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Abstract Leakage of CO2 and displaced brine from

geologic carbon sequestration (GCS) sites into potable

groundwater or to the near-surface environment is a pri-

mary concern for safety and effectiveness of GCS. The

focus of this study is on the estimation of the probability of

CO2 leakage along conduits such as faults and fractures.

This probability is controlled by (1) the probability that the

CO2 plume encounters a conductive fault that could serve

as a conduit for CO2 to leak through the sealing formation,

and (2) the probability that the conductive fault(s) inter-

sected by the CO2 plume are connected to other conductive

faults in such a way that a connected flow path is formed to

allow CO2 to leak to environmental resources that may be

impacted by leakage. This work is designed to fit into the

certification framework for geological CO2 storage, which

represents vulnerable resources such as potable ground-

water, health and safety, and the near-surface environment

as discrete ‘‘compartments.’’ The method we propose for

calculating the probability of the network of conduits

intersecting the CO2 plume and one or more compartments

includes four steps: (1) assuming that a random network of

conduits follows a power-law distribution, a critical con-

duit density is calculated based on percolation theory; for

densities sufficiently smaller than this critical density, the

leakage probability is zero; (2) for systems with a conduit

density around or above the critical density, we perform a

Monte Carlo simulation, generating realizations of conduit

networks to determine the leakage probability of the CO2

plume (Pleak) for different conduit length distributions,

densities and CO2 plume sizes; (3) from the results of Step

2, we construct fuzzy rules to relate Pleak to system char-

acteristics such as system size, CO2 plume size, and

parameters describing conduit length distribution and

uncertainty; (4) finally, we determine the CO2 leakage

probability for a given system using fuzzy rules. The

method can be extended to apply to brine leakage risk by

using the size of the pressure perturbation above some cut-

off value as the effective plume size. The proposed method

provides a quick way of estimating the probability of CO2

or brine leaking into a compartment for evaluation of GCS

leakage risk. In addition, the proposed method incorporates

the uncertainty in the system parameters and provides the

uncertainty range of the estimated probability.

Keywords Risk assessment � Faults and fractures �
Fuzzy logic

Introduction

Large-scale injection of CO2 into geologic formations is

considered a potential mitigation method to reduce

greenhouse gas emissions. The safety and effectiveness of

geologic carbon sequestration (GCS) are achieved when

injected CO2 remains contained within the storage reser-

voir. Trapping mechanisms reducing the mobile CO2 that

could impact health, safety or the environment include

structural trapping, residual phase trapping, solubility

trapping, and mineral trapping (IPCC 2005). Despite these

trapping mechanisms, it is possible in some cases that

CO2 could unexpectedly leak upwards due to (1) the large

amount of CO2 injected and (2) the buoyant nature of

CO2 (Oldenburg et al. 2008). On the other hand, it is

important to recognize that CO2 is non-hazardous unless
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concentrations are above certain levels. The key to public

acceptance and success of GCS is to address leakage

concerns, and to demonstrate that leakage risks are

acceptably small.

Similar to what has been used for the risk assessment of

nuclear waste repositories, general probabilistic theory and

a features, events, and processes (FEP) scenario approach

(Savage et al. 2004; Wildenborg et al. 2004, 2005) have

been used to evaluate risks related to GCS. The FEP

approach includes identifying all relevant FEPs, defining

scenarios, and modeling environmental impacts and con-

sequences. In this approach, the probability that certain

FEPs will occur is usually assigned as input. Bowden and

Rigg (2004) used a performance index to quantitatively

characterize risks, where the likelihood and duration of

each risk is determined by an expert panel and entered as

input to each risk event. To date there has not been a

quantitative risk evaluation based on geology and CO2

plume characteristics for a given CO2 storage site.

Three potential pathways may be available for CO2 to

escape from the storage formation to regions with vulner-

able resources (e.g., a drinking water aquifer) (Espie 2004;

Pruess 2008; Zweigel et al. 2004): (1) leakage through the

caprock, (2) leakage through subvertical faults or fracture

zones, and (3) leakage through abandoned wells. The focus

of this study is on the second pathway—leakage through

faults or fracture zones. The assessment of risks includes

evaluation of both the probability that the CO2 plume will

reach drinking water or another vulnerable resource

through a conduit, and the impact of the leakage, which

requires knowledge of CO2 flux, concentration, and total

amount. The focus of our study is on the estimation of

leakage probability (Pleak).

This work is designed to fit into the certification

framework (CF) for geological CO2 storage. The overall

objective of the CF is to develop a simple framework for

evaluating leakage risk for certifying operation and aban-

donment of geological CO2 storage sites. In the CF, the

term ‘‘compartment’’ is defined as a region containing

vulnerable resources that could potentially be impacted

such as potable groundwater and the near-surface envi-

ronment. The locations of compartments are abstract in the

sense that they may include disconnected pieces (Olden-

burg et al. 2008). The same concept is used in this work as

well.

The fundamental uncertainties addressed by the

approach described in this paper are schematically pre-

sented in Fig. 1. Starting from the injection horizon, CO2

enters the storage region and migrates as controlled by

pressure, buoyancy, permeability, and capillary effects.

Because plume migration distances and the presence of

faults and fractures may only be estimated roughly from

site characterization data prior to actual injection, the first

unknown is whether the CO2 plume will intersect a con-

ductive fault that could serve as a conduit for CO2 to leak

through the sealing formation. Probabilistic approaches are

needed to quantify the likelihood of this event based on the

size of the CO2 plume, which is highly uncertain given the

uncertain properties of the deep storage reservoir. The

second unknown is whether the conductive fault(s) inter-

sected by the CO2 plume are connected to other conductive

faults in such a way that a connected flow path is formed to

allow CO2 to leak to a compartment where there could be a

potential impact. The connectivity of the conduits is related

to the geometric characteristics of the system of conduits

(i.e., distribution of conduits) between the storage reservoir

and the compartment. For a site (which includes the storage

formation and the geological formation above it) to be

selected for GCS, some fault and fracture distribution data

are expected to be available. However, the information on

the conduit system is usually limited and highly uncertain.

