Skip to main content
Log in

Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211)

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

CO2 reduction has been pursued for decades as an effective way to produce useful fuels and to mitigate global warming at the same time. Methanol synthesis from CO2 hydrogenation over Cu-based catalysts plays an important role in the chemical and energy industries. However, fundamental questions regarding the reaction mechanism and key reaction intermediates of this process are still unclear. To address these issues, we studied the CO2 hydrogenation process using density functional theory (DFT) combined with van der Waals (vdW) force corrections, finding that the most effective pathway proceeds along the reaction series CO* → CHO* → CH2O* → CH2OH* → CH3OH* with the reactive intermediate CH2O*, which is consistent with experimental findings. Additionally, we find that water molecules play an inhibiting role in the reaction, while H bonds and vdW forces have an essential effect on the reaction mechanisms. These findings shed light on the reaction mechanism of CH3OH formation from CO2 hydrogenation and reveal the essence of H2O in this reaction, providing a useful basis for preceding studies.

Adsorption configurations of COH on (a) bare Cu(211) and (b) on Cu(211) with a co-adsorbed H2O chain. The corresponding reaction pathways on these two surfaces (c and d) have been calculated using density functional theory combined with van der Waals force corrections. Based on these calculations we obtain the most promising pathway and reveal the drastic effect of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)

    Article  CAS  Google Scholar 

  2. K.C. Waugh, Methanol synthesis. Catal. Today 15, 51–75 (1992)

    Article  CAS  Google Scholar 

  3. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012)

    Article  CAS  Google Scholar 

  4. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014)

    Article  CAS  Google Scholar 

  5. J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014)

    Article  CAS  Google Scholar 

  6. O. Martin, A.J. Martín, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55, 1–16 (2016)

    Article  Google Scholar 

  7. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008)

    Article  CAS  Google Scholar 

  8. L.V. MacDougall, Methanol to fuels routes—the achievements and remaining problems. Catal. Today 8, 337–369 (1991)

    Article  CAS  Google Scholar 

  9. L.K. Rihko-Struckmann, A. Peschel, R. Hanke-Rauschenbach, K. Sundmacher, Assessment of methanol synthesis utilizing exhaust CO2 for chemical storage of electrical energy. Ind. Eng. Chem. Res. 49, 11073–11078 (2010)

    Article  CAS  Google Scholar 

  10. G.A. Olah, Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005)

    Article  CAS  Google Scholar 

  11. J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsøe, H. Topsøe, B.S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000)

    Article  CAS  Google Scholar 

  12. M. Muhler, E. Törnqvist, L.P. Nielsen, B.S. Clausen, H. Topsøe, On the role of adsorbed atomic oxygen and CO2 in copper based methanol synthesis catalysts. Catal. Lett. 25, 1–10 (1994)

    Article  CAS  Google Scholar 

  13. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002)

    Article  CAS  Google Scholar 

  14. X. Dong, H.-B. Zhang, G.-D. Lin, Y.-Z. Yuan, K.R. Tsai, Highly active CNT-promoted cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2. Catal. Lett. 85, 237–246 (2003)

    Article  CAS  Google Scholar 

  15. J.S. Lee, K.I. Moon, S.H. Lee, S.Y. Lee, Y.G. Kim, Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2 and CO/H2. Catal. Lett. 34, 93–99 (1995)

    Article  CAS  Google Scholar 

  16. F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S.C. Tsang, Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed. 50, 2162–2165 (2011)

    Article  CAS  Google Scholar 

  17. O.-S. Joo, K.-D. Jung, I. Moon, A.Y. Rozovskii, G.I. Lin, S.-H. Han, S.-J. Uhm, Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind. Eng. Chem. Res. 38, 1808–1812 (1999)

    Article  CAS  Google Scholar 

  18. K.M.V. Bussche, G.F. Froment, A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal. 161, 1–10 (1996)

    Article  Google Scholar 

  19. E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J. Catal. 328, 43–48 (2015)

    Article  CAS  Google Scholar 

  20. J. Yoshihara, C.T. Campbell, Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J. Catal. 161, 776–782 (1996)

    Article  CAS  Google Scholar 

  21. G.C. Chinchen, K.C. Waugh, D.A. Whan, The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 25, 101–107 (1986)

    Article  CAS  Google Scholar 

  22. P.B. Rasmussen, M. Kazuta, I. Chorkendorff, Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surf. Sci. 318, 267–280 (1994)

