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Abstract Delayed-onset muscle soreness (DOMS) is quite

a common consequence of unaccustomed strenuous exer-

cise, especially exercise containing eccentric contraction

(lengthening contraction, LC). Its typical sign is mechanical

hyperalgesia (tenderness and movement related pain). Its

cause has been commonly believed to be micro-damage of

the muscle and subsequent inflammation. Here we present a

brief historical overview of the damage-inflammation theory

followed by a discussion of our new findings. Different from

previous observations, we have observed mechanical

hyperalgesia in rats 1–3 days after LC without any apparent

microscopic damage of the muscle or signs of inflammation.

With our model we have found that two pathways are

involved in inducing mechanical hyperalgesia after LC:

activation of theB2 bradykinin receptor–nerve growth factor

(NGF) pathway and activation of the COX-2-glial cell line-

derived neurotrophic factor (GDNF) pathway. These neu-

rotrophic factors were produced by muscle fibers and/or

satellite cells. This means that muscle fiber damage is not

essential, although it is sufficient, for induction of DOMS,

instead, NGF and GDNF produced by muscle fibers/satellite

cells play crucial roles in DOMS.

Keywords Delayed-onset muscle soreness � Exercise �
Mechanical hyperalgesia � Nerve growth factor � Glial cell
line-derived neurotrophic factor

Introduction

It is likely almost everyone has had more than one expe-

rience of delayed-onset muscle soreness (DOMS) after,

e.g., mountain climbing for the first time for a long while,

an occasional baseball game, or running in a once-a-year

school sports meeting. It is quite a common consequence of

unaccustomed strenuous exercise, especially exercise

containing eccentric contraction (lengthening contraction,

LC), in which muscle is being stretched while it is con-

tracted [1]. Even athletes who exercise every day experi-

ence DOMS when they perform a different type of sport or

practice new skills. DOMS is different from the acute pain

experienced during and shortly after exercise; it usually

appears after a pain-free period (12–24 h), peaks at

24–72 h, and disappears within 7 days of the exercise [2–

4]. The existence of this pain-free period has made DOMS

somewhat mysterious. The most characteristic symptoms

of DOMS are tenderness and movement-induced pain in

the exercised muscle; both are types of mechanical

hyperalgesia, and there is usually no pain at rest [4].

DOMS is usually subclinical, because people recover from

the soreness without medical treatment. However, DOMS

may interfere with the motor performance of athletes, and

there is a possibility that DOMS will lead to more debili-

tating and chronic injury [5] and result in chronic pain and/

or hyperalgesia, with plastic changes in the central nervous

system [6]. Decreases in the maximum power of the muscle

and in the range of motion accompany DOMS [7–9]. These

decreases are believed to be related to micro damage of the

subcellular structure of the muscle fibers [10], but a dis-

cussion of the mechanism is beyond the scope of this

review.

Many possible causes of DOMS have been proposed [9];

the most popularly accepted is damage of muscle fibers and
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subsequent inflammation [11]. Our recent research has

revealed that muscle fiber damage and inflammation are

sufficient but not essential for DOMS. In this review we

give a brief overview of these factors; we then describe our

recent findings obtained from experimental DOMS in rats

and mice. Finally, we briefly introduce methods for pre-

vention and treatment of DOMS.

Historical overview

The first report on soreness (DOMS) that appears 12 or

24 h after exercise was made by Hough [12], who proposed

a hypothesis of ‘‘rupture of the muscle fiber (or connective

tissue between muscle fibers)’’ as the cause of DOMS

because soreness was observed after quick and strong

contraction.