Therefore, it is a challenge to predict (1) if the conduits are

connected, and if so, (2) the probability that a CO2 plume

will encounter the connected pathways. The objective of

this work is to provide a framework for estimating the

likelihood that CO2 will intersect a conductive conduit

network that allows leakage to occur. The amount of

Fig. 1 Schematic geologic cross section (not to scale) showing CO2

injection well, CO2 plume, sealing formation, overlying formations,

and potable ground water, along with conductive faults that may or

may not intersect with each other as indicated by the question marks
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leakage and the impact of leakage on the compartment are

not within the scope of this study.

In the remainder of this paper, we develop the approach

and demonstrate its applicability for a simplified geologic

formation. The extension to a realistic CO2 sequestration

system is outlined in the conclusion section.

Approach

The proposed approach includes four steps: (1) estimate a

critical value ac for parameter a, which is related to the

density of conduits (faults and fractures) in the conduit

length distribution model, such that if a = ac, there is a

50% probability that the system is connected between the

storage formation and a compartment; (2) use numerical

simulations to estimate the probability that the CO2 plume

will encounter the connected conduits for a system with a
that is above or slightly less than ac for various distribu-

tions of conduits, system size and CO2 plume sizes; (3)

construct fuzzy rules that relate information about the

conduit system and CO2 plume size to leakage probability

based on simulation results from the previous step; and (4)

using the fuzzy rules developed in the previous step, pre-

dict the probability that CO2 will leak from the storage

formation to a compartment through connected conduits

for a given system. Each of these steps will be described in

detail in the subsequent subsections.

One of the main advantages of the proposed approach is

that conduit network generation (Step 2), which is the

computationally intensive task, only needs to be done once.

Once rules are generated (Step 3), Pleak can be easily

determined in Step 4 for any given system with a known or

estimated conduit distribution.

While the approach can be expanded to be applicable to

realistic geologic formations, the four steps are illustrated

for a simplified system with the following assumptions:

• The system is a square, two-dimensional (2D) cross

section with sides of length L. The compartment where

impacts occur is located at the top of the system and is

of size L.

• Faults/fractures are represented by line segments in 2D.

• Faults/fractures are randomly positioned and oriented.

• Only conductive faults/fractures are considered.

• Faults/fractures follow a power-law length distribution.

• The details of the proposed approach are discussed next.

Calculation of critical a

In this part, we first justify and describe the power-law fault

length distribution we choose for the subsequent analysis.

Then we will introduce the percolation threshold, which is

related to the connectivity of the fault system. Finally, we

provide the relationship between the percolation threshold

and the critical value of a (the coefficient in the power-law

length distribution).

Distribution of fault length

Extensive studies have been done to characterize fault

systems. The power-law distribution is the most widely

used model to describe the fault-length distribution (Gu-

dmundsson 1987; Scholz and Cowie 1990; Segall and

Pollard 1983). Other statistical descriptions used to char-

acterize fault length include the lognormal distribution

(Priest and Hudson 1981; Rouleau and Gale 1985), the

exponential distribution (Carbotte and Macdonald 1994;

Cowie et al. 1993, 1995; Dershowitz and Einstein 1988),

the stretched exponential distribution (Laherrere and Sor-

nette 1998), and the Gamma distribution (Davy 1993;

Kagan 1997; Main 1996; Sornette and Sornette 1999). A

detailed review of fault characterization distributions can

be found in Bonnet et al. (2001). Based on the arguments of

Bonnet et al. (2001), we will use a power-law function to

describe the fault-length distribution.

The power-law distribution of a fault system is given by:

nðlÞ ¼ a l�a ð1Þ

where n(l)dl is the number of faults having a length in the

interval [l, l ? dl], a is a coefficient of proportionality that

reflects fault density and depends on the system size L

(assuming a square system with sides of length L), and a is

an exponent, which typically varies between one and three.

It is apparent from Eq. 1 that the power-law distribution

contains no characteristic length. This is the key argument

for using power laws to describe fault growth processes

(Bonnet et al. 2001).

Percolation threshold

Percolation theory (Stauffer and Aharony 1992) has been

applied to study the connectivity of fault systems. In per-

colation theory, a percolation parameter p is used as an

average measure of the geometrical properties, generally

related to the density of faults, which also provides infor-

mation on the connectivity of the system. For a 2D system

(size L) with a total number of N faults of constant length l,

the percolation parameter p is defined as:

p ¼ Nl2=L2: ð2Þ

The percolation threshold pc is defined as the critical p

value below which the fault system is not connected

(on average), whereas when p is above the critical value pc,

the system is on average connected. In other words, 50%

of the systems at the percolation threshold are connected.
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The percolation threshold pc can be obtained from

excluded area arguments (Balberg et al. 1984) or

numerical simulation (Robinson 1983). For a power-law

length distribution (Eq. 1) of a fault network, Bour and

Davy (1997) demonstrated that the percolation threshold

pc(L) does not vary significantly with L. For any value of a,

the computed values of pc(L) are around 5.6 in two

dimensions. Therefore, 5.6 will be used as the first

approximation for pc in the next step.

The purpose of the first step is to find a critical param-

eter ac at percolation threshold, where ac is related to the

critical density of conduits at which the network is on

average connected for a given system size.

