks can affect this process and how it can be altered 
by climate warming. The relationship of temperature to 
mire microtopography has so far been diversely reported. 
Couwenberg and Joosten (2005) and Couwenberg (2005) 
explained the hummock-hollow pattern just mechanisti-
cally – by the water flow and its positive feedback with the 
peat structure, without pointing to temperature relevance. 
Hughes and Barber (2004) showed that the fen-bog transi-
tion in the Holocene in atlantic zone mires followed a large 
climate cooling, which may have led to an increase in effec-
tive precipitation, and if precipitation predominates over 
evapotranspiration, rapid peat accumulation occurs lead-
ing to the separation of the peat surface from groundwa-
ter influence and subsequent ombrotrophication. There is 
much evidence that boreal peatlands tend to change towards 
ombrotrophy with a warming climate. Väliranta et al. (2017) 
suggested that the fen-bog shift in the Holocene was trig-
gered by climate warming that enhanced plant productivity 
and thus accelerated peat accumulation. Similarly, Kolari 
et al. (2021) observed, on the mire in Finland, an expansion 
of Sphagnum hummocks at the expense of rich fen hollows 
during 20 years of recent climate warming.

The aim of this study was mainly to document a process 
of ice lenses persistence under hummocks in a temperate 
rich fen, which may soon disappear due to global warming, 
potentially affecting the functioning of temperate rich fens.

Materials and Methods

The research was carried out in the Rospuda mire located in 
north-eastern Poland. The average annual temperature in the 
region is 8.0 °C (in the coldest quarter December-February 
– ca. -2 °C, in the warmest quarter June–August – ca. 18 °C 
(c.f. Jabłońska et al. 2019)) and the average annual precipita-
tion is 600 mm. The Rospuda mire covers about 100 ha of 
percolation mesotrophic rich fen. It is one of the very few 

fens in Europe that has never been drained and is preserved 
in a near-natural state, with large areas of open moss—sedge 
vegetation with stable high groundwater level (Jabłońska 
et al. 2011, 2014, 2019). The sampling plots were located 
in the open moss—sedge vegetation, in a transition zone 
between brown moss-small sedge fen and Sphagnum-small 
sedge fen (Jabłońska et al. 2011, 2019).

In autumn 2015, we installed five iButton temperature 
data loggers in 10 replicates about 50 m apart (the five log-
gers were several metres apart in each replicate): within 
each replicate, one logger was installed about 1 m above 
the ground, attached to the trunk of a bush or tree, and the 
other four under a layer of different types of biomass: vas-
cular plant litter covering bare peat hollow, Hamatocaulis 
vernicosus mat (HV), Tomentypnum nitens hummock (TN) 
and Sphagnum teres hummock (ST). The loggers were 
tightly wrapped with foil and adhesive tape. The loggers 
installed under the biomass layer were attached to a bamboo 
stick inserted into the peat in such a way that the logger was 
directly on the peat surface. The water level was at the same 
height as the peat surface when the loggers were installed. 
The temperature was recorded every 2 h with a resolution of 
0.5 °C. The loggers were collected in spring 2016. However, 
some of them were damaged due to animals pulling out or 
biting the bamboo stick (and sometimes the logger itself). 
This resulted in the following number of replicates for each 
logger location type: air temperature – 10, litter – 5, HV – 8, 
TN – 6, ST – 7. When collecting the loggers, we measured 
the biomass thickness covering each of them. Additionally, 
data on daily snow depth in Suwałki were obtained from the 
online database of the National Climatic Data Center (US).

Data analysis was performed with the use of the Capital 
Asset Pricing Model (CAPM). CAPM is originally used in 
financial econometrics to fit a dynamic linear model for the 
returns on a set of assets using the overall market return 
as a covariate – I used air temperature as a covariate and 
temperature under four types of biomass took a place of 
assets in the model. CAPM was calculated in R (R Core 
Team 2016), using the dlm package (Petris 2010), following 
the description of the CAPM procedure presented by Petris 
et al. (2009).

Results

During the observed period, there was about a one-week 
frost in early January (-10 to -20 °C on average) without a 
distinct snow cover, followed by about a one-week milder 
frost with a snow cover of about 10 cm, and during the rest 
of the period, positive temperatures were observed at least 
during the day (Fig. 1a). During the frost period, the tem-
perature under the litter decreased the most among the four 
investigated biomass types covering the peatland, whereas 
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among the mosses, the temperature under HV decreased the 
most. The temperature under hummock mosses (TN and 
ST) maintained during the whole frost period around 0 °C. 

