Skip to main content
Log in

Present environment of Dam Lake Sambe, southwestern Japan: a geochemical study of bottom sediments

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Geochemical analyses of lakebed and core sediments from Lake Sambe on the outskirts of Oda City in Shimane prefecture in southwestern Japan were carried out in order to assess the water quality and the concentration and distribution patterns of sixteen elements. The lake water showed a stratified condition with respect to dissolved O2, and As, Fe, and Mn concentrations in the bottom layers which increased in the summer. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements (P, Ca, Sc, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Sr, Zr, Pb, and Th), and total sulfur (TS). Elevated values of As, Zn, V, Fe, P, and TS were present in several layers of the upper cores (from 0 to 5 cm) and other surface sediments. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, fine-grained organic rich sediments, and post-depositional diagenetic remobilization. Moreover, correlations between the concentrations of trace metals and iron in the sediments suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur indicate that they were precipitated as Fe-sulfides. The average abundances of As, Pb, Zn, and Cu exceeded the lowest effect level and Interim Sediment Quality Guideline values that the New York State Department of Environmental Conservation and the Canadian Council of Ministers of the Environment determined to have moderate impact on aquatic organisms. In addition, concentrations of As and Zn exceeded the Coastal Ocean Sediment Database threshold value, indicating potentially toxic levels. Therefore, the presence of trace metals in the lake sediments may result in adverse effects on biota health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham J (1998) Spatial distribution of major and trace elements in shallow reservoir sediments: an example from Lake Waco, Texas. Environ Geol 36(3–4):349–363. doi:10.1007/s002540050351

    Article  Google Scholar 

  • Ahmed F, Bibi MH, Monsur MH, Ishiga H (2005) Present environment and historic changes from the record of lake sediments, Dhaka City, Bangladesh. Environ Geol 48(1):25–36. doi:10.1007/s00254-005-1248-8

    Article  Google Scholar 

  • Akimoto K, Nakahara K, Kondo H, Ishiga H, Dozen K (2004) Environmental reconstruction based on heavy metals, diatoms and benthic foraminifers in the Isahaya reclamation area, Nagasaki, Japan. Environ Micropaleontol Microbiol Meiobenthol 1:83–104

    Google Scholar 

  • Arnason JG, Fletcher BA (2003) A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environ Pollut 123:383–391. doi:10.1016/S0269-7491(03)00015-0

    Article  Google Scholar 

  • Bellanger B, Huon S, Steinmann P, Chabaux F, Velasquez F, Vallès V, Arn K, Clauer N, Mariotti A (2004) Oxic–anoxic conditions in the water column of a tropical freshwater reservoir (Peña-Larga dam, NW Venezuela). Appl Geochem 19:1295–1314. doi:10.1016/j.apgeochem.2003.11.007

    Article  Google Scholar 

  • Bibi MH, Ahmed F, Ishiga H (2007) Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines. Environ Geol 52:625–639. doi:10.1007/s00254-006-0492-x

    Article  Google Scholar 

  • Boyle J (2001) Redox remobilization and the heavy metal record in lake sediments: a modelling approach. J Paleolimnol 26:423–431. doi:10.1023/A:1012785525239

    Article  Google Scholar 

  • Buckley DE, Smith JN, Winter GV (1995) Accumulation of contaminant metals in the marine sediments of Halifax Harbour, Nova Scotia: environmental factors and historical trends. Appl Geochem 10:175–195. doi:10.1016/0883-2927(94)00053-9

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environments, Canada) (1998) Canadian sediment quality guidelines for the protection of aquatic life: introduction and summary tables. In: Canadian sediment quality guidelines, CCME, Winnipeg, Manitoba

  • Cha HJ, Lee CB, Kim BS, Choi MS, Ruttenberg KC (2005) Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Mar Geol 216:127–143. doi:10.1016/j.margeo.2005.02.001