Determining critical parameter ac

Studies on the connectivity of faults include both faults

with constant length (Balberg et al. 1984, 1991; Gueguen

and Dienes 1989; Stauffer and Aharony 1992) and faults

with a power-law distribution (Bour and Davy 1997, 1998;

Renshaw 1999). Here, we will adopt some results from the

study of Bour and Davy (1997) to find the critical density

of a fault system.

Bour and Davy (1997) presented an analytical expres-

sion for the percolation threshold for a fault system

following a power-law length distribution. The analysis is

based on the relative contribution of small and large faults

for defining the percolation threshold, e.g., the percolation

threshold should be the sum of two terms describing the

behavior of ‘‘small’’ and ‘‘large’’ faults:

pcðLÞ ¼
ZL

lmin

nðlÞl2
L2

dlþ
Zlmax

L

nðlÞdl: ð3Þ

where L is the system size, lmin and lmax are the smallest

and largest conduit lengths considered in the system, and

n(l) is the probability density function (pdf) of fault length

distribution (in our case, the power-law distribution). If

lmax is less than L, the second term on the right-hand side of

Eq. 3 drops out and the first term integrates to lmax instead

of L.

By inserting Eq. 1 for n(l) into Eq. 3, and setting pc to

5.6, an expression for the critical fault density ac is

obtained

ZL

lmin

acl2�a

L2
dlþ

Zlmax

L

acl�adl ¼ 5:6: ð4Þ

As shown in Figure (9) of Bour and Davy (1997), pc

varies very slightly around 5.6 for different values of a and

L, with the largest discrepancy of pc & 7. In this case, the

calculated ac using the above equations underestimates ac

by about 25%, which is conservative. We assume

pc(L) = 5.6 provides a good first approximation for a

finite system with a power-law distribution of conduit

length. Corrections for pc(L) due to finite-size effect and

different values of the exponent a in the pdf of fault length

distribution will not be made in this analytical formulation.

However, the overestimation of ac caused by these effects

will be considered in the numerical simulation by

performing simulations for systems with a less than ac,

until the resulting Pleak is considered small enough to be

ignored.

Renshaw (1999) demonstrated that the connectivity of

power-law length distribution networks is insensitive to the

lower cutoff length lmin as long as this length is sufficiently

small. However, it is sensitive to the higher cutoff length

lmax. This effect will also be considered in the numerical

simulation.

The length scales in both Eqs. 1 and 4 can be normal-

ized by the smallest fault size lmin: ls = l/lmin, Ls = L/lmin,

and lmax s = lmax/lmin. By defining as ¼ a l�aþ1
min ; we obtain:

nðlÞdl ¼ a l�adl ¼ a l�aþ1
min

l�a

l�a
min

d
l

lmin

¼ asl
�a
s dls: ð5Þ

For a = 3, and if L C lmax,

pcðLÞ ¼
Zlmax

lmin

nðlÞl2

L2
dl ¼

Zlmax s

1

ascl2�a
s

L2
s

dls

¼ asc

L2
s

1

a� 3
� l3�a

max s

a� 3

� �
¼ 5:6: ð6Þ

Where asc is the critical value of as when the system is at

the percolation threshold pc whereas if L \ lmax,

pcðLÞ ¼
ZLs

1

ascl2�a
s

L2
s

dlsþ
Zlmax s

Ls

ascl�a
s dls

¼ asc
1

a� 3

1

L2
s

þ 1

3� a
þ 1

a� 1

� �
L1�a

s þ 1

1� a
l1�a
max s

� �

¼ 5:6:

ð7Þ

For a = 3, and if L C lmax

pcðLÞ ¼ asc
1

L2
s

ln lmax s ¼ 5:6 ð8Þ

whereas if L \ lmax,

pcðLÞ ¼ asc
1

L2
s

lnLsþ
1

a� 1
L�2

s þ
1

1� a
l1�a
max s

� �
¼ 5:6: ð9Þ

The expression for asc shows that a larger system size Ls

corresponds to a larger asc; a larger lmax s corresponds to a

smaller asc; and a larger exponent a (larger portion of

smaller faults) corresponds to a larger asc.
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For a given system, we can calculate the critical

parameter asc and compare it to the actual parameter as. If

the actual density is much smaller than the critical value,

we can conclude that the system is not connected and the

CO2 plume will not be able to leak out through the fault

system. For systems with as around or above its critical

value, the steps described in ‘‘Conduit network generation

to determine Pleak’’ and ‘‘Construct fuzzy rules for calcu-

lating Pleak’’ need to be performed.

The above formulation works for a square system and

for conduits with random orientations. For an anisotropic

system—a system with different horizontal and vertical

connectivity on average—the percolation theory still holds,

but with a modified expression for the percolation thresh-

old (Masihi et al. 2006).

Conduit network generation to determine Pleak

The purpose of this step is to provide a basis to form fuzzy

rules for Pleak for systems of different size, fault geome-

tries, and CO2 plume size through numerical generation of

fault networks using a limited number of parameters. We

assume that vulnerable resources are located at the top of

the system. This means the probability that a connected

pathway (connected also to the top of the system),

encounters a compartment is 1. In this case, Pleak depends

on only two unknowns, i.e., whether the system is con-

nected (U1), and whether a connected pathway intersects

the CO2 plume (U2). U2 depends on both the number of

connections and the size of the CO2 plume.

Two types of uncertainties are considered. The first

stems from our lack of knowledge of the system, spe-

cifically, parameters used to describe fault-length

distribution and reservoir properties used to estimate CO2

plume size. This uncertainty will be considered by using

fuzzy-rule-based modeling to propagate the uncertainty of

the input parameters to the estimation of Pleak. We vary

system size and fault-length distribution parameters to

generate fault networks and estimate Pleak for various

CO2 plume sizes. The second type of uncertainty is the

uncertainty in the generation of the discrete fault network

itself. Even for systems with the same parameters (e.g.,

system size and fault distribution), the generated network

could have very different connectivities. To consider this

uncertainty on the evaluation of the leakage probability

Pleak, multiple realizations of random discrete fault net-

works using the same parameter set are generated. The

average and 95% confidence interval are used to interpret

the results.