That lengthening (eccentric) but not shortening (con-

centric) contraction (abbreviated LC and SC, respectively)

is associated with DOMS was first proposed by Asmussen

[1], and later confirmed by other researchers [13, 14]. As

suggested by Hough [12], muscle damage was observed

after exercise, especially after LC [15–17]. In mice, slow

muscle (e.g. soleus muscle) was shown to be less suscep-

tible to LC than fast muscle (e.g. the extensor digitorum

longus, EDL, muscle) [18]. With a biopsy of human

muscle, type II muscle fibers (fast twitch fibers) were

reported to be more susceptible to damage following

exercise [19, 20]. After LC, damage including ballooning

of the fiber, marked streaming, broadening, and sometimes

total disruption, of the Z-band, focal disruption of the

striated band pattern, and disorganized sarcomeres [15, 17]

were found in the muscle of both humans and animals.

Accumulation of inflammatory cells (neutrophils and then

macrophages) is found in or around damaged muscle fibers

after LC [3, 21], but was also observed after stretching and

SC [22]. Increase of IL-6 was found in human plasma [21],

and that of mRNAs for IL-6, IL-8, and COX-2 was

observed in exercised muscle of humans [23]. In these

studies no comparisons were made between exercise pat-

terns (LC or SC).

Different forms of exercise have been used to induce

DOMS, including downhill running, lengthening of the

muscle by use of a machine while the muscle was con-

tracted voluntarily, or by electrical stimulation by use of a

surface electrode. It has been shown that lengthening

exercise with voluntary contraction induces less muscle

damage than contraction induced by electrical stimulation

by use of a surface electrode, although the level of

soreness was approximately the same [24]. Quantitative

studies on the relationship between the extent of muscle

damage or mechanical hyperalgesia and exercise condi-

tions (angular velocity and range of motion) have been

performed. Angular velocity dependent severe damage

was observed in a study in which the muscle contraction

was induced by a surface electrode [8] whereas almost no

damage was observed with electrical stimulation of the

nerve [25]. Even isometric contraction induced by elec-

trical stimulation with a surface electrode resulted in more

muscle damage [26, 27]. The authors of the latter exper-

iment suggested that one possible reason is a high

mechanical stress on the muscle fibers activated in a non-

selective, synchronous, and spatially fixed manner. This

may be also true for LC induced by electrical stimulation

by use of surface electrodes.

Biochemical studies have revealed leakage of such

enzymes as creatine kinase and lactic dehydrogenase from

exercised muscle [17]. Both histological changes and

leakage of enzymes from exercised muscle have led to the

idea that muscle damage is the cause of DOMS. The

presence of invading inflammatory cells (macrophages) in

the muscle suggests that inflammation is a cause of DOMS

(reviewed elsewhere [11]). A recent intensive, compre-

hensive study [28] of humans found no difference between

markers of inflammation for subjects who underwent LC

and those who underwent SC. The involvement of

inflammation was also examined by using anti-inflamma-

tory drugs. However, the effects of the drugs differed

among laboratories, and there were more reports of effec-

tive results when a drug was administered prophylactically

(before exercise) than when it was given therapeutically

(after exercise) (reviewed elsewhere [9]). A very recent

investigation with a placebo control showed that applica-

tion of topical diclofenac sodium gel 1 % over the exer-

cised leg every 3 h for 24 h helped to reduce DOMS [29].

Lactic acid, found at increased levels in muscles and

plasma shortly after exercise [30], was once believed to be

a cause of DOMS. However, this hypothesis has been

strongly discredited by the discovery that concentric

(shortening) exercise, which involves greater metabolism,

fails to produce DOMS [30]. In addition, lactic acid levels

return to pre-exercise levels within an hour after exercise.

Therefore, although lactic acid may contribute to the acute

pain associated with fatigue after intense exercise, or ini-

tiate DOMS, it cannot be a crucial molecule when DOMS

is at its peak.

Increases in resting muscle activity (EMG activity) [31]

and connective tissue damage [32] have also been proposed

as the cause of DOMS.