After the onset of warming up the temperature under the 
litter increased the fastest, whereas the temperature under 
the moss layer initially remained at 0  °C and then also 

Fig. 1  The trends 20 December 2015 – 1 April 2016 for (a) snow 
cover depth (data obtained from the meteorological station in 
Suwałki), mean values of air temperature (measured every 2 h on 10 
sampling plots) and mean values of temperature under four types of 
biomass covering the peat surface: i.e. under vascular plants litter 
(measured every 2 h on 5 plots) and under the three dominant moss 
species analysed: HV – Hamatocaulis vernicosus (measured every 
2 h on 8 plots), TN – Tomentypnum nitens (measured every 2 h on 
6 plots) and ST – Sphagnum teres (measured each 2  h on 7 plots); 
(b) smoothed values of β in the Capital Asset Pricing Model (CAPM) 
calculated on the basis of the data presented in panel a). The CAPM 

model is originally used in financial econometrics to fit a dynamic 
linear model for the returns on a set of assets using the overall mar-
ket return as a covariate – air temperature was used as a covariate 
and temperature under four types of biomass took a place of assets in 
the model. β value of less than 1.0 means that the temperature under 
litter/moss changes more slowly than the air temperature, the lower 
the β value, the slower the temperature under litter/moss reacts to 
changes in air temperature. A negative value of β means the reverse 
trend, i.e. that the temperature under the litter/moss changes in the 
opposite direction to the air temperature
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gradually increased. The temperature under the ST hum-
mocks remained at 0 °C for the longest time – till the begin-
ning of March (Fig. 1a). The time trends are more clearly 
differentiated when the CAPM model is applied compared 
to the raw temperature data (Fig. 1). The smoothed values 
of β in the CAPM showed that the temperature under lit-
ter reacted the most to the changes in air temperature, the 
temperature under HV, TN reacted more slowly to these 
changes, and the slowest under ST (Fig. 1b). In the case of 
ST, the most negative values of β were observed (Fig. 1b).

Temperature values averaged over the whole observation 
period are the lowest for litter, while for mosses the 95% 
confidence intervals do not overlap only between HV and 
TN (Fig. 2a). For the β value averaged over the whole obser-
vation period, clear differences were observed between all 
biomass types, confirming the interpretations in Fig. 1b, i.e. 
the highest mean β value for litter indicate that it reacted the 
most to the changes in air temperature, whereas temperature 
under HV, TN and ST reacted more slowly to these changes 
as indicated by increasingly lower values of β (Fig. 2b).

The thickness of the biomass layer covering the logger 
was the lowest for HV, while the 95% confidence intervals 
for the mean overlap for the other biomass types (Fig. 2c).

Discussion

Ice lenses and hummock mosses may influence each other 
through a positive feedback loop – the ice lenses lift the 
mosses above the mire surface due to frost heaving, and the 
mosses insulate the ice lenses allowing the lifting process 
to take place. The study shows that ST best insulates the 
temperature of the upper peat layer from changing air tem-
peratures and maintains frozen peat under its hummocks the 

longest. TN seems to insulate similarly effectively in winter, 
also maintaining the ice lenses under its hummocks, but less 
effectively in spring (Fig. 1), so that mean temperatures for 
the whole study period were higher under TN than ST hum-
mocks (Fig. 2). It is noteworthy that the structure of ST and 
TN hummocks differs significantly (Fig. A1). Although the 
hummocks of these two species can be of similar height, TN 
has less water in them (own unpbl. data; Fig. A1), which 
can explain the differences between these species in warmer 
periods: after the mire has thawed completely, the bottom 
of the TN hummocks, filled mainly with air, follows the air 
temperature more strongly than the bottom of the ST hum-
mocks, constantly saturated with cool groundwater main-
tained by Sphagnum shoots.

Until 23 January, most of the β values in the CAPM 
model ranged from 0 to 1 (Fig. 1), meaning that during frost 
the peat temperatures moved in the same direction as the 
air temperature, though with less sensitivity (Chen 2021). 
Later, when the air temperature began to rise, the β values 
beneath litter remained above 0. In spite of similar thickness 
(Fig. 2) the litter layer has much worse insulating properties 
than the moss layer. The β values under mosses dropped to 
negative values and the values for ST were the most negative 
and stayed below 0 for the longest time – until the end of 
February. The negative β values mean an inverse relation-
ship between the temperature under the moss and the air 
temperature and may indicate the persistence of ice lenses 
under hummocks during the spring melt.