The parameters varied in the fault network generation

and Pleak calculations are the normalized system size Ls,

the normalized maximum fault length lmax s, the exponent

a, the ratio of r = as/asc (representing the system’s actual

fault density compared to that at the percolation threshold),

and the normalized plume size Ms, which is the CO2 plume

size divided by the smallest fault size lmin.

The total number of faults that exist in the system is

obtained by integrating the left side of Eq. 1:

N ¼
Zlmax s

1

asl
�a
s dls ¼

as

1� a
l1�a
max s � 1
� �

: ð10Þ

To generate a fault network, three parameters for

characterizing the geometry of individual faults need to

be determined, namely location, orientation, and length. In

our simulation, we locate the center of conduits randomly

in the system. Fault orientation is also random, e.g.,

uniformly sampled from all directions. Fault length (l) is

sampled from its power-law distribution. Note that

hydraulic properties of the faults are not needed in this

study, as no leakage flux is determined, and because fault

network connectivity is estimated using geometrical

parameters of the hydraulically conductive faults.

Once the fault network is generated using a given set of

Ls, lmax s, a, and r = as/asc, to calculate Pleak, we need to

(1) remove the unconnected faults (starting from the top of

the system) and examine if a connected pathway can be

established when the bottom of the system is reached, and

(2) calculate the probability (Pinter) that the CO2 plume

encounters this/these connected pathway(s). The first step

will be explained in detail in the illustrative example. In the

second step, for systems where no connected pathway is

established, Pinter = 0; for systems where a connected

pathway is found, an ‘‘effective connection’’ concept and a

moving average method are used to calculate Pinter. All

connections encountered within Ms/Ls (i.e., the normalized

CO2 plume size divided by the normalized system size) are

counted as a single effective connection. With each of the

assumed plume sizes, Pinter is obtained by averaging

effective connections for the CO2 plume at different loca-

tions. In other words, a moving average is performed by

moving the CO2 plume along the caprock and checking if it

encounters a connected pathway. If it does, we assign a

number of one, and if it does not, we assign a number of

zero. The final averaged number is Pinter—the probability

that the CO2 plume encounters a conductive fault (or fault

zone) that is connected to other conductive conduits and

serves as a pathway for CO2 to escape from the reservoir

and migrate to compartments. As discussed earlier, Pleak

depends not only on Pinter, but also on the probability (Pcon)

that a connected pathway exists in the system. To consider

Pcon, for each parameter set, we average Pinter from all

realizations (including the ones with Pinter = 0 and the

ones obtained using moving average method) to obtain

Pleak. In this way, Pcon is implicitly considered in the Pleak

calculation.
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As a result of this procedure, the following statement

can be made for each parameter set:

IF Ls ¼ L1 AND lmaxs ¼ l1 AND a ¼ a1 AND r
¼ r1 AND Ms ¼ M1;

THEN Pleak; is b:

Here, L1, l1, a1, r1 (r1 C 1), and M1 are the numerical

values of the varying parameters in the simulation,

covering all likely values. b is the calculated Pleak for

each parameter set. Up to this point, both input variables

and output variable are crisp numbers rather than fuzzy

numbers.

Construct fuzzy rules for calculating Pleak

Fuzzy logic is viewed as a system of concepts, principles,

and methods for dealing with models of reasoning that are

approximate rather than exact (Novak and Perfilieva 2000).

Due to its strength in dealing with uncertainty, ambiguity,

and imprecision that one often encounters in modeling

natural systems, fuzzy logic has been successfully applied

to earth sciences including areas of surface and subsurface

hydrology (e.g., Bardossy 1996; Bardossy et al. 2005;

Bardossy and Disse 1993; Dou et al. 1999; Hundecha et al.

2001), water resources management and risk assessment

(e.g., Kumar et al. 2006; Panigrahi and Mujumdar 2000;

Shrestha et al. 1996; Uricchio et al. 2004), and soil science

(e.g., Bardossy and Lehmann 1998; Mays et al. 1997;

McBratney and Degruijter 1992; McBratney and Odeh

1997; Odeh et al. 1992).

Fuzzy-rule based modeling represents a complex system

with imprecise, vague, and uncertain information by means

of fuzzy rules. A fuzzy rule (the ith rule) consists of a set of

arguments Ci,k (kth argument, k = 1,…, K) in the form of

fuzzy sets with membership functions lCi; k
, and a conse-

quence Bi, which is also in the form of a fuzzy set with a

membership function lBi
. The membership function

lCi; k
expresses the grade or degree of membership of element

x in Ci,k. A simple fuzzy rule statement reads as follows:

IF x1 is Ci;1 AND x2 is Ci;2 AND . . . AND xK is Ci;K ;

THEN Bi:

The use of fuzzy sets (instead of crisp numbers) in the

fuzzy statements allows the rules to be used conveniently

for both descriptive and quantitative purposes. In addition,

these fuzzy rules can be partially or simultaneously

fulfilled. This means a rule can have partial applicability,

or it is possible to have a few partially applicable rules

combined.