    Article  Google Scholar 

  • Chaillou G, Schafer J, Anschutz P, Lavaux G, Blanc G (2003) The behaviour of arsenic in muddy sediments of the Bay of Biscay (France). Geochim Cosmochim Acta 67(16):2993–3003. doi:10.1016/S0016-7037(03)00204-7

    Article  Google Scholar 

  • Chandrajith RLR, Okumura M, Hashitani H (1995) Human influence on the Hg pollution in Lake Jinzai, Japan. Appl Geochem 10:229–235. doi:10.1016/0883-2927(94)00042-5

    Article  Google Scholar 

  • da Silva EM, Navarro MFT, Barros AF, Mota MFV, Chastinet CBA (2000) Metals in the sediments of Jaua Lake (Camacari, Bahia, Brazil) following an episode of industrial contamination. Aquat Ecosys Health Manag 3:509–514

    Google Scholar 

  • Das BK (2005) Environmental pollution impact on water and sediments of Kumaun lakes, Lesser Himalaya, India: a comparative study. Environ Geol 49:230–239. doi:10.1007/s00254-005-0077-0

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Distribution of chemical concentrations in US coastal and estuarine sediment. Mar Environ Res 40(4):381–398. doi:10.1016/0141-1136(94)00150-N

    Article  Google Scholar 

  • EBGMSP (Editorial Board of Geological Map of Shimane Prefecture) (1997) Geological Map of Shimane Prefecture at 1:200,000. Naigai-Chizu, Tokyo

  • Elbaz-Poulichet F, Nagy A, Cserny T (1997) The distribution of redox sensitive elements (U, As, Sb, V, and Mo) along a river–wetland–lake system (Balaton Region, Hungary). Aquat Geochem 3:267–282. doi:10.1023/A:1009616214030

    Article  Google Scholar 

  • Fabian D, Zhou Z, Wehrli B, Friedl G (2003) Diagenetic cycling of arsenic in the sediments of eutrophic Baldeggersee, Switzerland. Appl Geochem 18:1497–1506. doi:10.1016/S0883-2927(03)00064-7

    Article  Google Scholar 

  • Farmer JG, Lovell MA (1986) Natural enrichment of arsenic in Loch Lomond sediments. Geochim Cosmochim Acta 50:2059–2067. doi:10.1016/0016-7037(86)90259-0

    Article  Google Scholar 

  • Fukuoka T, Matsui S (2002) Stratigraphy of pyroclastic deposits post-dating the AT tephra, Sambe volcano. Earth Sci (Chikyu Kagaku) 56:105–122 (in Japanese with English abstract)

    Google Scholar 

  • Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421. doi:10.1016/S0883-2927(02)00092-6

    Article  Google Scholar 

  • Galasso JL, Siegel FR, Kravitz JH (2000) Heavy metals in eight 1965 cores from the Novaya Zemlya Trough, Kara Sea, Russian Arctic. Mar Pollut Bull 40(10):839–852. doi:10.1016/S0025-326X(00)00080-1

    Article  Google Scholar 

  • Garcia-Sanchez A, Alvarez-Ayuso E (2003) Arsenic in soils and waters and its relation to geology and mining activities (Salamanca Province, Spain). J Geochem Explor 80:69–79. doi:10.1016/S0375-6742(03)00183-3

    Article  Google Scholar 

  • Golterman HL (1988) The calcium- and iron-bound phosphate phase diagram. Hydrobiology 159:149–151. doi:10.1007/BF00014722

    Article  Google Scholar 

  • Guern CL, Baranger P, Crouzet C, Bodénan F, Conil P (2003) Arsenic trapping by iron oxyhydroxides and carbonates at hydrothermal spring outlets. Appl Geochem 18:1313–1323. doi:10.1016/S0883-2927(03)00053-2

    Article  Google Scholar 

  • Hattori H, Kano K, Suzuki T, Yokohama S, Matsuura H, Satoh H (1983) Geology of the Sambesan district. Geological Survey of Japan Quadrangle Series, Okayama, 12(381):68