New mechanism

Because mechanical hyperalgesia without damage is

observed for muscle undergoing LC by electrical stimula-

tion of the nerve [25], the mechanism of DOMS must
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involve other than damage and/or inflammation. We pro-

pose here a new mechanism in which nerve growth factor

(NGF) and glial cell line-derived neurotrophic factor

(GDNF) produced by muscle fibers and/or satellite cells are

themselves responsible for DOMS.

As mentioned in the previous section, muscle damage

and the subsequent inflammation after exercise has been

reported after many studies, and is thus the most commonly

accepted cause of DOMS. However, several reports have

suggested this may not be the real cause of DOMS. The

time course of the damage and degenerative changes does

not fit well with the time course of DOMS, and similar

changes, for example disrupted sarcolemma, degenerating

fibers, Z-line streaming, and central nuclei are observed

among pain-free individuals and regularly exercising ath-

letes [3, 33, 34]. Second, DOMS can be observed in cases

without damage of the muscle [24, 25]. Third, anti-in-

flammatory drugs (NSAID) rarely help to reduce DOMS

that has developed mechanical hyperalgesia (reviewed

elsewhere [9]).

For better insight into the mechanism of DOMS, animal

models are needed for evaluation of the mechanical

hyperalgesia of exercised muscle. We contracted the

hindpaw extensors of rats, mainly the EDL muscle, by

electrically stimulating the common peroneal nerve while

synchronously stretching the muscles [35]. The gastroc-

nemius muscle of rabbits [36], rats [5, 37] and mice [38]

has also been used for this purpose.

To evaluate the mechanical withdrawal threshold a

parallel of the human mechanical (pressure) pain threshold)

of the muscle through the skin, we used a Randall–Selitto

apparatus equipped with a larger tip than that supplied by

the distributor. The same has been done for humans, using

probes with a diameter of 1 cm or with surface area of

1 cm2 [39, 40]. Use of larger probes is based on evidence

obtained experimentally [41] and by computer simulation

[42–44]. The measured mechanical threshold with these

larger probes was not affected by surface anesthesia of the

skin over the muscle [38, 41, 45], ensuring the value is

indicative of the withdrawal threshold of the deep tissues,

including muscles.

Mechanical hyperalgesia after exercise (DOMS)

in animal models

In measurements with a Randall–Selitto apparatus (probe

diameter 2.6 mm), the mechanical withdrawal threshold

decreased significantly 1 day after LC in rats. It reached its

lowest point on the second day, and remained low until the

third day after exercise [35]. On day four the threshold

completely returned to the baseline level [46]. For animals

with DOMS produced by the same method, no apparent

damage (light microscopic level) of the muscle fibers was

observed [37, 47].

That the reduced mechanical withdrawal threshold

reflects mechanical hyperalgesia in the exercised muscles

was confirmed by an increase in c-Fos expression in the

dorsal horn. Expression of this protein in the superficial

dorsal horn of the spinal cord has been used as a neural

marker of pain since Hunt et al. [48] reported that different

kinds of noxious stimuli induce its expression in the

superficial dorsal horn, which contains secondary neurons

receiving nociceptive C-fiber inputs from the skin [49] and

muscle [50]. The number of c-Fos-immunoreactive neu-

rons in the dorsal horn was increased only in the animal

group that received muscle compression 2 days after LC,

especially in the superficial dorsal horn corresponding to

laminae I and II at the L4 level of the spinal cord [35].

Compression alone, LC only, and stretching only did not

increase c-Fos expression. Thus, neither the compression

nor the LC used in this experiment activated the nocicep-

tive pathway 2 days later, the latter corresponds to that

spontaneous pain is absent in DOMS [4]. Increased

expression of c-Fos in the superficial dorsal horn after

compression 2 days after LC was completely suppressed

with morphine (10 mg/kg i.p., given 20 min before com-

pression) [35]. These observations provide further evidence

that the muscle was hyperalgesic 2 days after LC.

Mechanical hyperalgesia is also observed for mice after

LC, but the time course is much shorter than for rats or

humans [38].