The degree of fulfillment (DOF) m is used to quantify the

truth grade corresponding to the fulfillment of the condi-

tions of a rule (the ith rule) for given premises (x1,…, xK).

mðx1 AND x2 AND . . . AND xKÞ ¼ lCi;1
ðx1ÞlCi;2

� ðx2Þ � � � lCi;K
ðxKÞ: ð11Þ

Fuzzy rules can be developed using expert opinions,

existing data, and qualitative information. Alternatively,

fuzzy rules can be generated through numerical simulations

(Bardossy and Disse 1993; Bardossy and Duckstein 1995;

Dou et al. 1999). In our case, we use results from Step 2 as

the training set to construct fuzzy rules. Since the training

set is from numerical simulations covering the feasible

input parameter (fault network parameters and plume size),

we know the input data structure (e.g., exponent a between

1 and 3, we can define a few fuzzy numbers evenly

distributed between 1 and 3). We use the weighted

counting algorithm proposed by Bardossy and Duckstein

(1995) to construct fuzzy rules. In this method, the rule

premises are defined explicitly, and responses to the rule

are defined using all simulation data sets. The training set C
is written as:

C ¼ ðx1ðsÞ; . . .; xKðsÞ; bðsÞÞ; s ¼ 1; . . .; Sf g ð12Þ

where b refers to the consequence, in our case it is Pleak.

And S is the total number of data (in our case, the number

of parameter set in the simulation).

The algorithm can be described as follows:

Define the membership functions of the premises. There

are five arguments (K = 5) in our case: system size Ls,

largest fault size lmax s, exponent a, ratio r = as/asc, and

ratio Ms/Ls (for convenience, we use the ratio of plume size

over system size to represent relative plume size). If tri-

angular membership functions are used for Ci,k (the kth

argument of the ith rule), define the fuzzy number (c�i;k, c1
i;k,

cþi;k) as shown in Fig. 2.

Calculate the DOF mi of each rule for each premise

vector [x1(s),…, xk(s)] corresponding to the training set.

Select a number e[ 0 such that only responses with a

DOF of at least e will be considered in the construction of

the rule response. The corresponding response is assumed

to be a triangular fuzzy number (b�i ; b1
i ; bþi ), where

Fig. 2 Triangular membership functions for a fuzzy number
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b�i ¼ min
miðsÞ[ e

bðsÞ ð13Þ

b1
i ¼

P
miðsÞ[ e miðsÞbðsÞP

miðsÞ[ e miðsÞ
ð14Þ

bþi ¼ max
miðsÞ[ e

bðsÞ: ð15Þ

The resulting fuzzy rules have the following format:

IF Ls ¼ ðL�si ; L
1
si; L

þ
si Þ AND lmax s ¼ ðl�max s i; l

1
max s i;

lþmax s iÞ AND a ¼ ða�i ; a1
i ; a
þ
i Þ AND as=asc ¼ ðr�i ; r1

i ; r
þ
i Þ

AND Ms=Ls ¼ ðm�i ;m1
i ;m

þ
i Þ; THEN the probability that a

CO2 plume escapes through a connected conduit system is

Pleak ¼ ðb�i ; b
1
i ; b
þ
i Þ:

Calculate Pleak for a given system

For a given system, the first step is to calculate asc and to

compare it to as. If the two are the same, Pleak should be

about 0.5. If the latter is much smaller, Pleak = 0. We will

address how much smaller as has to be so Pleak can be

ignored in the example problem. For systems with an as

around or above asc, the above fuzzy rules are used to infer

Pleak. There two commonly used inference models, referred

to as Mamdani-type models (Mamdani and Assilian 1975)

and the Takagi–Sugeno-type models (Takagi and Sugeno

1985). However, the Takagi–Sugeno-type system uses a

single spike as the output membership function, where the

output (consequence) is calculated as the weighted average

of a few data points rather than integrating over the domain

of the output fuzzy set. The method does not provide the

uncertainty range of the output, which is what we need for

our prediction result. The Mamdani-type inference system

uses a maximum combination method to aggregate fuzzy

rules. The method tolerates disagreement between rules,

but it does not increase the membership function of the

response if two rules give the same results. Furthermore, it

does not give higher weights to rules with crisper answers,

therefore it could make the response very vague.

We use the normalized sum combination method pro-

posed by Bardossy and Duckstein (1995) to aggregate

fuzzy rules. This method has the advantage of assigning

more weight to rules with crisper answers than fuzzy

answers (e.g., less weight on less certain answers). It is

calculated as:

lBðxÞ ¼
PI

i¼1 misilBiðxÞ

maxu

PI
i¼1 misilBiðuÞ

ð16Þ

where

1

si
¼
Zþ1

�1

lBi
ðxÞdx: ð17Þ

The division by the maximum of the summation is to

ensure the resulting membership function is not [1.

Moreover, if the centroid is used as the defuzzification

method, the fuzzy mean can be simply calculated as:

MðBÞ ¼
PI

i¼1 miMðBiÞPI
i¼1 mi

: ð18Þ

Illustrative example

In the following example, we establish rules and predict

Pleak for systems with a normalized system size Ls between

50 and 200, and a normalized largest fault size lmax s

between 50 and 200. The exponent a in Eq. 1 is only

considered for values between 1.1 and 3. The first step is to

use Eqs. 6–9 to calculate the critical parameter asc and to

compare it to the actual value as. Only systems around the

percolation threshold (including a little less) or above are

considered to be possible to have connected pathways.

Next, we determine how many fault networks with

different sets of Ls, lmax s, a, and as/asc are needed to

construct robust fuzzy rules. We sample these parameters

uniformly over the admissible range, making sure that no

excessive extrapolations are needed when subsequently

generating fuzzy rules. The admissible range for each of

the parameters is listed in Table 1. The total number of

parameter sets evaluated to generate fault networks is about

1,800. For each parameter combination, 100 discrete fault

networks are generated, and for each realization, different

plume sizes are considered to calculate Pinter. Then the

leakage probability Pleak is obtained by averaging Pinter (for

the same plume size) from the 100 realizations.