  • Hollibaugh JT, Carini S, Gürleyük H, Jellison R, Joye SB, LeCleir G, Meile C, Vasquez L, Wallschläger D (2005) Arsenic speciation in Mono Lake, California: response to seasonal stratification and anoxia. Geochim Cosmochim Acta 69(8):1925–1937. doi:10.1016/j.gca.2004.10.011

    Article  Google Scholar 

  • Huerta-Díaz MA, Tessier A, Carignant R (1998) Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl Geochem 13:213–233. doi:10.1016/S0883-2927(97)00060-7

    Article  Google Scholar 

  • Ishiga H, Mihara A, Sampei Y (2000) Environmental geology of Lake Jaike, Koryo-cho, Shimane Prefecture, Japan. Geosci Rep Shimane Univ Jpn 19:47–55

    Google Scholar 

  • Ishiga H, Dozen K, Ahmed F, Bibi MH, Kaita M (2003) Evaluation of sedimentary environment using a Zn–Fe2O3 diagram. Geosci Rep Shimane Univ Jpn 22:15–20

    Google Scholar 

  • Jones B, Manning DAC (1994) Composition of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1–4):111–129. doi:10.1016/0009-2541(94)90085-X

    Article  Google Scholar 

  • Jones DS, Suter GW, Hull RN (1997) Toxicological benchmarks for screening contaminations of potential concern for effects on sediments-associated biota: 1997 revision. ES/ER/TM-95/R4. Oak Ridge National Laboratory, Oak Ridge, TN

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Ann Arbor

    Google Scholar 

  • Kneebone PE, Hering JG (2000) Behavior of arsenic and other redox-sensitive elements in Crowley Lake, CA: a reservoir in the Los Angeles Aqueduct System. Environ Sci Technol 34(20):4307–4312. doi:10.1021/es000923u

    Article  Google Scholar 

  • Kojima S, Saito T, Takada J, Furukawa M, Oda H, Nakamura T, Yokota K (2003) Neutron activation analysis of trace elements at sediment–water interface in the Biwa Lake, Japan. J Radioanal Nucl Chem 255:119–123. doi:10.1023/A:1022292100994

    Article  Google Scholar 

  • Kuhn A, Sigg L (1993) Arsenic cycling in eutrophic Lake Greifen, Switzerland: influence of seasonal redox processes. Limnol Oceanogr 38(5):1052–1059

    Article  Google Scholar 

  • Long ER, Field LJ, MacDonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17:714–727. doi:10.1897/1551-5028(1998)017<0714:PTIMSW>2.3.CO;2

    Article  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of As (III) at the clay mineral–water interface. Environ Sci Technol 31:2005–2011. doi:10.1021/es9608104

    Article  Google Scholar 

  • Marvin C, Painter S, Williams D, Richardson V, Rossmann R, Hoof PV (2004) Spatial and temporal trends in surface water and sediment contamination in the Laurentian Great Lakes. Environ Pollut 129:131–144. doi:10.1016/j.envpol.2003.09.029

    Article  Google Scholar 

  • Matsumoto T (1994) Bulk chemical composition of the lava domes, Sambe Volcano, Southwest Japan. J Geol Soc Jpn 100:639–641 (in Japanese)

    Google Scholar 

  • Matsunaga T, Ueno T, Chandrajith RLR, Amano H, Okumura M, Hashitani H (1999) Cesium-137 and mercury contamination in lake sediments. Chemosphere 39(2):269–283. doi:10.1016/S0045-6535(99)00108-3

    Article  Google Scholar 

  • McLennan SM (1995) Sediments and soils: chemistry and abundances. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol. 3. American Geophysical Union Reference Shelf, pp 8–19

  • Millward GE, Moore RM (1982) The adsorption of Cu, Mn and Zn by iron oxyhydroxides in model estuarine solutions. Water Res 16:981–985. doi:10.1016/0043-1354(82)90032-X

    Article  Google Scholar 

  • Mogollón JL, Bifano C, Davies BE (1996) Geochemistry and anthropogenic inputs of metals in a tropical lake in Venezuela. Appl Geochem 11:605–616. doi:10.1016/0883-2927(96)00033-9