Facilitated response of muscle thin-fiber afferents

in DOMS

What kind afferents are responsible for DOMS? Muscle

nociception is believed to be transmitted by thin muscle

afferent fibers (Ad and C-fibers) [51]. To examine whether

the activity of muscle thin-fiber afferents is sensitized in

DOMS, we recorded single-fiber activity from rat EDL

muscle–common peroneal nerve preparations in vitro [52].

We recorded activity from 25 muscle fibers 2 days after LC

and from 33 fibers from control animals. The only differ-

ence we found was the mechanical sensitivity: the

mechanical threshold was lower by half and the magnitude

of the response (number of induced discharges) to ramped

mechanical stimulation (0–196 mN in 10 s) was twice as

large in the exercised group as in the unexercised controls.

Spontaneous activity and the responses to other stimuli

(ratio of responding fibers and the magnitude of the

response to algesic substances, for example bradykinin and

ATP [52], and to heat stimulation [53]) were no different

between groups. The observed augmented sensitivity to

mechanical stimulation is the neural basis for mechanical

hyperalgesia after exercise, i.e. DOMS.
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Different from our observations are reports suggesting

that DOMS is transmitted by thick A-fiber afferents

including muscle spindles. This hypothesis is based on

observations that pain induced by hypertonic saline did not

change after exercise, that A-fiber block increased the pain

threshold, and that vibration of the muscle exacerbated

muscle pain [54, 55]. The absence of increased sensitivity

to hypertonic saline cannot be the reason C-fibers do not

contribute to DOMS, because it has been shown that

muscle C-fiber sensitivity to hypertonic saline does not

change in DOMS [56]. The vibration might have induced

reflex muscle contraction and this contraction might have

resulted in more pain. Another possibility is that some of

the sensitized C-fibers after exercise might be also be

sensitive to vibration of the size used in these papers. The

same authors also showed that differential block of A-fibers

by compression of the nerve increased the pressure pain

threshold in the exercised leg [55]. In this case, pain

induced at the site of compression might have masked the

pain in the exercised leg.

To examine the possible contribution of A-fibers to

DOMS, we investigated whether DOMS could be induced

in rats treated neonatally with capsaicin, which is known to

destroy a large proportion of unmyelinated afferent fibers

[57]. Among these animals, LC failed to induce muscular

mechanical hyperalgesia [58]. mRNA of NGF in the

muscle, which is crucial in maintaining mechanical

hyperalgesia (described later in this review), was upregu-

lated similarly in the capsaicin-treated and vehicle-treated

animals. These results indicate that C-fiber afferents are

essential in transmitting the nociceptive information from

exercised muscle in DOMS, and that thick A-fibers are not

crucially involved in DOMS.

What causes DOMS?: the B2 receptor-NGF

pathway

Bradykinin (later shown to be Arg-bradykinin in rats [59,

60]), abbreviated in this review as BK, an agonist of the B2

bradykinin receptor) is released during exercise via acti-

vation of vascular endothelial adenosine receptors [59].

Bradykinin is known to sensitize thin fiber afferents in a

variety of tissues to mechanical stimulation via the B2

bradykinin receptor [61–63]. However, BK is not present

2 days after exercise, and hence cannot be responsible for

sensitization of muscle thin-fibers to mechanical stimula-

tion in muscle that is hyperalgesic after LC. Its contribution

to initiation of DOMS, however, has not been examined.

B2 bradykinin receptor antagonist HOE 140 completely

suppressed generation of muscular mechanical hyperalge-

sia when injected before LC, but when injected 2 days after

LC failed to reverse the mechanical hyperalgesia that had

already developed [64]. To determine the exact time

window in which BK acts, we injected B2 antagonist

shortly after exercise. DOMS then developed normally,

demonstrating that BK acts during exercise and possibly

shortly after exercise (up to 1 h). B1 antagonist was inef-

fective, irrespective of the timing of its injection. These

observations indicate that BK, via the B2 bradykinin

receptor, is crucially involved in initiating the processes

that lead to mechanical hyperalgesia, but it is not a sub-

stance that sensitizes nociceptors to induce mechanical

hyperalgesia.