We use a fracture network generation code modified

based on the one that was used by Liu et al. (2002) and

Zhang et al. (2004). Figure 3 shows the power-law fault-

length distribution (solid line) that is used to generate fault

networks, and the actual generated fault-length distribution

(symbols) for a system with a = 1.5, Ls = lmax s = 200,

and r = 1. As expected, the double-log plot shows a good

fit for small faults with high frequency. For big faults with

low frequency, since the number of faults can only be an

integer, which is discrete, the samples are spread out

around the analytical length distribution. The fault length

distribution generated in the network is considered to

coincide well with the specified power-law distribution.

Figure 4 is an example of a discrete fault network for a

system with Ls = 100, lmax s = 200, a = 1.1, and r = 1.1.

Figure 4a shows all generated faults. Starting with the

Table 1 Parameters used in fault network generation

a Ls lmax s as/asc Ms

1.1–3.0 50–200 50–200 0.75–2.5 10-Ls
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faults intersecting the top of the system, we gradually find

and plot only the faults that are connected (i.e., the

unconnected faults are removed); the resulting network of

connected faults is shown in Fig. 4b. The removal of

unconnected faults is started at the top, so that the calcu-

lation of effective connections, which are identified at the

bottom of the system, where CO2 resides, remains zero

until connectivity across the entire system is achieved.

Based on this plot, we can easily find Pleak using the

moving average method. Note that while there are three

conduits connected to the CO2 storage formation at the

bottom of the system, two of the three connections are very

close to each other. Such a cluster does not increase the

leakage probability significantly compared to a single

connection at that location. The simple moving average

method described in ‘‘Conduit network generation to

determine Pleak’’ properly accounts for this effect. For a

normalized plume size Ms = 10, and a moving unit of Ms/

10 = 1, we obtain Pleak = 0.21, which is smaller than the

probability one might expect based on the total number of

connections alone, but slightly larger than if there were

only two, clearly separated faults.

Figure 5 shows a fault network with a = 3.0 and

r = 1.25 (Ls and lmax s are the same as those used to

generate Fig. 4). With increasing a, a larger portion of the

total fault population consists of small faults. Conse-

quently, the total number of faults and the critical value acs

also increases. In this example, despite the very densely

distributed small faults in the domain, the system is not

connected (see Fig. 5b). Figure 6 shows a network gener-

ated using exactly the same system parameters as the

network shown in Fig. 5, but for this realization the system

is connected. Figures 4, 5 and 6 demonstrate that with

increasing a, the portion of small faults in the entire

Fig. 3 Power law fault length distribution (solid line) and sample

length distribution (symbols) for a system with a = 1.5, Ls =

lmax s = 200, and as/asc

Fig. 5 A discrete fault network

for a system with a = 3.0,
Ls = 100, lmax s = 200, as/

asc = 1.25 (a) with all fractures

and (b) with unconnected faults

sequentially removed from the

top to the bottom

Fig. 4 A discrete fault network

for a system with a = 1.1,
Ls = 100, lmax s = 200, as/

asc = 1.1 (a) with all fractures

and (b) with unconnected faults

sequentially removed from the

top to the bottom
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distribution increases significantly, gradually making

overall connectivity (should it exist) dominated by small

rather than large faults.

In Fig. 7, we plot Pleak and its 95% confidence interval

as a function of CO2 plume size for a system with a = 1.5,

lmax s = 100, Ls = 100, and different ratios r = as/asc. The

value of Pleak at Ms = Ls (plume size equals system size) is

equal to the probability that the system is connected. If the

theoretical percolation threshold were accurate, Pleak is

expected to be around 0.5 for r = 1. As it turns out, this is

not always the case, as demonstrated in Fig. 7 where Pleak

is only about 0.25. There are two reasons for this. First, the

theoretically derived percolation threshold of 5.6 used in

the calculation needs to be corrected to account for dif-

ferences between the systems studied here and that used to

develop the theory. Specifically, there are differences in (a)

the exponent a, (b) the system size, leading to a finite-size

effect, and (c) the cut-off fault size for the largest fault.

Secondly, we generated the faults by randomly locating the

centers of the fault within the system domain. Because no

faults are generated if their center points are outside the

model domain, the fault density near the domain edge is

somewhat reduced. Therefore, the estimated Pleak (r = 1,

Ms = Ls) tends to be smaller than 0.5. The second reason is

an artifact of the fault network generation, which could be

eliminated by generating additional faults with the center

points outside the model domain. Such a revision, however,

is only justified if geological evidence suggests that fault

density indeed does not show an edge effect near litho-

logical or tectonic boundaries.

The original values we considered for r are in the range

between 1 and 2.5. However, theoretically Pleak (r = 1) at

percolation threshold should be about 0.5, which is not

small enough for us to ignore the likelihood of CO2 leak-

age. This is also demonstrated by simulation results (e.g.,

Fig. 7). We gradually add new simulations with r smaller

than 1 to the set of fault networks. These additional sim-

ulation results indicate that if r = 0.75, Pleak at (r = 0.75,

Ms = Ls) is smaller than 0.05. If this is considered to be

acceptably small, we change the lower bound for gener-

ating fault network, also for generating fuzzy rules to

r = 0.75. If r = 2.5, we consider Pleak to be high enough

for us to conclude the likelihood of CO2 leakage to com-

partments is significant and close to certain. Thus, this

value is used as the upper bound for fuzzy rule generation.