    Article  Google Scholar 

  • Nguyen HL, Leermakers M, Osán J, Török S, Baeyens W (2005) Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota. Sci Total Environ 340:213–230. doi:10.1016/j.scitotenv.2004.07.032

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the World’s large river systems. Science 308(5720):405–408. doi:10.1126/science.1107887

    Article  Google Scholar 

  • NRC (National Research Council) (1989) Contaminated marine sediments: assessment and remediation. NRC, National Academy of Sciences, National Academy Press, Washington, DC, p 496

  • NYSDEC (New York State Department of Environmental Conservation) (1999) Technical guidance for screening contaminated sediments. NYSDEC, Division of Fish, Wildlife and Marine Resources, Albany, NY, p 45

  • Ogasawara M (1987) Trace element analysis of rock samples by X-ray fluorescence spectrometry, using Rh anode tube. Bull Geol Surv Jpn 38(2):57–68

    Google Scholar 

  • Ortiz E, Roser BP (2003) Major and trace element abundances in the <180 μm fractions of stream sediments from the Kando River, Shimane Prefecture, Japan. Geosci Rep Shimane Univ Jpn 22:111–120

    Google Scholar 

  • Ortiz E, Roser BP (2006) Major and trace element provenance signatures in stream sediments from the Kando River, San’in district, southwest Japan. Island Arc 15:223–238. doi:10.1111/j.1440-1738.2006.00523.x

    Article  Google Scholar 

  • Padmalal D, Maya K, Seralathan P (1997) Geochemistry of Cu, Co, Ni, Zn, Cd and Cr in the surficial sediments of a tropical estuary, southwest coast of India: a granulometric approach. Environ Geol 31(1–2):85–93. doi:10.1007/s002540050167

    Article  Google Scholar 

  • Peltier EF, Webb SM, Gaillard J-F (2003) Zinc and lead sequestration in an impacted wetland system. Adv Environ Res 8:103–112

    Article  Google Scholar 

  • Potts PJ, Tindle AG, Webb PC (1992) Geochemical reference material compositions. Whittles Publishing, Caithness, p 313

    Google Scholar 

  • Roach AC (2005) Assessment of metals in sediments from Lake Macquarie, New South Wales, Australia, using normalisation models and sediment quality guidelines. Mar Environ Res 59:453–472. doi:10.1016/j.marenvres.2004.07.002

    Article  Google Scholar 

  • Rosales-Hoz L, Carranza-Edwards A, Lopez-Hernandez M (2000) Heavy metals in sediments of a large, turbid tropical lake affected by anthropogenic discharges. Environ Geol 39(3–4):378–383. doi:10.1007/s002540050017

    Article  Google Scholar 

  • Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. Bioscience 50(9):746–751. doi:10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2

    Article  Google Scholar 

  • Rudnick RL (2005) The crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Oxford, p 537

    Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, Páez-Osuna F, Ghaleb B, Soto-Jiménez M (2003) Historical trends of metal pollution recorded in the sediments of the Culiacan River Estuary, Northwestern Mexico. Appl Geochem 18:577–588. doi:10.1016/S0883-2927(02)00117-8

    Article  Google Scholar 

  • SAIC (Science Applications International Corporation, Canada) (2002) Compilation and review of Canadian remediation guidelines, standards and regulations. Emergencies Engineering Technologies Office (EETC), Environment Canada. Final report, B187–413, p 79

  • Sampei Y, Matsumoto E (2001) C/N ratios in a sediments core from Nakaumi Lagoon, southwest Japan—usefulness as an organic source indicator. Geochem J 35:189–205

    Google Scholar 

  • Singh M, Sharma M, Tobschall HJ (2005) Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River. Appl Geochem 20:1–21. doi:10.1016/j.apgeochem.2004.07.005

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  • Soares HMVM, Boaventura RAR, Machado AASC, Esteves da Silva JCG (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ Pollut 105:311–323. doi:10.1016/S0269-7491(99)00048-2