The results may seem contrary to the findings of Horsák 
et al. (2021), who showed for Western Carpathian spring 
fens that the peat temperature under hollow mosses (grow-
ing close to spring water outlet) was better buffered than 
under hummock mosses (growing further from the spring) 
– i.e. peat under hollow mosses was much colder than 

Fig. 2  Means and 95% confidence intervals for (a) temperature in the 
period 20 December 2015 – 1 April 2016, (b) β values in the CAPM 
model (compare Fig. 1 for more detailed explanations) and (c) layer 
thickness.  The values in a) and b) are the average  values for the 
trends shown in Fig. 1a and 1b respectively. The samples are grouped 

according to the type of biomass covering  the peat surface: i.e. vas-
cular plants litter and the three dominant moss species analysed: 
HV – Hamatocaulis vernicosus, TN – Tomentypnum nitens and ST 
– Sphagnum teres 
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air than under hummocks in the warm period and much 
warmer in the cold period. The main difference that may 
account for these apparently inconsistent results is in the 
winter air temperatures – the minimum reported by Horsák 
et al. (2021) was -3.8 °C, whereas during my study the 
air temperature dropped to -20 °C. Thermal buffering by 
groundwater in cold periods occurs up to a certain frost 
level, until the mire freezes over. Once the mire has frozen, 
the thermal buffering by groundwater disappears, and the 
control of the temperature of the upper peat layer is taken 
over by insulation by mosses and snow.

The snow accumulated in the second half of January 
reduced peat freezing in spite of low air temperatures 
(the temperature under the litter was distinctly higher 
during the time of snow cover than during the preceding 
snow-free period, despite the fact that in both periods the 
air temperature dropped to around -20 °C, Fig. 1). The 
snow cover, like the moss layer, has insulating properties 
(Eurola 1968, 1975), particularly when it is new, fluffy 
snow (Seppälä 1990; Benoy et al. 2007).

The growth rate of mosses is hampered by frost (Campbell 
and Rydin 2019) but still, they continue to grow not only in 
the warmer season of the year but also in winter when the 
mire is at least temporarily frozen (Küttim et al. 2020). Snow 
cover partially alleviates the physiological stress associated 
with freezing (Cooper et al. 2019; Küttim et al. 2019). Vas-
cular plants do not begin to grow when the mire is frozen. 
Although thermal buffering by groundwater generally miti-
gates the negative effects of cold on fen plants (Fernández-
Pascual et al. 2015), the hummocks sustaining the ice lenses 
are microhabitats where the growing season may be slightly 
shorter than in the hollows. With concurrent lower access 
to groundwater, this may create conditions for competitively 
weak vascular plant species with a northern range, such as 
Carex dioica, C. chordorrhiza (Fig. A2), as well as Liparis 
loeselii, Parnassia palustris, Saxifraga hirculus (Peterka 
et al. 2017). In a study covering the whole vegetation of the 
Rospuda valley (Jabłońska et al. 2019), the affinity of C. 
dioica and C. chordorrhiza to S. teres hummocks, as well 
as of P. palustris and S. hirculus to T. nitens hummocks was 
confirmed. In a comprehensive study by Singh et al. (2019) 
on the relationship between vascular plants and mosses in 
rich fens in central and eastern Europe, C. dioica, C. chordor-
rhiza and L. loeselii were associated with intermediate values 
of brown moss/Sphagnum ratio, indicating a substantial share 
of Sphagnum in the sites where the species occur. Singh et al. 
(2019) showed that P. palustris and S. hirculus were signifi-
cantly positively correlated with the brown moss/Sphagnum 
ratio, but did not specified whether the brown mosses domi-
nating in the sites are hollow or hummock species. It can-
not therefore be ruled out that they also show a relationship 
between these species and T. nitens hummocks. The species 
discussed are increasingly rare in central European peatlands.

Due to climate warming, harsh winters in central Europe 
will become scarce (IOŚ 2022). The phenomenon described 
here may, with great probability, become a thing of the past 
within the next couple of years, as a frost that is too weak 
and of short duration will not cause the groundwater-fed fen 
to freeze. Studies of peatlands in northern Europe reveal 
consistent trends towards ombrotrophication of fens with cli-
mate warming (Väliranta et al. 2017; Granlund et al. 2021; 
Kolari et al. 2021), but in northern Europe winters are still 
cold enough for hummocks to preserve frosted peat longer 
during spring melt. It is therefore not possible to directly 
transpose the trends observed currently in northern peatlands 
to the temperate zone. It cannot be ruled out that the decline 
of the phenomenon described in this article, may contribute 
(in addition to falling groundwater levels, reduced precipita-
tion, increased peat decomposition leading to an increased 
supply of nutrients, as well the more severe impact of the 
increasingly shorter and thinner snow cover on the hummock 
than hollow mosses (Küttim et al. 2019)) to the retardation 
of ombrotrophication on rich fens in central European low-
lands and to the disappearance of Sphagno-Tomentypnion 
and Saxifrago-Tomentypnion vegetation (Peterka et al. 2017; 
Hájek et al. 2021) and its characteristic plant species.
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