What, then, is the agent that sensitizes nociceptors when

muscle is sore? NGF is known to be produced in the

muscle after ischemia [65] or nerve injury [66], and is also

known to induce mechanical hyperalgesia without inducing

apparent pain when injected into muscle [67]. Therefore we

examined the change in NGF after LC. Upregulation of

NGF mRNA and protein occurred in exercised muscle over

a time course (12 h to 2 days after LC) comparable with

that for muscle mechanical hyperalgesia (Fig. 1a, b).

Antibodies to NGF injected intramuscularly 2 days after

exercise reversed the muscle mechanical hyperalgesia in

3 h (Fig. 1c). HOE 140 inhibited upregulation of NGF. In

contrast, SC or stretching induced neither mechanical

hyperalgesia nor NGF upregulation. Upregulation of IL-6

after LC has been reported for humans [21] and mice [68],

and the possibility of a contribution by other cytokines has

also been examined in this model [64]. All of IL-1, IL-6,

and TNF-a mRNAs were upregulated immediately after

LC (0 h) and 6 or 12 h after LC. However, they were also

upregulated after SC and/or stretching, and, except for IL-

6, were not affected by HOE140. However, a contribution

of IL-6 to DOMS is not supported because anti-IL-6 anti-

body failed to reverse the established mechanical hyper-

algesia after LC [64].

Murase et al. [64] also showed that rat NGF sensitized

C-fiber afferents to mechanical stimulation in the periphery

after 10–20 min in excised muscle-nerve preparation

(Fig. 2). This latency is too short if it is caused after

transport of NGF to the afferent cell body and changes the

expression of ion channels or transducers, or neuropep-

tides, after which these molecules are transported back to

the afferent terminals [69]. In addition, because this

preparation was detached from the cell body, sensitization

should have occurred at the periphery. Several mechanisms

have been proposed [70–74] and the sensitizing mechanism

of muscular C-fibers is now being studied. Thus, NGF

upregulation by activation of B2 bradykinin receptors is

essential to mechanical hyperalgesia after exercise.

The contribution of transient receptor potential vanilloid

1 (TRPV1) to DOMS and NGF-induced mechanical

hyperalgesia has been shown by use of TRPV1-deficient

mice and by use of a capsaicin antagonist, capsazepine

[37, 38].
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Because our model showed no apparent inflammatory

signs, inflammatory cells are unlikely to be responsible

for the production of NGF. Instead, by use of in-situ

hybridization, we found upregulation of mRNA signals

around the nuclei of muscle fibers and/or satellite cells

12 h after exercise [75]. When inflammation is produced

after severe LC or LC induced by surface electrical

stimulation [8], or after LC for 2 weeks [5], NGF is

produced in inflammatory cells and regenerating muscle

fibers.

