Skip to main content
Log in

Theoretical calculations of elastic, mechanical and thermal properties of REPt3 (RE = Sc, Y and Lu) intermetallic compounds based on DFT

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The elastic, mechanical and thermal properties of isostructural and isoelectronic nonmagnetic REPt3 (RE = Sc, Y and Lu) intermetallic compounds, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave method. The calculations are carried out within PBE-GGA, WC-GGA and PBE-sol GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (ao), bulk modulus (B) and its pressure derivative (B′) are in good agreement with the available experimental and other theoretical results. We first time predict the elastic constants for these compounds using GGA approximations. All the compounds are found to be ductile in nature in accordance with Pugh’s criteria. The computed electronic band structures show metallic character of these compounds. The charge density plot and density of states of these compounds reveals that the chemical bond between RE and Pt is mainly ionic. The elastic properties including Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are also determined using the Voigt–Reuss–Hill averaging scheme. The average sound velocities (vm), density (ρ) and Debye temperature (θD) of these REPt3 compounds are also estimated from the elastic constants. We first time report the variation of elastic constants, elastic moduli, sound velocities and Debye temperatures of these compounds as a function of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T Iizuka, T Mizuno, B H Min, Y S Kwon and S Kimura J. Phys. Soc. Jpn. 81 043703 (2012)

    Article  ADS  Google Scholar 

  2. P Lethuillier and J Pierre J. Phys. 36 329 (1975)

    Article  Google Scholar 

  3. S J Asadabadi, S Cottenier, H Akbarzadeh, R Saki and M Rots Phys. Rev. B 66 195103 (2002)

  4. D Aoki, Y Katayama, S Nojiri, R Settai, Y Inada, K Sugiyama, Y Onuki, H Harima and Z Kletowski Phys. B Condens. Matter 1083 259 (1999)

    Google Scholar 

  5. N Arikan, A Iyigor, A Candan, S Ugur, Z Charifi, H Baaziz and G Ugur Comput. Mater. Sci. 79 703 (2013)

    Article  Google Scholar 

  6. L Meddar, S Garbarino, M Danaie, G A Botton and D Guay Thin Solid Films 524 127 (2017)

    Article  ADS  Google Scholar 

  7. W W Xing, X Q Chen, D Z Li, Y Y Li, C L Fu, S V Meschel and X Y Ding Intermetallics 28 16 (2012)

    Article  Google Scholar 

  8. M Kumar, T Nautiyal and S Auluck J. Alloys Compd. 486 60 (2009)

    Article  Google Scholar 

  9. N Acharya, B Fatima and S P Sanyal J. Metastable Nanocrystalline Mater 28 12 (2016)

  10. B Chen, S Qi, H Song, C Zhang and J Shen Mod. Phys. Lett. B 29(32) 1550201 (2015)

    Article  ADS  Google Scholar 

  11. P Giannozzi et.al. J. Phys. Condens. Matter 21 (39) 395502 (2009)

    Google Scholar 

  12. M Sundareswari and M Rajagopalan Eur. Phys. J. B 49(1) 67 (2006)

    Article  ADS  Google Scholar 

  13. L V Goncharuk, V R Sidorko, V G Khoruzhaya and T Y Velikanova Powder Metall. Met. Ceram. 39(1-2) 55 (2000)

    Article  Google Scholar 

  14. A Maachou, H Aboura, B Amrani, R Khenata, S Bin Omran, D Varshney Comput. Mater. Sci. 50 3123 (2011)

    Article  Google Scholar 

  15. A Bouhemadou and R Khenata J. Appl. Phys. 102 043528–33 (2007)

    Article  ADS  Google Scholar 

  16. P Blaha, K Schwarz, G K H Madsen, D J Kuasnicka, and Luitz WIEN2K, An Augmented Plane Wave Wave + Local Orbitals Program for Calculating Crystal Properties (Wien, Austria: K. Schwarz Technical Universitat) (2001). ISBN 3-9501031-1-2

  17. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  18. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006)

    Article  ADS  Google Scholar 

  19. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou and K Burke Phys. Rev. Lett. 100 136406 (2008)

    Article  ADS  Google Scholar 

  20. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. F Birch J. Appl. Phys. 9 279 (1938)

