Skip to main content

Advertisement

Log in

Evaluating interspecific wheat hybrids based on heat and drought stress tolerance

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Three durum and three bread wheat genotypes were crossed to produce three tetraploid, three hexaploid and nine interspecific (pentaploid) F1 hybrids. All genotypes were evaluated for heat tolerance in the field and for drought using polyethylene glycol in vitro. Chromosome numbers and meiotic behavior in pentaploid F1 hybrids (2n=5x=35, genomes AABBD) were confirmed. Heat stress significantly reduced grain yield/plant and 1000-kernel weight (1000-KW), while grain protein content (GPC) was increased. Drought caused a significant reduction in root length, shoot length and seedling fresh weight, whereas root/shoot ratio was increased. P3 (durum), P4 (bread) and their pentaploid F1 hybrid could be considered as the most heat-tolerant genotypes. However, P2 (durum), P6 (bread) and their F1 were most tolerant to drought. The addition of a D genome single dose into pentaploid F1 hybrids obviously reduced grain yield/plant, 1000-KW and seedling traits, however GPC was increased. Moderate to high broad-sense heritability and genetic advance were obtained for the most investigated traits. Grain yield/plant was strongly positively correlated with stress tolerance index (STI), yield index (YI), mean productivity (MP), geometric mean productivity (GMP) and harmonic mean (HM) under heat stress and with root length under drought condition, suggesting that STI, YI, MP, GMP and HM are powerful indices for heat tolerance, while root length is most effective for drought. Successful interspecific hybridization obtained in the study is only an initial step for desired genes introgression. Successive progenies are going to be evaluated for further genetic studies aiming at improving abiotic stress tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aazami MA, Torabi M, Jalili E. 2010. In vitro response of promising tomato genotypes for tolerance to osmotic stress. Afr. J. Biotechnol. 9: 4014–4017

    CAS  Google Scholar 

  • Ahmad M, Shabbir G, Minhas NM, Shah MKN. 2013. Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad J. Agric. 29: 21–27

    Google Scholar 

  • Ahsan M, Hader MZ, Saleem M, Aslam M. 2008. Contribution of various leaf morpho-physiological parameterstowards grain yield in maize. Int. J. Agr. Biol. 10. 546–550

    Google Scholar 

  • Akçura M, Partigoç F, Kaya Y. 2011. Evaluating of drought stress tolerance based on selection indices in Turkish bread wheat landraces. J. Anim. Plant. Sci. 21: 700–709

    Google Scholar 

  • Aliakbari M, Saed-Moucheshi A, Hasheminasab H, Pirasteh-Anosheh H, Asad MT, Emam Y. 2013. Suitable stress indices for screening resistant wheat genotypes under water deficit conditions. Int. J. Agron. Plant Prod. 4: 2665–2672

    Google Scholar 

  • Allard RW. 1960. Principles of Plant Breeding. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Balla K, Rakszegi M, Li Z, Bekes F, Bencze S, Veisz O. 2011. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 29: 117–128

    CAS  Google Scholar 

  • Balla K, Veisz O. 2007. Changes in the quality of cereals in response to heat and drought stress. Acta Agron. Ovariensis 49: 451–455

    Google Scholar 

  • Baloch MJ, Dunwell J, Khakwani AA, Dennett M, Jatoi WA, Channa SA. 2012. Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages. J. Agric. Res. 50: 299–310

    Google Scholar 

  • Baptista-Giacomelli FR, Pagliarini MS, Almeida JL. 2000. Elimination of micronuclei from microspores in a Brazilian oat (Avena sativa L.) variety. Genet. Mol. Biol. 3: 15–18

    Google Scholar 

  • Barker TC, Campos H, Cooper M, Dolan D, Edmeades GO, Habben J, Schussler J, Wright D, Zinselmeier C. 2005. Improving drought tolerance in maize. Plant Breed. Rev. 25: 173–253

    CAS  Google Scholar 

  • Barnabas B, Jager K, Feher A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31: 11–38