What causes DOMS? The COX2-GDNF pathway

In addition to the B2 bradykinin receptor and NGF path-

way, we showed that cyclooxygenase (COX)-2 and glial

cell line-derived neurotrophic factor (GDNF) were also

involved in DOMS [47]. COX-2 inhibitors, but not COX-1

inhibitors, given orally before LC completely blocked the

development of DOMS, but when given 2 days after LC

they failed to reverse the mechanical hyperalgesia. COX-2

mRNA and protein in exercised muscle increased 0–12 h

after LC. This time course is a good fit for a trigger of NGF

upregulation. However, COX-2 inhibitors did not suppress

NGF upregulation after LC. Instead, we found that GDNF

mRNA was upregulated in the exercised muscle 12 h–

1 day after LC (Fig. 3a) and that this upregulation was

blocked by pretreatment with COX-2 inhibitors. mRNAs of

other members of the GDNF family, namely, artemin,

persephin, and neurturin, were not upregulated [47]. In-situ

hybridization studies revealed that COX-2 and GDNF

mRNA signals increased at the periphery of skeletal mus-

cle cells and/or satellite cells (around nuclei) 0 and 12 h

after LC, respectively (Fig. 3b–d for GDNF). Accumula-

tion of COX-2 mRNA signals was also observed in small

Fig. 1 NGF involvement in DOMS. a NGF mRNA of the EDL was

upregulated first 12 h after LC, and continued to be upregulated up to

2 days after LC. b NGF protein was also upregulated in a time course

similar to that for mRNA. c Intramuscular injection of anti-NGF

antibody reversed already established mechanical hyperalgesia in 3 h.

Black filled circles, normal goat IgG injection group; grey filled

squares, anti-NGF antibody injection group. Modified from Murase

et al. [64]

Fig. 2 NGF sensitized muscle C-fiber afferents to mechanical

stimulation. a, b Sample recording of muscle C-fibers with intramus-

cular injection of phosphate-buffered saline (PBS) (a) and NGF (b).
Upper right insets in a, b show the location of the receptive field of

the fiber. The 1st and 3rd traces are raw recordings of the fiber, and

the 2nd and 4th traces show readouts of the mechanical force applied

to the receptive field. c Summary of the change in the mechanical

threshold. The threshold of the PBS group at each time point was set

as 100 %. White circles, PBS group; filled black circles, NGF group.

d Summary of the change in the magnitude of the response (number

of discharges induced by mechanical stimulation). The magnitude of

the response of the PBS group at each time point was set as 100 %.

NGF was injected at time 0. *p\ 0.05, **p\ 0.01 compared with

the PBS group at each time point in both c, d. From Murase et al. [64]
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blood vessels and epimysium. Intramuscular injection of

anti-GDNF antibody 2 days after LC partly reversed

DOMS. On the basis of these findings we conclude that

GDNF upregulation via COX-2 activation is essential to

mechanical hyperalgesia after exercise.

GDNF also sensitized muscle afferents but, in contrast

with NGF, it sensitized Ad fibers. C-fibers were not sen-

sitized by GDNF (Fig. 4) [76]. This is unexpected because

DOMS is a vague sensation and it is generally believed that

Ad-fiber activation in the skin induces sharp pain. Nobody

knows what kind of sensation is induced when only mus-

cular Ad-fibers are activated.

Involvement of acid-sensing ion channels (ASIC) in

DOMS mechanical hyperalgesia has been demonstrated

pharmacologically by use of an antagonist, amiloride [37].

GDNF-induced muscular mechanical hyperalgesia was

reversed by amiloride [76]. Fujii et al. [37] also showed

that ASIC were expressed in muscle afferent neurons larger

than those expressing TRPV1. These observations together

are a good fit with our observation that GDNF sensitized

Ad-fibers.
Involvement of TRPV1 and TRPV4 in GDNF-induced

mechanical hyperalgesia has been shown in mice deficient

in these receptors [38]. Upregulation of GDNF after LC

was normal in TRPV1 knockout mice but decreased in

TRPV4-deficient mice. Application of TRPV4 antagonist

(HC-067047) reversed the mechanical hyperalgesia after

LC, but did not affect upregulation of GDNF [38]; thus, the

site of action of GDNF is, similar to NGF, in the periphery

of the afferents.

G
D

N
F/

G
A

P
D

H
 m

R
N

A 
(a

.u
.)