As we mentioned in the previous section, Bour and

Davy (1997) showed in their Fig. 9 that pc varies between 5

and 7 for systems that have a size between 10 and 100, with

exponent a between 1.8 and 3.2. This means that the

needed correction for asc could be 25% or even higher. To

confirm this assumption, we show results for r = 1.25 in

Fig. 7, the expected connectivity is approximately 0.4, with

the 95% confidence interval between 0.3 and 0.5. This

supports the validity of the assumption.

The 95% interval appears to be bigger for r between 1

and 2, because for fault networks near the percolation

threshold, the chance that a system is or is not connected

depends on the random presence or absence of a few

critical faults and is thus highly random.

Table 2 is a list of asc value calculated using Eqs. 6–9,

as a function of lmax s for both a = 1.5 and a = 3.0,

Ls = 100. When lmax s increases from 50 to 100, asc is

Fig. 6 A discrete fault network

for a system with a = 3.0,
Ls = 100, lmax s = 200, as/

asc = 1.25 (a) with all fractures

and (b) with unconnected faults

sequentially removed from the

top to the bottom

Fig. 7 Pleak as a function of CO2 plume size for a system with

a = 1.5, lmax s = 100, Ls = 100, and different values r = as/asc. The

error bars indicate 95% confidence intervals
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reduced by about 65% for a = 1.5, because large faults

dominate the connectivity; on the other hand, for a = 3.0,

small faults dominate the connectivity, and therefore the

reduction of asc is much less, only 15%.

For each parameter set, 100 realizations with different

seed numbers are created to consider the uncertainty in

fault network generation. To construct fuzzy rules, the

averaged results from these 100 realizations are used. Now

we have a database with a total of S (*21,000) sets:

fðx1ðsÞ; x2ðsÞ; x3ðsÞ; x4ðsÞ; x5ðsÞ; bðsÞÞ; s ¼ 1; . . .Sg; with

x1(s) representing exponent a, x2(s) representing normal-

ized system size, x3(s) representing normalized largest fault

size, x4(s) representing ratio r = as/asc, x5(s) representing

m = Ms/Ls, and b(s) representing Pleak. The first step in

generating fuzzy rules is to define rule structure. For each

argument, we define its fuzzy numbers as listed in Table 3.

With the structure listed in Table 3, there will be a total

of 1,620 rules (a combination of 5 arguments:

5 9 3 9 3 9 6 9 6). For each parameter set, the DOF of

each rule is calculated. The ones that have a DOF value

larger than e = 0.2 are kept for calculating the conse-

quences using Eqs. 13–15.

To demonstrate how to predict Pleak for a given system

with uncertainty, we use a simple example that only con-

siders one premise. We consider a system with the

exponent a = 1.5, both normalized system size and largest

fault are 100, and the normalized plume size is 40 (e.g.,

40% of the system size). The ratio r = as/asc is considered

to be uncertainty, estimated to be greater than but close to

1, somewhere between 1 and 1.25.

Corresponding rules (with the same a, Ls, Lmax s, and

Ms) are used to predict Pleak. If we assume r can be rep-

resented by two fuzzy numbers as shown in Fig. 8, with a

membership function of 0.5 for both, the two rules will

have a DOF of 0.5, while all the other rules will have a

DOF of zero. These two rules are applied to estimate Pleak:

Rule 1:

IF a ¼ ð1:1; 1:5; 2:0Þ AND Ls ¼ ð50; 100; 200Þ AND

lmax s ¼ ð50; 100; 200Þ
AND r ¼ ð0:75; 1:0; 1:25Þ AND rp ¼ ð0:2; 0:4; 0:6Þ
THEN Pleak ¼ ð0:01; 0:12; 0:18Þ

Rule 2:

IF a ¼ ð1:1; 1:5; 2:0Þ AND Ls ¼ ð50; 100; 200Þ AND

lmax s ¼ ð50; 100; 200Þ
AND r ¼ ð1:0; 1:25; 1:5Þ AND rp ¼ ð0:2; 0:4; 0:6Þ

THEN Pleak ¼ ð0:1; 0:3; 0:55Þ

The individual responses from the two rules are shown

as thin black lines in Fig. 9. The area under the mem-

bership function curve is a measure of how uncertain the

estimated Pleak is: the larger the area, the more uncertain

it is. In this case, the area for rule 1 is 0.085 and that for

rule 2 is 0.27. Rule 1 has a crisper result than Rule 2;

therefore, it has a larger weight (the weight is inverse to

the area) in the final combined results. The final Pleak and

its membership function are shown as thick red lines. The

defuzzified Pleak value (using the centroid method) is

0.21.

We apply the fuzzy rules to the same system as shown in

Fig. 7. The predicted Pleak using fuzzy rules are also fuzzy

numbers. After defuzzification, we plot them in Fig. 10.

Although the results are consistent with results from the

Monte Carlo simulation, they are not identical because by

using fuzzy-rule based modeling, we have considered the

uncertainty in the input parameters, whereas the multiple

realizations for the same parameter set only considered the

randomness of equally probable fault networks. When we

talk about r being approximately 1.5, we have implicitly

include the possibilities that r could be larger or smaller

than 1.5. As a result, the estimated Pleak contained uncer-

tainty in r. Since the combinations of the rules are weighted

by both the DOF of a rule and the area of the membership

function of the rule outcome, the defuzzified Pleak could be

smaller or larger than the Monte Carlo simulation, which

did not consider the input parameter uncertainty. However,

Table 2 asc values for different a and lmax s

lmax s 50 100 200

a = 1.5 238 84 45

a = 3.0 14,314 12,160 10,969

Table 3 Fuzzy numbers used

in the premises
a Ls lmax s as/asc m

(1.1, 1.1, 1.5) (50, 50, 100) (50, 50, 100) (0.75, 0.75, 1.0) (0.0, 0.0, 0.2)