    CAS  PubMed  Google Scholar 

  • Bayoumi TY, Eid MH, Metwali EM. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7: 2341–2352

    CAS  Google Scholar 

  • Bencze S, Veisz O, Bed Z. 2004. Effects of high atmospheric CO2 and heat stress on phytomass, yield and grain quality of winter wheat. Cereal Res. Commun. 32: 75–82

    Google Scholar 

  • Bhagyalakshmi K, Vinod KK, Kumar M, Arumugachamy S, Prabhakaran AJ, Raveendran TS. 2008. Interspecific hybrids from wild x cultivated Triticum crosses -A study on the cytological behaviour and molecular relations. J. Crop Sci. Biotech. 11: 257–262

    Google Scholar 

  • Bhargava S, Sawant K. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 132: 21–32

    Article  CAS  Google Scholar 

  • Blanco A, Rajaram S, Krostad WE. 2001. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci. 41: 670–676

    Article  Google Scholar 

  • Bouslama M, Schapaugh WT. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 24: 933–937

    Article  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Res. 90: 19–34

    Article  Google Scholar 

  • Clarke JM, DePauw RM, Townley-Smith TF. 1992. Evaluation of methods for quantification of drought tolerance in wheat. Crop Sci. 32: 728–732

    Article  Google Scholar 

  • Datta JK, Mondal T, Banerjee A, Mondal NK. 2011. Assessment of drought tolerance of selected wheat cultivars under laboratory condition. J. Agric. Technol. 7: 383–393

    Google Scholar 

  • Davies DR. 1974. Chromosome elimination in interspecific hybrids. Heredity 32: 267–270

    Article  Google Scholar 

  • Deka M, Baruah KK. 1998. Moisture stress induced changes in seed germination and seedling growth of upland Ahu rice (Oriza sativa L.). Ind. J. Ecol. S 25: 133–137

    Google Scholar 

  • Denyer K, Hylton CM, Smith AM. 1994. The effect of high temperature on starch synthesis and the activity of starch synthase. Aust. J. Plant Physiol. 21: 783–789

    Article  CAS  Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J. Agron. Crop Sci. 190: 6–12

    Article  Google Scholar 

  • Drikvand R, Doosty B, Hosseinpour T. 2012. Response of rainfed wheat genotypes to drought stress using drought tolerance indices. J. Agric. Sci. 4: 126–131

    Google Scholar 

  • Eberhard FS, Zhang P, Lehmensiek A, Hare RA, Simpfendorfer S, Sutherland MW. 2010. Chromosome composition of an F2 Triticum aestivumx T. turgidum spp. durum cross analysed by DArT markers and MCFISH. Crop Pasture Sci. 61: 619–624

    Article  CAS  Google Scholar 

  • Ehdaie B, Shakiba MR. 1996. Relationship of internode-specific weight and water-soluble carbohydrates in wheat. Cereal Res. Commun. 24: 61–67

    Google Scholar 

  • El-Rawy MA, Hassan MI. 2014a. A diallel analysis of drought tolerance indices at seedling stage in bread wheat (Triticum aestivum L.). Plant Breed. Biotech. 2: 276–288

    Article  Google Scholar 

  • El-Rawy MA, Hassan MI. 2014b. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.). J. Crop Sci. Biotech 17: 255–266

    Article  Google Scholar 

  • El-Rawy MA, Youssef M. 2014. Evaluation of drought and heat tolerance in wheat based on seedling traits and molecular analysis. J. Crop Sci. Biotech. 17: 183–189

    Article  Google Scholar 

  • Farshadfar E, Ghannadha M, Zahravi M, Sutka J. 2001. Genetic analysis of drought tolerance in wheat. Plant Breed. 114: 542–544

    Article  Google Scholar 

  • Farshadfar E, Moradi Z, Elyasi P, Jamshidi B, Chaghakabodi R. 2012. Effective selection criteria for screening drought tolerant landraces of bread wheat (Triticum aestivum L.). Ann. Biol. Res. 3. 2507–2516

    Google Scholar 

  • Fernandez GCJ. 1992. Effective selection criteria for assessing plant stress tolerance. Proceedings of a symposium. Taiwan

    Google Scholar 

  • Fischer RA, Maurer R. 1978. Drought resistance in spring wheat cultivars. Grain yield response. Aust. J. Agric. Res. 29: 897–912

    Article  Google Scholar 

  • Fukui K, Nakayama S. 1996. Plant Chromosomes: Laboratory Methods. CRC Press. Boca Raton.