CTL 0h 6h 12h 1d 2d

GDNF 
GAPDH 

a

b c d

Fig. 3 GDNF upregulation in the muscle after LC. a GDNF mRNA

of the EDL was upregulated 12 h–1 day after LC. b, c Expression of

GDNF mRNA (white arrowheads) in EDL muscle 12 h after LC,

shown by use of dark-field photomicrographs of in-situ hybridization

histochemistry (oblique sections), was increased on the ipsilateral side

(c) compared with the contralateral side (b). Scale bar 100 lm.

d Bright-field photomicrograph (longitudinal section) at greater

magnification shows in-situ hybridization signals for GDNF mRNA

(black arrowhead) in the ipsilateral muscle. Scale bar 10 lm. Note

that GDNF mRNA signals are observed around the nuclei of muscle

cells and/or satellite cells. Modified from Murase et al. [47]

10 min 
before

10 min before
GDNF injection

10 s

120 min later

0

196 mN

a b

Fig. 4 a GDNF sensitized muscle Ad-fiber afferents to mechanical

stimulation. The method of presentation is similar to Fig. 2. The black

triangles in b represent the GDNF injection group. #p\ 0.05, two-

way ANOVA, **p\ 0.01, ***p\ 0.001, two-way ANOVA fol-

lowed by Bonferroni’s multiple comparison test. Modified from

Murase et al. [76]
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The receptor subtype for prostaglandin-E2 [77] that is

involved in GDNF production after LC was sought by use

of a pharmacological method and EP2 deficient mice, and

was demonstrated to be the EP2 subtype [78].

A schematic diagram of the new mechanism for DOMS

proposed on the basis of our observations is shown in

Fig. 5.

When B2 bradykinin receptor antagonist HOE140 was

administered before LC, upregulation after LC of not only

NGF but also GDNF and COX-2 was blocked [47], i.e.,

there is an interaction between these two pathways at the

COX-2 level. In contrast, NGF upregulation after LC

remained unchanged after application of COX-2 inhibitors

yet development of DOMS was blocked [47]. This obser-

vation might suggest that NGF produced after LC is not

present in amounts large enough to sensitize muscle thin

fiber afferents and induce mechanical hyperalgesia. The

concentrations of NGF and GDNF used in the experiments

that showed sensitization of muscle thin-fiber afferents to

mechanical stimulation would have been much higher than

those produced after LC. There may be collaboration

between NGF and GDNF, although this is not supported by

the current understanding that sensory neurons sensitive to

NGF and those sensitive to GDNF belong to different

neuron groups [80]. Further experiments are needed to

clarify this point.

Adaptation (repeated bout effect)

It is well known that DOMS is reduced when the same

exercise is repeated after a specific interval. This adapta-

tion, called the ‘‘repeated bout effect’’, has been attributed

to adaptations of neural or connective tissue or cellular

mechanisms. In addition, adaptation in excitation–con-

traction coupling or adaptation in the inflammatory

response have also been proposed as mechanisms (re-

viewed elsewhere [81, 82]; also see Ref. [22]). Hoping to

shed light on this effect, on the basis of our findings

described above, we found that mechanical hyperalgesia

and NGF upregulation were reduced after the 2nd bout of

exercise in rats [83]. In addition, these adaptation phe-

nomena were observed even when downstream pathways

of the B2 bradykinin receptor were unaffected by its

antagonist HOE140. This observation suggests adaptation

occurs in the process of BK release, or at a level upstream

of adenosine release.

Muscle or fascia?

Some reports indicate fascia is important in DOMS. Itoh

et al. [84] examined the electrical sensitivity of tissue at

different depths from the skin to the muscle inside after LC

in humans, and found the largest decrease in the current

threshold of pain at the depth of fascia. Gibson et al. also

found that injection of hypertonic saline [56] into the

exercised muscle did not change the pain intensity (VAS)

after LC in humans, but that injection into the fascia clearly

increased it. This observation may indicate that the fascial

afferents are important in DOMS. However, the response to

hypertonic saline of muscle afferent fibers was not sensi-

tized after LC [56], only mechanical sensitivity was

increased [52, 53]. A recent report showed that the elec-

trical pain threshold decrease after LC was greater for

fascia than for muscle [85]. To understand the relative

contribution of both structures to DOMS, we must differ-

entially measure the mechanical pain threshold of both

tissues, or record afferent activity after LC. Innervation of

the fascia and its afferent characteristics were only recently

reported [86, 87]. Whether fascial thin-fiber afferents are

more strongly sensitized in DOMS than muscle afferents

remains to be analyzed.