    Article  CAS  Google Scholar 

  23. J. Nakamura, Y. Choi, T. Fujitani, On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 22, 277–285 (2003)

    Article  CAS  Google Scholar 

  24. Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 12, 9909–9917 (2010)

    Article  CAS  Google Scholar 

  25. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012)

    Article  CAS  Google Scholar 

  26. S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969–974 (2016)

    Article  CAS  Google Scholar 

  27. S.A. Kondrat, P.J. Smith, P.P. Wells, P.A. Chater, J.H. Carter, D.J. Morgan, E.M. Fiordaliso, J.B. Wagner, T.E. Davies, L. Lu, J.K. Bartley, S.H. Taylor, M.S. Spencer, C.J. Kiely, G.J. Kelly, C.W. Park, M.J. Rosseinsky, G.J. Hutchings, Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531, 83–87 (2016)

    Article  CAS  Google Scholar 

  28. R. van den Berg, G. Prieto, G. Korpershoek, L.I. van der Wal, A.J. van Bunningen, S. Lægsgaard-Jørgensen, P.E. de Jongh, K.P. de Jong, Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 7, 13057 (2016)

    Article  Google Scholar 

  29. S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on cu/ZnO catalysts. Science 355, 1296–1299 (2017)

    Article  CAS  Google Scholar 

  30. W. Janse van Rensburg, M.A. Petersen, M.S. Datt, J.-A. den Berg, P. Helden, On the kinetic interpretation of DFT-derived energy profiles: Cu-catalyzed methanol synthesis. Catal. Lett. 145, 559–568 (2014)

    Article  Google Scholar 

  31. G.C. Chinchen, P.J. Denny, D.G. Parker, M.S. Spencer, D.A. Whan, Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of 14C-labelled reactants. Appl. Catal. 30, 333–338 (1987)

    Article  CAS  Google Scholar 

  32. Y. Yang, C.A. Mims, D.H. Mei, C.H.F. Peden, C.T. Campbell, Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013)

    Article  CAS  Google Scholar 

  33. E.E. Ortelli, J.M. Weigel, A. Wokaun, Methanol synthesis pathway over Cu/ZrO2 catalysts: a time-resolved D RIFT 13C-labelling experiment. Catal. Lett. 54, 41–48 (1998)

    Article  CAS  Google Scholar 

  34. J. Ye, C. Liu, D. Mei, Q. Ge, Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catal. 3, 1296–1306 (2013)

    Article  CAS  Google Scholar 

  35. J. Kiss, J. Frenzel, N.N. Nair, B. Meyer, D. Marx, Methanol synthesis on ZnO(0001). III. Free energy landscapes, reaction pathways, and mechanistic insights. J. Chem. Phys. 134, 064710 (2011)

    Article  Google Scholar 

  36. Y. Yang, M.G. White, P. Liu, Theoretical study of methanol synthesis from CO2 yydrogenation on metal-doped Cu(111) surfaces. J. Phys. Chem. C 116, 248–256 (2012)

    Article  CAS  Google Scholar 

  37. Y.-F. Zhao, R. Rousseau, J. Li, D. Mei, Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface. J. Phys. Chem. C 116, 15952–15961 (2012)

    Article  CAS  Google Scholar 

  38. C. Liu, P. Liu, Mechanistic study of methanol synthesis from CO2 and H2 on a modified model Mo6S8 cluster. ACS Catal. 5, 1004–1012 (2015)

    Article  CAS  Google Scholar 

  39. F. Studt, M. Behrens, E.L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J.B. Varley, F. Abild-Pedersen, J.K. Nørskov, R. Schlögl, The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 7, 1105–1111 (2015)

    Article  CAS  Google Scholar 

  40. F. Studt, F. Abild-Pedersen, J.B. Varley, J.K. Nørskov, CO and CO2 hydrogenation to methanol calculated using the BEEF-vdW functional. Catal. Lett. 143, 71–73 (2012)