    Google Scholar 

  • Golabadi M, Arzani A, Maibody SAM. 2006. Assessment of drought tolerance in segregating populations in durum wheat. Afr. J. Agric. Res. 5: 162–171

    Google Scholar 

  • Guttieri MJ, Stark JC, Brien K, Souza E. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 41: 327–335

    Article  Google Scholar 

  • Hadzhiivanova B, Bozhanova V, Dechev D. 2012. Interspecific hybridiZation between durum wheat and aegilops umbellulata (zhuk.). Bulg. J. Agric. Sci. 18: 713–721

    Google Scholar 

  • Hakim MA, Hossain A, Teixeira da Silva JA, Zvolinsky VP, Khan MM. 2012. Yield, protein and starch content of twenty wheat (Triticum aestivum L.) genotypes exposed to high temperature under late sowing conditions. J. Sci. Res. 4: 477–489

    Article  CAS  Google Scholar 

  • Hossain KG, Jackson SA, Kianian SF. 2012. Genome structure and chromosome function. In: HW Bass, JA Birchler, eds., Plant Cytogenetics: Genome structure and chromosome function. Springer

    Google Scholar 

  • Jatoi WA, Baloch MJ, Kumbhar MB, khan NU, Kerio MI. 2011. Effect of water stress on physiological and yield parameters at anthesis stage in elite spring wheat cultivars. Sarhad J. Agric. 27: 332–339

    Google Scholar 

  • Jenner CF. 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Aust. J. Plant Physiol. 21. 791–806

    Article  CAS  Google Scholar 

  • Kam-Morgan LNW, Gill BS, Muthukrishnan S. 1989. DNA restriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome 32: 724–732

    Article  CAS  Google Scholar 

  • Khakwani AA, Dennett MD, Munir M. 2011. Early growth response of six wheat varieties under artificial osmotic stress condition. Pak. J. Agric. Sci 48: 118–123

    Google Scholar 

  • Khan AS, Ul Allah S, Sadique S. 2010. Genetic variability and correlation among seedling traits of wheat (Triticum aestivum) under water stress. Int. J. Agric. Biol. 12: 247–250

    Google Scholar 

  • Kjeldahl J. 1883. “Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern” (New method for the determination of nitrogen in organic substances). Z. Anal. Chem. 22: 366–383

    Article  Google Scholar 

  • Kulkarni, M, Deshpande U. 2007. In vitro screening of toma to genotypes for drought resistance using polyethylene glycol. Afr. J. Biotechnol. 6: 691–696

    CAS  Google Scholar 

  • Labuschagne MT, Elago O, Koen E. 2009. The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. J. Cereal Sci. 49: 184–189

    Article  CAS  Google Scholar 

  • Lanning SP, Blake NK, Sherman JD, Talbert LE. 2008. Variable production of tetraploid and hexaploid progeny lines from spring wheat by durum wheat crosses. Crop Sci. 48: 199–202.