    Article  Google Scholar 

  • Sohrin Y, Matsui M, Kawashima M, Hojo M, Hasegawa H (1997) Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environ Sci Technol 31:2712–2720. doi:10.1021/es960846w

    Article  Google Scholar 

  • Spencer KL, Cundy AB, Croudace IW (2003) Heavy metal distribution and early diagenesis in salt marsh sediments from the Medway Estuary, Kent, UK. Estuar Coast Shelf Sci 57:43–54. doi:10.1016/S0272-7714(02)00324-4

    Article  Google Scholar 

  • Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Acta 60(9):1465–1477. doi:10.1016/0016-7037(96)00040-3

    Article  Google Scholar 

  • Takagi T, Kagami H, Iizumi S (1989) Petrography and geochemistry of two contrasting I-type granites, the Mitsumori and Ikuridani granites, San’in Belt, Southwest Japan. J Geol Soc Jpn 95:905–918

    Google Scholar 

  • Takamatsu T, Kawashima M, Koyama M (1985) The role of Mn2+-rich hydrous manganese oxides in the accumulation of arsenic in lake sediments. Water Res 19(8):1029–1032. doi:10.1016/0043-1354(85)90372-0

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Terashima S, Ishihara S (1986) Copper, lead, zinc, arsenic and sulfur of the Japanese granitoids (3): Green Tuff Belt of northeast Japan and outer zone of southwest Japan. Bull Geol Surv Jpn 37(12):605–624

    Google Scholar 

  • Terashima S, Inouchi Y, Saito Y, Miyata Y, Katayama H, Terashima M (1991) Vertical variation and chemical characteristics of elements in bottom sediments from the dredged hollows of Lake Biwa and Lake Kasumigaura, Japan. Bull Geol Surv Jpn 42(8):387–407

    Google Scholar 

  • Tessier A, Carignan R, Belzile N (1994) Processes occurring at the sediment–water interface: emphasis on trace elements. In: Buffle J, DeVitre RR (eds) Chemical and biological regulation of aquatic system. Lewis Publishers, Boca Raton, pp 137–173

    Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • Tribovillard NP, Desprairies A, Verges EL, Bertrand P, Moureau N, Ramdani A, Ramanampisoa L (1994) Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeogr Palaeoclimatol Palaeoecol 108:165–181. doi:10.1016/0031-0182(94)90028-0

    Article  Google Scholar 

  • Ueda S, Kawabata H, Hasegawa H, Kondo K (2000) Characteristics of fluctuations in salinity and water quality in brackish Lake Obuchi. Limnol 1:57–62. doi:10.1007/s102010070029

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • WHO (World Health Organization) (2004) Guidelines for drinking-water quality recommendations, vol 1. WHO, Geneva, p 515

    Google Scholar 

  • Yamamuro M (2000) Chemical tracers of sediment organic matter origins in two coastal lagoons. J Mar Syst 26:127–134. doi:10.1016/S0924-7963(00)00049-X

    Article  Google Scholar 

  • Yan X-P, Kerrich R, Hendry MJ (2000) Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim Cosmochim Acta 62(15):2637–2648. doi:10.1016/S0016-7037(00)00380-X

    Article  Google Scholar 

  • Yang H, Rose N (2005) Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environ Int 31:63–75. doi:10.1016/j.envint.2004.06.010

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Yoshihiro Sawada of Shimane University for access to the XRF facilities, and to Jaya Kumar Gurung and Jarkynai Usubalieva of Shimane University for their help with sampling. Matsue Doken Co. Ltd in Shimane prefecture of Japan provided the data for dissolved As, Fe, and Mn concentrations in the Sambe water. We thank the Lake Sambe Authority for their valuable support during sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mst. Hawa Bibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawa Bibi, M., Ahmed, F., Ishiga, H. et al. Present environment of Dam Lake Sambe, southwestern Japan: a geochemical study of bottom sediments. Environ Earth Sci 60, 655–670 (2010). https://doi.org/10.1007/s12665-009-0205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-009-0205-3

Keywords

Navigation