Prevention and treatment of DOMS

Because DOMS may interfere with everyday life and the

performance of athletes, and because it may make it dif-

ficult for those who are not familiar with exercise to con-

tinue exercise for fitness, effective methods for preventing

from DOMS are needed. As shown in the previous section,

Mechanical hyperalgesia 
(Delayed onset muscle soreness)

Nociceptor sensitization
A- C fibers

Lengthening contraction

BK B2receptor

PGs
COX2

Muscle/satellite cell

stretch
contraction

(adenosine)

Blood vessel (endothelial cells)

GDNF NGF

(ASIC, TRPV4) (TRPV1)
δ

Fig. 5 Schematic diagram of the mechanism proposed for DOMS.

The upper part of the figure in the shaded area was based on Boix

et al. [59]. BK, bradykinin-like substance (Arg-bradykinin in rats);

COX2, cyclooxygenase-2; PGs, prostaglandins; EP2, prostaglandin

EP2 receptor; GDNF, glial cell line-derived neurotrophic factor;

NGF, nerve growth factor; ASIC, acid sensing ion channel; TRPV1

and TRPV4 transient receptor potential vanilloids 1 and 4. Modified

from Mizumura et al. [79]
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B2 receptor antagonist, COX-2 inhibitor, anti-NGF anti-

body, and anti-GDNF antibody can, theoretically, be

helpful. For the moment, the only drugs applicable for

humans are COX-2 inhibitors. As described in the intro-

duction, the effectiveness of non-steroidal anti-inflamma-

tory drugs (NSAID) against DOMS is variable, depending

on the time of administration and dosage [9]. A recent

systematic review [29] of a large number of reports on the

effects of NSAID found that many did not follow an

appropriate experimental design. Therefore, they per-

formed a randomized, double-blind, placebo-controlled

within-subject experiment. Topical diclofenac (moderately

selective to COX-2) sodium gel 1 % was applied over the

exercised leg every 3 h for 24 h and was found to help

reduce DOMS [29]. It would be interesting to study how

this works in the context of the mechanism we have pro-

posed (Fig. 5).

Exercise consisting of a small number of maximal iso-

metric contractions [88] or weak LC [89, 90] beforehand

(up to 2 weeks before) is reported to be effective in pre-

venting DOMS. Massage after exercise has been proved to

be effective in reducing DOMS in rats [91]. Reduction of

DOMS by massage has also been reported for humans by

Farr et al. [92], although they did not find any beneficial

effect on reduced muscular strength or other functional

decline.

Perspective

Several aspects of DOMS must still be studied. When one

of the pathways described above (B2 bradykinin receptor-

NGF pathway and COX-2-GDNF pathway) is blocked by

a B2 bradykinin receptor antagonist or a COX-2 inhibitor,

DOMS does not occur. This might suggest an interaction

between the two pathways. In addition, the very early

event that induces adenosine (possibly ATP) release from

the muscle or activates muscle COX-2 during LC, and

which might be related to the adaptation mechanism, is

also unknown. This must be intimately related to why

only LC, and not SC, induces DOMS, and must be

studied.

The DOMS model has been used for study of myofascial

pain syndrome, because it shows taut band-like muscle

hardening, and localized decreased nociceptive threshold in

it (trigger point), which are of diagnostic importance for

myofascial pain symptoms. When LC was repeated every

day, instead of adaptation there were longer-lasting

mechanical hyperalgesia and muscle signs of degeneration

and regeneration [5]. This observation suggests that this

repetitive model is clinically relevant for study of

myofascial pain syndrome. Further study of the DOMS

mechanism might reveal the mechanism of myofascial pain

syndrome and may suggest possibilities for treatment.
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