    Article  Google Scholar 

  • Larher F, Leport L, Petrivalsky M, Chappart M. 1993. Effectors for the osmoinduced proline response in higher plants. Plant Physiol. Biochem. 31: 911–922

    CAS  Google Scholar 

  • Lin CS, Binns MR, Lefkovitch LP. 1986. Stability analysis: where do we stand? Crop Sci. 26: 894–900

    Article  Google Scholar 

  • Lonbani M, Arzani A. 2011. Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agron. Res. 9: 315–329

    Google Scholar 

  • Martin A, Simpfendorfer S, Hare RA, Eberhard FSand Sutherland MW. 2011. Retention of D genome chromosomes in pentaploid wheat crosses. Heredity 107: 315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AS, Batley J. 2015. Creating new interspecific hybrid and polyploid crops. Trends Biotechnol. 33: 436–441

    Article  CAS  PubMed  Google Scholar 

  • Mitra J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci.80: 58–762

    Google Scholar 

  • Mohammadi R, Farshadfar E, Aghaee M, Shutka J. 2003. Locating QTLs controlling drought tolerance criteria in rye using disomic addition lines. Cereal Res. Commun. 31: 257–263

    Google Scholar 

  • Muhe K. 2011. Selection index in durum wheat (Triticum turgidum var. durum) variety development. Acad. J. Plant Sci. 4: 77–83

    Google Scholar 

  • Nyquist WE. 1991. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 10: 235–322

    Article  Google Scholar 

  • Rauf M, Munir M, Ul-Hassan M, Ahmed M, Afzal M. 2007. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afr. J. Biotechnol. 6: 971–975 Raziuddin

    CAS  Google Scholar 

  • Swati ZA, Bakht J, Khan NU, Shafi M, Akmal M, Hassan G. 2010. In situ assessment of morpho-physiological responses of wheat (Triticum aestivum L.) genotypes to drought. Pak. J. Bot. 42: 3183–3195

    Google Scholar 

  • Rosielle AA, Hamblin J. 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 21: 943–946

    Article  Google Scholar 

  • Saba J, Moghaddam M, Ghassemi K, Nishabouri MR. 2001. Genetic Properties of Drought Resistance Indices. J. Agric. Sci. Technol. 3: 43–49

    Google Scholar 

  • Said AA. 2014. Generation mean analysis in wheat (Triticum aestivum L.) under drought stress conditions. Ann. Agric. Sci. 59: 177–184

    Google Scholar 

  • Sakthivelu G, Akitha Devi MK, Giridhar P, Rajasekaran T, Ravishankar GA, Nedev T, Kosturkova G. 2008. Droughtinduced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. Genet. Appl. Plant Physiol. 34: 103–112

    CAS  Google Scholar 

  • Shimelis H, Spies JJ. 2011. Aneuploids of wheat and chromosomal localization of genes. Afr. J. Biotechnol. 10: 5545–5551

    Google Scholar 

  • Singh GP, Chaudhary HB, Rajbir Y, Tripathi S. 2008. Genetic analysis of moisture stress tolerance in segregating populations of bread wheat (T. aestivum L.). Ind. J. Agric. Sci. 78. 848–852

    Google Scholar 

  • Mardeh A, Ahmadi A, Poustini K, Mohammadi V. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res. 98: 222–229

    Article  Google Scholar 

  • Talebi R. 2011. Evaluation of chlorophyll content and canopytemperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Aust. J. Basic Appl. Sci. 5: 1457–1462

    Google Scholar 

  • Valkoun JJ. 2001. Wheat pre-breeding using progenitors. Euphytica 119: 17–23

    Article  Google Scholar 

  • Wang HY, Liu DC, Yan ZH, Wei YM, Zheng YL. 2005. Cytological characteristics of F2 hybrids between Triticum aestivum L. and T. durum Desf. with reference to wheat breeding. J. App. Genet. 46: 365–369

    Google Scholar 

  • Wardlaw IF, Moncur L. 1995. The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Aust. J. Plant Physiol. 22: 391–397

    Article  Google Scholar 

  • Yan SH, Yin YP, Li WY, Li Y, Liang TB, Wu YH, Geng QH, Wang ZL. 2008. Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecol. Sinica 28: 6138–6147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.I., Mohamed, E.A., El-rawy, M.A. et al. Evaluating interspecific wheat hybrids based on heat and drought stress tolerance. J. Crop Sci. Biotechnol. 19, 85–98 (2016). https://doi.org/10.1007/s12892-015-0085-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-015-0085-x

Keywords

Navigation