    Article  ADS  Google Scholar 

  22. Z Sun, S Li, R Ahuja and J M Schneider Solid State Commun. 129 589 (2004)

    Article  ADS  Google Scholar 

  23. C Jasiukiewicz and V Karpus Solid State Commun. 128 167 (2003)

    Article  ADS  Google Scholar 

  24. P Wachter, M Filzmoser and J Rebizant Phys. B 293 199 (2001)

    Article  Google Scholar 

  25. A landelli and A Palenzona Crystal chemistry of compounds, in Handbook of the Physics and Chemistry of Rare Earths, (ed.) K A Gschneidner and L Eyring, 2nd edn. North-Holland 1–53 (1984)

  26. A E Dwight, J W Downy and R A Conner Acta Cryst. 14 75 (1961)

    Article  Google Scholar 

  27. T H Geballe, B T Matthis, V B Compton, E Corenzwit, G W Hull and L D Longinotti Phys. Rev. 137 A119 (1965)

    ADS  Google Scholar 

  28. R E Schaak, M Avdeev et al. J. Solid State Chem. 177 1244 (2004)

    Article  ADS  Google Scholar 

  29. M A Khan and C Koenig J. Phys. C9 1067 (1987)

    Google Scholar 

  30. V I Razumovski, E I Isaev, A V Ruban and P A Korzhavyi Intermetallics 16 982 (2008)

    Article  Google Scholar 

  31. N F Mott and H Jones The Theory of the Properties of Metals and Alloys (Oxford: Clarenden Press) (1936)

    Google Scholar 

  32. C Kittel Introduction to Solid State Physics, 7th edn. (New York: Wiley) p 66. ISBN 9971-51-180-0 (1996).

  33. A Bouhemadou, R Khenata, M Kharoubi, T Seddik, A H Reshak and Y A Douri Comput. Mater. Sci. 45 474 (2009)

    Article  Google Scholar 

  34. M Born and K Huang, Dynamical Theory of Crystal Lattices (Oxford, Clarendon) (1956)

    MATH  Google Scholar 

  35. J Wang and S Yip Phys. Rev. Lett. 71 4182 (1993)

    Article  ADS  Google Scholar 

  36. R Hill Proc. Phys. Soc. Lond. A 65 349 (1952)

  37. W Voigt Ann. Phys. 38 573 (1889)

    Article  Google Scholar 

  38. A Reuss and Z Angew J. Math. Phys. 9 49 (1929)

    Google Scholar 

  39. P Wachter Handbook on the Physics and Chemistry of Rare Earths (North-Holland Amsterdam) 19 Chapter 132 (1993)

  40. S F Pugh Philos. Mag. 45 823 (1954)

    Google Scholar 

  41. S Ganeshan, S L Shang, H Zhang, Y Wang, M Mantina and Z K Liu Intermetallics 17 313 (2009)

    Article  Google Scholar 

  42. D G Pettifor J. Mater. Sci. Technol. 8 345 (1992)

    Article  Google Scholar 

  43. C H Jenkins and S K Khanna A Modern Integration of Mechanics and Materials in Structural Design. Mechanics of Materials ISBN: 0-12-383852-5 62-72 (2005)

  44. W Feng et al. Physica B 405 4294 (2010)

    Article  ADS  Google Scholar 

  45. J B Levine, S H Tolbert and R B Kaner Adv. Funct. Mater. 19 3519 (2009)

    Article  Google Scholar 

  46. J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Res. 11 (2001)

  47. I N Frantsevich, F F Voronov and S A Bokuta Elastic Constants and Elastic Moduli of Metals and Insulators (ed.) I N Frantsevich (Naukova Dumka, Kiev) p 60 (1983)

  48. L Vitos, P A Korzhavyi and B Johansson Nat. Mater. 2 25 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to MPCST for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pagare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V., Pagare, G. Theoretical calculations of elastic, mechanical and thermal properties of REPt3 (RE = Sc, Y and Lu) intermetallic compounds based on DFT. Indian J Phys 92, 1503–1513 (2018). https://doi.org/10.1007/s12648-018-1242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1242-0

Keywords

PACS Nos

Navigation