    Article  Google Scholar 

  41. Q.-L. Tang, Q.-J. Hong, Z.-P. Liu, CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo. J. Catal. 263, 114–122 (2009)

    Article  CAS  Google Scholar 

  42. L.C. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 1, 365–384 (2011)

    Article  CAS  Google Scholar 

  43. A.J. Medford, J. Sehested, J. Rossmeisl, I. Chorkendorff, F. Studt, J.K. Nørskov, P.G. Moses, Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001). J. Catal. 309, 397–407 (2014)

    Article  CAS  Google Scholar 

  44. Y.-F. Zhao, Y. Yang, C. Mims, C.H.F. Peden, J. Li, D. Mei, Insight into methanol synthesis from CO2 hydrogenation on Cu(1 1 1): Complex reaction network and the effects of H2O. J. Catal. 281, 199–211 (2011)

    Article  CAS  Google Scholar 

  45. X. Nie, W. Luo, M.J. Janik, A. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014)

    Article  CAS  Google Scholar 

  46. Y. Hori, in In Modern aspects of electrochemistry, ed. by C. Vayenas, R. White, M. Gamboa-Aldeco. Electrochemical CO2 reduction on metal electrodes (Springer, New York, 2008), pp. 89–189

    Chapter  Google Scholar 

  47. J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015)

    Article  CAS  Google Scholar 

  48. J. Wu, M. Saito, M. Takeuchi, T. Watanabe, The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl. Catal. A-Gen. 218, 235–240 (2001)

    Article  CAS  Google Scholar 

  49. M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 14, 2717 (2002)

    Article  CAS  Google Scholar 

  50. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  51. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)

    Article  CAS  Google Scholar 

  52. V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys. Rev. Lett. 108, 146103 (2012)

    Article  Google Scholar 

  53. J. Wellendorff, T.L. Silbaugh, D. Garcia-Pintos, J.K. Nørskov, T. Bligaard, F. Studt, C.T. Campbell, A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 640, 36–44 (2015)

    Article  CAS  Google Scholar 

  54. A. Tkatchenko, L. Romaner, O.T. Hofmann, E. Zojer, C. Ambrosch-Draxl, M. Scheffler, Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces. MRS Bull. 35, 435–442 (2011)

    Article  Google Scholar 

  55. S.P. Liu, M. Zhao, W. Gao, Q. Jiang, Mechanistic insights into the unique role of copper in CO2 electroreduction reactions. ChemSusChem 10, 387–393 (2017)

    Article  CAS  Google Scholar 

  56. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258 (2003)

    Article  CAS  Google Scholar 

  57. D. Donadio, L.M. Ghiringhelli, L. Delle Site, Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. J. Am. Chem. Soc. 134, 19217–19222 (2012)

    Article  CAS  Google Scholar 

  58. B.J. Hinch, L.H. Dubois, First-order corrections in modulated molecular beam desorption experiments. Chem. Phys. Lett. 171, 131–135 (1990)

    Article  CAS  Google Scholar 

  59. X.-K. Gu, W.-X. Li, First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111). J. Phys. Chem. C 114, 21539–21547 (2010)

    Article  CAS  Google Scholar 

  60. J.B. Hansen, P.E. Højlund Nielsen, Methanol synthesis, in: handbook of heterogeneous catalysis, (Wiley-VCH Verlag GmbH & Co. KGaA, 2008)

  61. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) through the grant proposal (JA1072/9-1 and 9-2), which was part of the research unit DFG-FOR1376. Further, support by the Program for Thousand Young Talents Plan and the National Natural Science Foundation of China (No. 21673095, 51631004), the computing resources of High Performance Computing Center of Jilin University, and National Supercomputing Center in Jinan and in Shenzhen China are acknowledged. Finally, the authors also acknowledge the computer time supported by the state of Baden-Württemberg through the bwHPC project and the DFG through grant number INST40/467-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Gao or Timo Jacob.

Electronic Supplementary Material

ESM 1

(DOCX 786 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.P., Zhao, M., Gao, W. et al. Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211). Electrocatalysis 8, 647–656 (2017). https://doi.org/10.1007/s12678-017-0403-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0403-9

Keywords

Navigation