Skip to main content
Log in

Capillary flows along microchannels in the presence of magnetic field

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

To analytically determine liquid depth and velocity, we formulated a theoretical a capillary flow. The coupling effects of viscous force (Fv), capillary force (Fs), and electromagnetic force (Fm) were considered during the modeling process. Periodical electromagnetic force facilitates capillary flow in hydrophilic conditions, and velocity vibration synchronizes with electromagnetic force. A sufficiently high electromagnetic force was required for ensuring the upward movement of liquid front in hydrophobic conditions. Liquid depth was increased with the increase in magnetic field, damping factor, and angular frequency. The velocity peak was positively related to \(\mid \cos\theta \mid\) and magnified with the increase in damping factor and angular frequency in hydrophilic conditions. However, variations in velocity in hydrophobic conditions experienced an initial forward instantaneous peak and became consistent with that of hydrophilic conditions because of electromagnetic force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

B :

Magnetic induction intensity

B 0 :

Peak of magnetic induction

F :

Total force

F s :

Capillary force

F v :

Total viscous force

F m :

Electromagnetic force

h :

Liquid depth

P :

Pressure

R :

Radius

t :

Time

v :

Flow velocity

\(\overline{v}\) :

Average velocity

r, z :

Coordinate directions

γ :

Viscous shearing force

θ :

Contact angle

τ :

Damping factor

σ :

Surface tension

ω :

Angular frequency

μ :

Magnetic permeability

η :

Dynamic viscosity

References

  1. Y Xiao, F Z Yang and R Pitchumani J. Colloid Interface Sci. 298 880 (2006)

    Article  ADS  Google Scholar 

  2. W R Jong, T H Kuo, S W Ho, H H Chiu and S H Peng Int. Commun. Heat Mass 34 186 (2007)

    Article  Google Scholar 

  3. A Bandopadhyay, U Ghosh and S Chakraborty Phys. Rev. E 89 053024 (2014)

    Article  ADS  Google Scholar 

  4. S Chakraborty and D Paul J. Phys. D 39 5364 (2006)

    Article  ADS  Google Scholar 

  5. K Zhang, Z Shi, H Xia, K Wang, G Liu, G Qiao and J Yang Ceram. Int. 42 996 (2015)

    Article  Google Scholar 

  6. J M Zeng, H X Zhu and J Y Kong Adv. Mat. Res. 634 1914 (2013)

    Google Scholar 

  7. M Sanchez, J Rams and A Urena Compos. Part AAppl. S. 41 1605 (2010)

    Article  Google Scholar 

  8. T Matsunaga, K Matsuda, T Hatayama, K Shinozaki and M Yoshida Compos. Part AAppl. S. 38 1902 (2007)

    Article  Google Scholar 

  9. P K Rohatgi, V Tiwari and N Gupta J. Mater. Sci. 41 7232 (2006)

    Article  ADS  Google Scholar 

  10. R M Andrews and A Mortensen Mater. Sci. Eng. A Struct. 144 165 (1991)

    Article  Google Scholar 

  11. K Cui, Z L Zhao, S Chen, J J Gao and L F Wei Appl. Phys. Lett. 111 224103 (2017)

    Article  ADS  Google Scholar 

  12. E W Washburn Phys. Rev. 17 273 (1921)

    Article  ADS  Google Scholar 

  13. S Levin, P Reed and J Watson Colloid Interface Sci. 3 403 (1976)

    Article  Google Scholar 

  14. D Quere Europhys. Lett. 39 533 (1997)

    Article  ADS  Google Scholar 

  15. N Fries and M Dreyer J. Colloid Interface Sci. 320 259 (2008)

    Article  ADS  Google Scholar 

  16. P R Waghmare and S K Mitra Microfluid Nanofluid 12 53 (2012)

    Article  Google Scholar 

  17. S Chakraborty Anal. Chim. Acta 605 175 (2007)

    Article  Google Scholar 

  18. G H Tang, X F Li, Y L He and W Q Tao J. Non-Newton Fluid 157 133 (2009)

    Article  Google Scholar 

  19. W Ritchie Philos. Trans. R. Soc. Lond. 122 279 (1832)

    Article  ADS  Google Scholar 

  20. C P Tso and K Sundaravadivelu J. Phys. D Appl. Phys. 34 3522 (2001)

    Article  ADS  Google Scholar 

  21. B Lequesne IEEE Trans. Magn. 26 1107 (1990)

    Article  ADS  Google Scholar 

  22. D Wattiaux and O Verlinden Exp. Mech. 51 1459 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (51374173) and Natural Science Basic Research Plan in Shanxi Province of China (2018JM5082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, K., Zhao, Z., Chen, S. et al. Capillary flows along microchannels in the presence of magnetic field. Indian J Phys 93, 213–219 (2019). https://doi.org/10.1007/s12648-018-1261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1261-x

Keywords

PACS Nos.

Navigation