(1.1, 1.5, 2.0) (50, 100, 200) (50, 100, 200) (0.75, 1.0, 1.25) (0.0, 0.2, 0.4)

(1.5, 2.0, 2.5) (100, 200, 200) (100, 200, 200) (1.0, 1.25, 1.5) (0.2, 0.4, 0.6)

(2.0, 2.5, 3.0) (1.25, 1.5, 2.0) (0.4, 0.6, 0.8)

(2.5, 2.5, 3.0) (1.5, 2.0, 2.5) (0.6, 0.8, 1.0)

(2.0, 2.5, 2.5) (0.8, 1.0, 1.0)
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there are two exceptions in our prediction. When r = 0.75,

the predicted Pleak values using fuzzy rules are always

larger than the Monte Carlo simulation results, and when

r = 2.5, the predicted Pleak values are always smaller than

the Monte Carlo simulation results (see Figs. 7, 10). This is

because we use a triangular fuzzy number (0.75, 0.75, 1.0)

for the statement ‘‘r is likely to be 0.75 or slightly above.’’

The uncertainty in this number means a possibility that r is

higher than 0.75, but not lower. This effect makes Pleak at

r & 0.75 always higher than Pleak at r = 0.75. Similarly,

because we define a triangular membership function (2.0,

2.5, 2.5) for the statement ‘‘r is close to 2.5 or slightly

smaller’’, the uncertainty in r means a possibility that r is

smaller than 2.5, but not larger, and the Pleak values pre-

dicted using fuzzy rules are always smaller.

Conclusions and practical considerations

In this paper we presented a method to estimate a limiting

factor controlling the probability of CO2 leakage through

a fault or fracture system, namely the probability (Pleak)

of the plume intersecting a connected network of faults or

fractures that also intersects a vulnerable resource. The

proposed method includes (1) the estimation of the con-

nectivity of the fault system using percolation theory; (2)

the estimation (for a limited number of systems) of the

probability that CO2 plumes with different sizes encounter

a connected system of conduits; (3) the construction of

fuzzy rules for calculating Pleak considering uncertainty in

the input parameters; and (4) predictive estimation of

Pleak for a given system. The method was designed to fit

in the CF, where the risk associated with CO2 leakage is

the product of the leakage likelihood and the impact of

that leakage event. The rules that are generated from this

study will be stored within the CF model. When a site

needs to be evaluated as a potential geological CO2

sequestration site, step (4) needs to be performed, and a

leakage likelihood will be passed on for the final calcu-

lation of risk.

The study was done for a two-dimensional system.

Representing an inherently three-dimensional system with

a two-dimensional model yields conservative leakage

probability estimates, because the third dimension is

implicitly assumed to be connected. Nevertheless, the

concept and methods described in this study can also be

applied to more realistic three-dimensional fault-systems.

Analyzing fault systems in three dimensions requires

modifying (1) the percolation threshold value, (2) the

expression of the percolation threshold (Bour and Davy

1998), (3) generating three-dimensional fault networks, (4)

evaluating leakage probability using realistic plume con-

figurations, and (5) recreating fuzzy rules.

The assumptions for the approach include a square

system and randomly oriented conduits. However, for a

real site, the system is unlikely to be square, and faults have

preferential orientations. Both situations lead to a prefer-

ential connection in one direction (the short direction), and

less likely connectivity in the other direction. This effect is

Fig. 8 The membership functions for the two fuzzy numbers that are

used to represent ‘‘r is greater but close to 1’’

Fig. 9 Membership functions of Pleak (thick red line) for a system

(a = 1.5, Ls = lmax s = 100, Ms = 40) with ‘‘r greater but close to

1’’. The two individual rule consequences are shown as thin black
lines

Fig. 10 Fuzzy-rule based prediction of Pleak as a function of rp (CO2

plume size divided by system size) for a system with a = 1.5,

lmax s = 100, Ls = 100, and different values of r = as/asc
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referred to as anisotropy, which can be accounted for fol-

lowing the method proposed by Masihi et al. (2007).

The main computational effort resides in the numerical

generation of the fault networks and finding the connected

pathway(s). In our case, we generated about 1,800 9 100

(for each system parameter there are 100 realizations) fault

networks. The varying of plume size is not included in this

number since once the connected pathway is found, there is

not much computational effort involved in calculating the

Pinter for various plume sizes. However, fault network

generation only needs to be done once to provide the basis

for constructing the fuzzy rules; predictive simulations are

then performed very efficiently using these fuzzy rules.

After we include the plume size in the input parameter set

and average results of the 100 realizations, we have about

21,000 datasets to generate rules. If needed, additional

networks can be added to the database to extend the input

parameter ranges. By using fuzzy-rule based modeling, we

can predict Pleak for systems that have characteristics dif-

ferent from the ones we have in the database (obtained

from fault network generation), as well as the uncertainty

of Pleak, by propagating the uncertainty in the input

parameters. The randomness in the fault network genera-

tion is considered by generating multiple realizations for

the same system.

Brine leakage through a fault or fracture system from

the reservoir may also lead to environmental impact.

Although we focus the application of the proposed method

to evaluate the probability of CO2 leakage, the approach

can also be applied to estimate brine leakage probability.

An effective brine plume size, analogous to the CO2 plume

size, could be defined as the size of the pressure pertur-

bation above some cut-off value. Using the proposed

method, a relationship can be established between the

leakage probability and the region of pressure perturbation.

If GCS becomes a viable mitigation option to address

CO2 emissions, a large number of sites with different

amounts of characterization data and degrees of uncertainty

will need to be evaluated. The proposed method provides a

tool for a preliminary evaluation of leakage likelihood

through fault systems. In the future, this simplified model

will be refined to better represent the dimensionality and

fault distributions at actual sites under evaluation.
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